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Abstract: In this paper, we propose an efficient hardware implemen-
tation of the reverse converter for the new five-moduli set {2n, 2n/2 −
1, 2n/2 + 1, 2n + 1, 22n−1 − 1} for even n. The converter has a two-level
architecture, and is based on combination of new Chinese remainder
theorem 1 (New CRT-I) and mixed-radix conversion (MRC). The pre-
sented reverse converter has lower hardware requirements, and results
in a significant reduction in the conversion delay, compared to the re-
verse converter of the latest introduced five-moduli set {2n−1, 2n, 2n +
1, 2n−1−1, 2n+1−1} that has the same dynamic range as the proposed
five-moduli set.
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1 Introduction

The residue number system (RNS) is a carry-free number system which can
be used as a method for high-speed and low-power implementation of digital
signal processing (DSP) computation algorithms [1]. The reverse conversion
is very important and complex part of an RNS system. The complexity of
the reverse converter is mainly based on moduli set. The most popular RNS
moduli set is {2n − 1, 2n, 2n + 1} which has been attracted researchers for
many decades. But, its dynamic range is inadequate for applications which
require large dynamic range. Hence, newly, the general three-moduli set
{2α, 2β − 1, 2β + 1} [2] where α < β, has been introduced for providing large
dynamic range with low-complexity. Furthermore, four-moduli sets such as
{2n−1, 2n, 2n+1, 2n+1−1} [3] and {2n−3, 2n−1, 2n+1, 2n+3} [4] have been
considered for increasing parallelism. Nowadays, high-performance compu-
tation systems demand more parallelism with larger dynamic range. Thus,
five-moduli sets are going under more development. The latest proposed
five-moduli set is {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1 − 1} [5]. This set has bal-
anced moduli, but its inefficient multiplicative inverses lead to performance
degradation of the reverse converter.

In this paper, the new five-moduli set {2n, 2n/2−1, 2n/2+1, 2n+1, 22n−1−
1} for even n is introduced for RNS. This moduli set has simple multiplica-
tive inverses which can lead to efficient design of reverse converter. Next, a
two-level design of reverse converter for the proposed moduli set based on
combination of New Chinese remainder theorem 1 (New CRT-I) and mixed-
radix conversion (MRC) is presented. In comparison with reverse converter
of the five-moduli set {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1 − 1} [5], the pro-
posed converter has better performance in terms of hardware requirements
and conversion delay.

2 Background

The RNS [1] is based on a moduli set {P1, P2, . . . , Pn} which consists of
pairwise relatively prime numbers. The dynamic range is defined as M =
P1P2 . . . Pn. Each weighted number X < M has a unique representation in
RNS as (x1, x2, . . . , xn) where

xi = X mod Pi = |X|Pi
, 0 ≤ xi < Pi (1)
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By New CRT-I [6], the RNS number (x1, x2, . . . , xn) can be converted into
its equivalent weighted number as

X = x1 + P1 |k1(x2 − x1) + k2P2(x3 − x2) + · · ·
+ kn−1P2P3 · · ·Pn−1(xn − xn−1)|P2P3···Pn

(2)

Where |k1 × P1|P2P3···Pn
= 1, |k2 × P1 × P2|P3···Pn

= 1, . . ., |kn−1 ×P1 ×P2 ×
· · · × Pn−1|Pn = 1.

By MRC [1], the reverse conversion can be done as

X = znPn−1 . . . P2P1 + . . . + z3P2P1 + z2P1 + z1 (3)

The mixed-radix digits can be calculated by z1 =x1, z2 =
∣
∣
∣
∣(x2−z1)

∣
∣
∣P−1

1

∣
∣
∣
P2

∣
∣
∣
∣
P2

,

. . ., zn =
∣
∣
∣
∣(((xn − z1)

∣
∣
∣P−1

1

∣
∣
∣
Pn

− z2)
∣
∣
∣P−1

2

∣
∣
∣
Pn

− · · · − zn−1)
∣
∣
∣P−1

n−1

∣
∣
∣
Pn

∣
∣
∣
∣
Pn

. The

term
∣
∣
∣P−1

i

∣
∣
∣
Pj

denotes the multiplicative inverse of Pi modulo Pj

3 Reverse converter design

Consider the five-moduli set {2n, 2n + 1, 2n/2 + 1, 2n/2 − 1, 22n−1 − 1} with
corresponding residues (x1, x2, x3, x4, x5). The proposed conversion algo-
rithm consists of two levels. In the first level, the equivalent weighted num-
ber of the residues x1, x2, x3 and x4 is obtained by using New CRT-I
based on subset {2n, 2n + 1, 2n/2 + 1, 2n/2 − 1}. Next, the result of the
first level and x5 are combined by using MRC, with respect to the set
{2n(2n + 1)(2n/2 + 1)(2n/2 − 1), 22n−1 − 1}.

3.1 Conversion equations for {2n, 2n + 1, 2n/2 + 1, 2n/2 − 1}
Based on New CRT-I:

The multiplicative inverses which are needed in (2), can be calculated as
follows

|k1 × 2n|22n−1 = 1 → k1 = 2n (4)

|k2 × 2n × (2n + 1)|2n−1 = 1 → k2 = 2n−1 (5)
∣
∣
∣k3 × 2n × (2n + 1) × (2n/2 + 1)

∣
∣
∣
2n/2−1

= 1 → k3 = 2(n−4)/2 (6)

The Z = (x1, x2, x3, x4) can be obtained by substituting the values of mul-
tiplicative inverses, and moduli P1 = 2n, P2 = 2n + 1, P3 = 2n/2 + 1,
P4 = 2n/2 − 1 in (2) as below

Z = x1 + 2n

∣
∣
∣
∣
∣

2n(x2 − x1) + 2n−1(2n + 1)(x3 − x2)
+2(n−4)/2(2n + 1)(2n/2 + 1)(x4 − x3)

∣
∣
∣
∣
∣
22n−1

=x1+2n

∣
∣
∣
∣
∣

−2nx1+(2n−1−22n−1)x2+(2n−2(2n+1)−2(n−4)/2(2n+1))x3

+2(n−4)/2(2n + 1)(2n/2 + 1)x4

∣
∣
∣
∣
∣
22n−1

(7)

The simplification of (7) can be performed with considering the point that,
by expressing xi in p bits,

∣
∣
∣xi × 2l

∣
∣
∣
2p−1

and |−xi|2p−1 are equivalent to l bits
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circular left shifting of xi, and one’s complement of xi, respectively [1]. The
residues can be represented at bit-level as: x1 = (x1,n−1, . . . , x1,1, x1,0), x2 =
(x2,n, . . . , x2,1, x2,0), x3 = (x3,n/2, . . . , x3,1, x3,0) and x4 = (x4,(n−2)/2, . . . ,

x4,1, x4,0). Therefore, (7) can be rewritten as

Z = x1 + 2nY (8)

Where

Y = |Y1 + Y21 + Y22 + Y31 + Y32 + Y4|22n−1 (9)

Y1 = |−2nx1|22n−1 =

∣
∣
∣
∣
∣
∣
∣

−2n(0 · · · 00︸ ︷︷ ︸
n

x1,n−1 · · ·x1,1x1,0
︸ ︷︷ ︸

n

)

∣
∣
∣
∣
∣
∣
∣
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︸ ︷︷ ︸

n

1 · · · 11︸ ︷︷ ︸
n

(10)
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∣
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∣
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∣
∣
∣
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︸ ︷︷ ︸
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∣
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n+1
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n−1

(11)
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∣
∣
∣−22n−1x2
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=
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∣
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∣
∣
∣
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︸ ︷︷ ︸
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)

∣
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n

(12)
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(13)
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Y4 =
∣
∣
∣2(n−4)/2(2n + 1)(2n/2 + 1)x4
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∣
∣
22n−1

=

∣
∣
∣
∣
∣
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︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
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n/2
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∣
∣
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∣
∣
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2(n−4)/2(x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2
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∣
∣
∣
∣
∣
∣
∣
∣
22n−1

= x4,1x4,0 x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,1x4,0
︸ ︷︷ ︸

n/2

x4,(n−2)/2 · · ·x4,3x4,2
︸ ︷︷ ︸

(n−4)/2

(15)

3.2 Conversion equations for {2n(22n −1), 22n−1 −1} Based on
MRC:

The MRC for these two moduli requires only one multiplicative inverse as
∣
∣
∣k × 2n(22n − 1)

∣
∣
∣
22n−1−1

= 1 → k = 2n−1 (16)

Therefore, with considering (3), the X = (Z, x5) can be calculated based on
the two-moduli set {2n(22n − 1), 22n−1 − 1} as follows

X = Z + 2n(22n − 1)
∣
∣
∣(x5 − Z)2n−1

∣
∣
∣
22n−1−1

(17)

The binary vectors Z and x5 can be represented in bit-level as Z = (Z3n−1,

. . . , Z1, Z0) and x5 = (x5,2n−2, . . . , x5,1, x5,0). Now, (17) can be simplified as
below

X = Z + 2n(22n − 1)T = Z + 23nT
︸ ︷︷ ︸
(5n−1)bits

−2nT (18)

T = |T1 + T21 + T22|22n−1−1 (19)

Where

T1 =
∣
∣
∣2n−1x5

∣
∣
∣
22n−1−1

=

∣
∣
∣
∣
∣
∣
∣

2n−1(x5,2n−2 · · ·x5,1x5,0
︸ ︷︷ ︸

2n−1

)

∣
∣
∣
∣
∣
∣
∣
22n−1−1

=

∣
∣
∣
∣
∣
∣
∣

2n−1(x5,2n−2 · · ·x5,n+1x5,n
︸ ︷︷ ︸

n−1

x5,n−1 · · ·x5,1x5,0
︸ ︷︷ ︸

n

)

∣
∣
∣
∣
∣
∣
∣
22n−1−1

= x5,n−1 · · ·x5,1x5,0
︸ ︷︷ ︸

n

x5,2n−2 · · ·x5,n+1x5,n
︸ ︷︷ ︸

n−1

(20)
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Z =Z3n−1 · · ·Z1Z0
︸ ︷︷ ︸

3n

=Z3n−1 · · ·Z2nZ2n−1
︸ ︷︷ ︸

n+1

×22n−1+Z2n−2 · · ·Z1Z0
︸ ︷︷ ︸

2n−1

(21)

T21 =

∣
∣
∣
∣
∣
∣
∣

−2n−1 × 22n−1(0 · · · 00︸ ︷︷ ︸
n−2

Z3n−1 · · ·Z2nZ2n−1
︸ ︷︷ ︸

n+1

)

∣
∣
∣
∣
∣
∣
∣
22n−1−1

= Z̄3n−2 · · · Z̄2nZ̄2n−1
︸ ︷︷ ︸

n

1 · · · 11︸ ︷︷ ︸
n−2

Z̄3n−1 (22)

T22 =

∣
∣
∣
∣
∣
∣
∣

−2n−1(Z2n−2 · · ·Z1Z0
︸ ︷︷ ︸

2n−1

)

∣
∣
∣
∣
∣
∣
∣
22n−1−1

=

∣
∣
∣
∣
∣
∣
∣

−2n−1(Z2n−2 · · ·Zn+1Zn
︸ ︷︷ ︸

n−1

Zn−1 · · ·Z1Z0
︸ ︷︷ ︸

n

)

∣
∣
∣
∣
∣
∣
∣
22n−1−1

= Z̄n−1 · · · Z̄1Z̄0
︸ ︷︷ ︸

n

Z̄2n−2 · · · Z̄n+1Z̄n
︸ ︷︷ ︸

n−1

(23)

3.3 Hardware Implementation:
The proposed reverse converter for the five-moduli set {2n, 2n/2 − 1, 2n/2 +
1, 2n + 1, 22n−1 − 1} is based on equations (8), (9), (18) and (19). The
implementation of (9) requires a six-operand modulo (22n − 1) adder. In this
paper, we consider the method of [7] for implementation of multi-operand
modular adders. Hence, the six-operand modulo (22n − 1) adder relies on
a 2n-bit six-input carry-save adder (CSA) tree followed by a 2n-bit carry-
propagate adder (CPA) with end-around carry (EAC). The six-input CSA
tree consists of four 2n-bit CSAs with EAC. Also, some of the full adders
(FAs) in these CSAs are reduced to pairs of XNOR/OR or XOR/AND gates,
because the operands (10)-(14) have some bits with the constant values of 0
or 1. Since, x1 is an n-bit number, (8) can be realized with only concatenation
of x1 and Y , without the use of hardware. The implementation of (19) is
also based on a (2n − 1)-bit CSA with EAC followed by a (2n − 1)-bit CPA
with EAC. Next, realization of (18) relies on a (5n− 1)-bit binary subtracter
which can be implemented by a (5n − 1)-bit regular CPA with ‘1’ carry-in,
and (2n− 1) NOT gates. It should be noted that, the term Z + 23nT is only
a concatenation, because Z is a 3n-bit number. Fig. 1 shows the hardware
architecture of the converter.

4 Performance evaluation

Table I makes a comparison in terms of area and delay between the proposed
reverse converter for the moduli set {2n, 2n/2−1, 2n/2+1, 2n+1, 22n−1−1} and
the converter of the moduli set {2n−1, 2n, 2n+1, 2n−1−1, 2n+1−1} [5]. Both
these moduli sets have five moduli and the same dynamic range. As stated in
[4], the converter of [5] has a total delay of (18n+ l+2)tFA, where tFA denotes
the delay of an FA. For a better comparison, the unit gate model is considered
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to obtain total area and delay estimations. Based on this model, each two-
input monotonic gate counts as one gate in area and delay, an XOR/XNOR
gate counts as two gates in area and delay, and an FA has area of seven gates
and delay of four gates [2, 3]. The corresponding total unit gate area and
delay are presented in Table I. It is clear from the Table that the proposed
converter results in significant reduction in area and delay, compared to the
converter of [5].

Fig. 1. The proposed reverse converter: (a) first level (b)
second level

Table I. Performance Comparison

5 Conclusion

This paper presents an efficient two-level design of reverse converter for the
new five-moduli set {2n, 2n/2 − 1, 2n/2 + 1, 2n + 1, 22n−1 − 1} based on com-
bination of New CRT-I and MRC. Comparison with the latest five-modulus
reverse converter has shown that the proposed design is faster and requires
less hardware area.
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