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Abstract: The fixed dimension modified sinusoidal model (FDMSM)
was recently proposed as an attractive candidate for compact represen-
tation of audio signals in adverse conditions. This paper aims to study
the capability of the FDMSM signal representation for analysis and
synthesis of speech mixtures as well as noisy audio signals corrupted
by highly colored noise of babble and harmonic. Extensive simula-
tion results verified that the FDMSM provides high perceptual quality
of the synthesized output signal compared with the conventional har-
monic plus noise model (HNM) for both speech mixtures as well as
audio signals corrupted by various types of noise.
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1 Introduction

In many audio and speech applications it is highly important to deal with
speech mixtures and audio signals corrupted with highly correlated noise
including babble and harmonic noise. In this respect the lack of an effective
signal representation capable for analysis mixed signals is often introduced
as a challenging problem in many applications. This difficulty is mainly
due to that many pitch-dependent analysis methods including harmonic plus
noise model (HNM) [1], are not capable of analyzing mixed signals since the
performance of the state-of-the-art pitch estimation algorithms [2, 3, 4] may
severely degrade by introducing large errors for mixtures [5]. The purpose of
this study is to investigate the capability of the FDMSM signal representation
for a wide range of audible signals including speech mixtures, songs, and noise
corrupted audio signals. The results are compared with those obtained by
HNM as a pitch-synchronous benchmark algorithm.

2 FDMSM signal model

Recently in [6], it was shown that a compact representation is possible by
a novel subband-based sinusoidal model called FDMSM (see Fig. 1). The
FDMSM as a whole consists of two parts, analysis and synthesis stage as
depicted in Fig. 1. The analysis stage is composed of two parts namely, (1)
signal segmentation followed by taking the Discrete-time Fourier Transform
(DFT), and (2) filtering followed by peak picking. The aim behind spectral
smoothing is to remove the frequency components within f < 62.5 Hz and
f > 3840 Hz from the magnitude spectrum prior to peak picking due to
low (50 or 60 Hz) and high frequency harmful effects (assuming sampling
frequency fs = 8 kHz). Finally, peak picking is performed.

As the number of peaks obtained at the end of the first stage differs from
one segment to another due to pitch dependence of speech signals at various
frames, a feature selection is employed. The aim of feature selection is to ap-
ply an appropriate transformation by which the variable feature dimension
is made fixed at frames. However, the required transformation should pre-
serve the synthesized quality approximately the same as the original signal
in terms of perception.
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The subband transformation is accomplished by designing several sub-
bands. Each subband is characterized with two parameters centre frequency
in addition to the related bandwidth. The number of subbands (FDMSM
model order) is,

M̂ =
⌈

Ω(ω
̂M
) − Ω(ω1)
ΔΩ

⌉
(1)

where M̂ is the number of mel-scaled subbands (FDMSM model order),
Ω(ω1), Ω(ω

̂M
) are mel-scale start and end frequencies, respectively while

ΔΩ is the frequency interval. Next, a search is made within each band to
determine the peak candidates. Finally, the decision is made on these peak
candidates whether to pick or discard. The output of feature selection is a
set of sinusoids called the FDMSM feature parameters. Next, the FDMSM
parameters obtained in analysis stage are converted in time-domain shown
as vk

i (n), i ∈ [1, M̂] where i denotes the ith subband and k is the frame in-
dex. Sinusoidals are put together by a weighted overlap-add (WOLA) to
reconstruct the synthesized signal, ŝk(n).

Fig. 1. FDMSM: consists of four parts; (a) analysis stage,
2) smoothing plus peak picking, 3) FDMSM fea-
ture selection, and taking maximum peak at each
mel-scaled subband, and (b) synthesis: WOLA for
signal reconstruction.

2.1 Problem formulation and signal model
Consider a frame of a speech signal composed of a set of impulses corrupted
by white noise of constant power as,

x(n) = Re
{∑M

i=1
αiej2πnfi

}
︸ ︷︷ ︸

s(n)

+w(n), 0 ≤ n ≤ N − 1 (2)

where N is the analysis time-window length in samples, n is the time-sample
index and w = [w(n) w(n + 1) . . . w(n + N − 1)]T is the white noise, αi

and fi are the sinusoidal amplitude and frequency, respectively. Note we
assume that s(n) is composed of M sinusoidals. According to (2), an ob-
served signal x(n) can be decomposed into two signals, namely, a speech
signal denoted by s(n) plus noisy components shown by w(n). Each si-
nusoidal frequency fi is then defined as a sinusoidal frequency vector as,
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vk
i = [1 ej2πfi . . . ej2πfi(N−1)]H, i ∈ [1, M] where vk

i is the ith frequency
vector of dimension N × 1 composed of length-N DFT vector, index i de-
notes the ith subband with frequency fi (as depicted in the synthesis stage
in Fig. 1) The FDMSM synthesized signal is shown as,

ŝk(n) =
̂M∑

i=1

âk
l cos(2πf̂k

i n + ϕ̂k
i ) (3)

where âk
i , f̂k

i , ϕ̂k
i are the amplitude, frequency and phase parameters for the

kth frame estimated by the FDMSM, ŝk(n) is the synthesized speech of the
kth frame, M̂ the number of sinusoidals in the FDMSM. In a matrix form all
the sinusoidal frequencies obtained by the FDMSM shown by vk

i , 1 ≤ i ≤ M̂

are represented by, V̂
k

s = [v̂k
1 v̂k

2 . . . v̂k
̂M
]H , 1 ≤ i ≤ M̂ where V̂

k

s is an M̂×N

matrix, the columns of V̂
k

s are the FDMSM vectors composed of frequencies
f̂i with i = 0, . . . , M̂. The FDMSM signal representation is,

ŝk = [Âk
1 . . . Âk

̂M
][v̂k

1 . . . v̂k
̂M
]H = Â1V̂

k,H
1 (4)

where Â1 = [Âk
1,1 . . . Âk

1, ̂M
] is a 1 × M̂ vector composed of the amplitude

parameters obtained from applying FDMSM to the kth frame of the observed
signal, and sk is 1 × N waveform and denotes complex sinusoidal amplitude
vector at the kth frame.

2.2 FDMSM max approximation within subbands
In this section we provide a mathematical analysis for the FDMSM signal
representation. Consider two speech frames of different speakers, sk1(n) and
sk2(n) at the kth frame index. Generally, any observed speech signal is com-
posed of two different parts, harmonic and noise components. Each speaker
speech segment can then be expressed as a product sum of FDMSM plus a
model error term as,

sk
j (n) = ÂjVH

j,s = [Âk
j,1 . . . Âk

j, ̂M
]

⎡
⎢⎢⎣

1 · · · 1
...

. . .
...

ej2π(N−1)f̂j,1 · · · ej2π(N−1)f̂
j, ̂M

⎤
⎥⎥⎦

H

+ εk
j (n)

(5)
skj (n) = [Âk

j,1 . . . Âk
j, ̂M

][v̂k
j,1 . . . v̂k

j, ̂M
]H + εk

j (n) (6)

where V̂
k

j,s = [v̂k
j,1 . . . v̂k

j, ̂M
]H , j ∈ [1, 2] denotes the FDMSM frequency vec-

tors, εj(n) is the model error of the FDMSM signal representation for the jth
speaker in speech mixture of z(n) = sk1(n)+sk2(n) and M̂ is the model order of
FDMSM. fj,k, and Âk

j,i denote the FDMSM amplitude for ith subband for the
jth speaker in the mixture. Note the components for each speaker is in fact the
maximum peak found in the DFT spectrum at each frame subband. We de-
fine subband spectrum of the jth speaker signal at the kth frame as skj,i(Ω) with
j ∈ [1, 2] and Ω ∈ [Ωi−1, Ωi] where Ω indicates the mel-scale frequency. For
each FDMSM subband we have: Ω(ωi) < Ωi(ω) < Ω(ωi+1), i = 1, . . . , M̂ − 1.
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As shown in Fig. 1. The FDMSM signal representation could also be refor-
mulated as,

sk
1(n) =

̂M∑
i=1

Ak
1,ie

j2πnΩi + εk
1(n)

= [Âk
1,1 . . . Âk

1, ̂M
][v̂k

1,1(Ωi) . . . v̂k
1, ̂M

(Ωi)] + εk
1(n)

= ÂV̂H
s (Ω) + εk

1(n) (7)

where vk(Ωi) = [1 ej2πΩi . . . ej2πΩi(N−1)]H, 1 ≤ i ≤ M̂ denotes the
FDMSM frequency vectors obtained in mel-scaled subbands (warped fre-
quency domain), V̂s(Ω) denotes the matrix composed of all sinusoids ob-
tained from the FDMSM in the mel-scaled frequencies v̂(Ωi), 1 ≤ i ≤ M̂.
A1,i i ∈ [1, M̂] indicates the magnitude spectrum of the FDMSM peaks at
each mel-scaled subband. These peaks are chosen by selecting the peak with
the highest amplitude in the logarithmic spectrum at each subband. Hence by
replacing Aj,i = Max{skj,i(Ω)} with j = 1, 2 the speaker index and 1 ≤ i ≤ M̂
as subband index we have,

ŝk
j (n) =

̂M∑
i=1

Max{skj,i(Ωj)}ej2πnΩj,i

= [Âk
j,1 . . . Âk

j, ̂M
][v̂k

j,1(Ωj,i) . . . v̂k
j, ̂M

(Ωj,i)]H , j = 1, 2 (8)

where Ωj,i denotes the mel-scaled frequency of the ith subband spectrum for
the jth speaker obtained by taking maximum from skj,i(Ω) of the jth speaker
signal. Eq. (8) can also be interpreted as a subband maximum approximation.
As the FDMSM seeks for the maximum element of the logarithmic spectrum
per subbands, the FDMSM peaks can be expressed as

{Âk
j,1 . . . Âk

j, ̂M
} = Max{log|skj,1(Ωj)|, log |skj,2(Ωj)|, . . . , log |sk

j, ̂M
(Ωj)|}, j ∈ [1, 2]

(9)
assuming that phase values are modeled as a uniform distribution, the maxi-
mum approximation is recently proven as a nonlinear MMSE estimator of the
log spectra of the underlying speech signals as shown in [7]. Hence, Eq. (9)
indicates that the FDMSM parameter estimation is a MMSE estimator at
each subband and FDMSM representation solves the estimation problem per
subbands as,

ẑk(n) =
̂M∑

i=1

Max{sk1,i(Ωi) + sk2,i(Ωi)}v̂k
z,i(argmax{skz,i(Ωi)}) =

̂M∑
i=1

Âk
z,iv̂

k
z,i(Ωi)

(10)

3 Simulation results

The evaluation results for the FDMSM are compared with those obtained
by HNM as benchmark. The results are averaged over ten mixtures each
composed of a clean speech signal and a colored noise of a particular type.
The speech utterances are chosen from [8] the noise signals are taken from
the Noisex [9].
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3.1 Audio signals corrupted by babble noise
The Perceptual Evaluation of Speech Quality (PESQ) is used to evaluate
the performance for speech and music signals corrupted with babble noise at
SNR=10 dB. The results, summarized in Table I test 1, show a reasonable
PESQ value of more than 3.5 for the noisy speech. It is also observed that
in average the FDMSM outperforms HNM approximately with 1.5 to 2 ad-
vantage of PESQ score. From Table I it is observed that FDMSM reaches at
a fixed value of PESQ as M̂ grows.

3.2 Signals corrupted by harmonic noise
Experiment is conducted for various input signals including single speaker
speech signal, speech mixture composed of two speakers and music signals
contaminated with a harmonic noise. The harmonic noise has a fundamental
frequency of 300 Hz and there are 10 harmonics in its spectrum. The objective
evaluation results are summarized in Table I test 2. The PESQ results in
Table I test 2 indicate that the FDMSM achieves reasonable performances of
1.2 advantage over HNM. The most notable result is related to the category
of the male speaker signal where the FDMSM provides an improvement of
1.6 in PESQ compared with HNM.

3.3 Speech mixture
Objective assessment for the speakers in terms of SSNR (Segmental Signal-
to-Noise Ratio), PESQ, Log-Likelihood ratio (LLR), and Weighted Spectral
Slope (WSS) versus the FDMSM model order, M̂ and HNM are presented
in Table II. Test 1 is composed of a speech mixture formed by employing
speakers from [8] mixed at SSR=0 dB. From the table, it is observed that the
FDMSM requires 33 < M̂ < 40 to reconstruct the speech mixture. Also note
any change in M̂ in this range has little effect on the objective evaluations. In
comparison, HNM results in poor performance for speech mixture as shown
in Table II test 1. In this case, FDMSM results in a higher perceptual quality
compared with HNM.

For a song music signal in Table I test 2, it was observed that the FDMSM
could achieve a PESQ higher than 4 leading to a synthesized signal indistin-
guishable from the original. The poor performance of HNM for mixtures is
due to erroneous pitch estimation since polyphonic signal may easily lead to
errors in HNM. This is also true for speech mixtures where two pitch fre-
quencies may easily overlap for different speakers. Another explanation for
HNM performance degradation may be that too many pitch candidates are
found and as a result the parameter estimation of HNM is erroneous. Sub-
jective evaluations showed that the difference between the synthesized signal
by the FDMSM and the original signal is mostly negligible while HNM syn-
thesized signals result in poor performance. The MOS results averages to
3.6 for the FDMSM compared with 2 obtained by HNM. The wave files
of the original and FDMSM reconstructed signals are downloadable from:
http://kom.aau.dk/˜pmb/IEICE.c© IEICE 2009
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4 Conclusion

In this paper, the capability of recently proposed FDMSM signal represen-
tation was investigated for speech mixtures of speakers and audio signals
corrupted by noise. The performance of the FDMSM reconstructed signal
was compared with the conventional HNM as a pitch-dependent benchmark
model. Simulation results show that FDMSM provides an attractive can-
didate with high perceptual quality for compact representation of speech
mixtures and noise corrupted audio signals.

Table I. Quality assessment in PESQ for babble and har-
monic noise at SNR=10 dB.

Table II. Objective assessment for speech mixture and mu-
sic song versus model order.
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