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Abstract: Least Mean Square (LMS) is an effective adaptive fil-
tering algorithm with advantages of robustness and simplicity. In this
paper, we propose two new algorithms, Categorized Variable Step Size
LMS (CVSSLMS) and Combined CVSSLMS (CCVSSLMS), based on
the categorization of filter status. The step sizes of the proposed al-
gorithms are dynamically updated by optimization for each state. Ex-
periment results show that the proposed algorithms outperform con-
ventional LMS algorithms in both simplicity and robustness.
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1 Introduction

The Least Mean Square (LMS) [1, 2] is one of the most popular adaptive
algorithms due to its simplicity and robustness. While the simplicity of an
LMS algorithm is generally judged by the small number of additions and
multiplications required, the robustness of an LMS algorithm is judged in
two ways – first by how fast it converges and second by how small the mean
square error (MSE) becomes.

These two factors determining the robustness of an LMS algorithm, con-
vergence rate and MSE, generally depend on its step size. As widely known,
an LMS algorithm with a large step size in general converges fast but the MSE
becomes large. On the other hand, an LMS algorithm with a small step size
tends to converge slowly but the MSE becomes small. To provide solutions
to this tradeoff, there have been many research performed, including the al-
gorithms using Variable Step Size LMS (VSSLMS) [3, 4, 5, 6] and those with
Multiple Combined LMS (MCLMS) filters [7, 8]. In this letter we propose
a Categorized Variable Step Size Least Mean Square (CVSSLMS) algorithm
as a novel VSSLMS algorithm and a Combined CVSSLMS (CCVSSLMS) as
an extension by combining with a fixed step size LMS filter.

2 The proposed algorithm

The main concern in designing an VSSLMS filter is how to effectively update
the next step size, μ(n + 1), by reflecting present state in order to make
the adaptive filter, w(n), converge to the optimal filter, wopt. For example,
Weepeng proposed an updating algorithm with the step size as a function
of the gradient of square error and smoothing parameter [3]. In this paper,
we categorized the adaptive filter w(n) into four states, each of which as
a function of the change in gradient of present and previous square errors.
After the categorization, different updating algorithm of the individual step
size is applied in each category in order to reflect the present state of the
filter.

2.1 Categorization of the filter coefficient
In the categorization, we considered two factors of the change in gradient,
the sign and the amplitude. From the change in amplitude, we can judge
whether the adaptive filter is converging or not. On the other hand, we
can see from the amplitude change whether or not the adaptive filter has
already passed the optimal filter. Since each of the two factors can have two

c© IEICE 2009
DOI: 10.1587/elex.6.1361
Received July 15, 2009
Accepted August 28, 2009
Published September 25, 2009

1362



IEICE Electronics Express, Vol.6, No.18, 1361–1367

Fig. 1. Four categories in square error as a function of
filter coefficients in a LMS Filter

values of changes (same or different for the sign; increase or decrease for the
amplitude), there are four possible categories, which are shown in Fig. 1.

(1) Category 1 – a sign change and decreased amplitude
Because the amplitude of the gradient is decreased, the adaptive filter
is converging to the optimal filter in this state. However, the present
step size, μ(n), is considered large because the sign of the gradient is
changed passing the optimal filter. The next step size, μ(n+1), in this
category needs to be decreased.

(2) Category 2 – a sign change and increased amplitude
In this category, the present step size, μ(n), is considered too large
because it not only passes the optimal filter but also not even converges.
Hence, the next step size, μ(n+1), needs to be decreased by more than
for the category 1.

(3) Category 3 – no sign change and decreased amplitude
Although the adaptive filter in this category is converging to the op-
timal filter similarly to the category 1, it has not passed the optimal
filter yet. To make it converge faster, the next step size, μ(n+1), needs
to be increased.

(4) Category 4 – no sign change and increased amplitude
This category represents two cases. One is when the SNR of the mixed
signal becomes very low. Because noise is considered as a pseudo-
random signal, it seldom leads the square error of an adaptive filter
to be large. Another is when the optimal filter is changed. In both
cases, the step size, μ(n+1), needs to be increased by more than in the
category 3 because the updated filter coefficients, w(n), are farther from

c© IEICE 2009
DOI: 10.1587/elex.6.1361
Received July 15, 2009
Accepted August 28, 2009
Published September 25, 2009

1363



IEICE Electronics Express, Vol.6, No.18, 1361–1367

the optimal filter coefficients, wopt, than the previous filter coefficients,
w(n − 1).

2.2 Categorized variable step size least mean square algo-
rithm

As a generic VSSLMS filter, the CVSSLMS filter, wCVSS(n) is defined as
Eq. (1).

wCVSS(n + 1) = wCVSS(n) + μ(n)e(n)x(n), (1)

where μ(n + 1) is the step size, e(n) is the error of the filter, and x(n) is
the input signal. From the categorization, the update of the step size of the
proposed CVSSLMS algorithm is modeled as Eq. (2).

μ(n + 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ(n)/ (1 + α1∇(n − 1)∇(n)) for category 1,

μ(n)/ (1 + α2∇(n − 1)∇(n)) for category 2,

μ(n) × (1 + α1∇(n − 1)∇(n)) for category 3,

μ(n) × (1 + α2∇(n − 1)∇(n)) for category 4.

(2)

Here, α1 and α2 are updating constants, and ∇(n) and ∇(n − 1) are the
gradients of present and previous square error, respectively. Each constant
is used in updating the step size as a different form of a weighting function
depending on its category. As mentioned in section 2.1, for example, the
step size in category 2 needs to be decreased by a bigger amount than that
in category 1. By making α2 be larger than α1, the next step size of cate-
gory 2 becomes smaller than that of category 1. Similarly, different updating
constants are used in category 3 and 4.

To avoid a divergence problem that seldom happens in category 3 and 4,
the step size is limited as Eq. (3), according to Kwong [6]

μ(n + 1) = min (μ(n + 1), μmax) , (3)

where μmax ≤ 2/3tr(R), R = E
(
x(n)xT (n)

)
, and tr (·) is trace operation.

2.3 Combined categorized variable step size least mean
square algorithm

In some LMS applications, the robustness of an algorithm is far more impor-
tant than its simplicity. For this reason, MCLMS filters are used in many
such fields in spite of its rather heavy calculations. For such applications,
we propose a Combined Categorized Variable Step Size Least Mean Square
(CCVSSLMS) algorithm as a combination of one VSSLMS filter and one
Fixed Step Size LMS (FSSLMS) filter.

Following Mart́ınez-Ramón’s proposal of a convex combination of the
weights of the two LMS filter [8], we designed a CCVSSLMS filter, wCVSS,
to be

wCCVSS(n) = v(n)wCVSS(n) + (1 − v(n))wFSS(n) (4)

whare

⎧⎪⎨
⎪⎩

v(n) = 1/1 + e−a(n) mixing coefficient,
wCVSS(n) CVSSLMS filter,
wFSS(n) FSSLMS filter.
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Then the output and the error of the CCVSSLMS filter can be expressed as
Eq. (5) and Eq. (6), respectively.

yCCVSS(n) = v(n)yCVSS(n) + (1 − v(n))yFSS(n), (5)

eCCVSS(n) = v(n)eCVSS(n) + (1 − v(n))eFSS(n). (6)

In order to minimize the overall error of the CCVSSLMS filter, eCVSS(n), the
combination parameter a(n) is updated with Eq. (7).

a(n + 1) = a(n)−μa

2
de2

CCVSS(n)
da(n)

= a(n)−μaeCCVSS(n) (eCVSS(n)−eFSS(n)) v(n) (1−v(n)) . (7)

In Eq. (7), μa is set to be a very high constant and a(n) is limited in the
range between [−4, 4] as restricted by Arenas-Garćıa [7].

3 Experiments

We conducted an experiment to assess the performance of the proposed algo-
rithm from the view points of robustness and simplicity. The two proposed al-
gorithms – CVSSLMS algorithm and CCVSSLMS algorithm – are compared
with the VSSLMS algorithm by Weepeng [3] and the MCLMS algorithm by
Arenas-Garćıa [7].

3.1 Experiments environment
In the experiment, the desired signal, d(n), is generated by a typical definition
as given in Eq. (8).

d(n) = x(n)Twopt + t(n), (8)

where the random sequence x(n) consists of a Bernoulli sequence with the
value either of +1 or −1 with zero mean and unit variance, the noise signal
t(n) is a pseudorandom zero-mean unit-variance Gaussian process uncorre-
lated with x(n), and wopt is an optimal filter of length ten. In order to verify
the robustness of the proposed algorithms, we defined wopt to have different
coefficient vectors for different time intervals: wopt1 for the first 2000 samples
(n ≤ 2000) and wopt2 for n > 2000, which are defined by Eq. (9)

wopti = e−0.5(m−1)ri(m), m = 1, 2, . . . , 10 and i = 1, 2, (9)

where ri(m) is a pseudorandom zero-mean unit-variance Gaussian sequence
generation function with a given i, and m is a set of indices for wopt1 and
wopt2, hence wopt1 and wopt2 become different.

The constants for each comparing algorithm are chosen for an optimal
performance. In VSSLMS algorithm by Weepeng [3], two constants are set
as α = 0.99 and ρ = 4×10−4. In MCLMS algorithm by Arenas-Garćıa [7], five
constants are set as μ1 = 0.0031, μ2 = 0.0121, μ3 = 0.0052, μ4 = 0.0017, and
μa = 10. The proposed CVSSLMS algorithm uses μmax = 0.0444, α1 = 0.09,
and α2 = 1.7. In the proposed CCVSSLMS algorithm, a FSSLMS filter with
μ = 0.0017 is combined with CVSSLMS and μa = 10.
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3.2 Experiment results – robustness
To assess the robustness of the proposed algorithm, the convergence rate and
the Excessive Mean Square Error (EMSE) are obtained after the simulations.
Fig. 2 and Fig. 3 show the results of the simulations.

First, we compare CVSSLMS algorithm with Weepeng’s VSSLMS algo-
rithm from the viewpoint of the step size change. As shown in Fig. 2, it
is clear that the CVSSLMS performs better than Weepeng’s algorithm as
it converges faster with dynamically-changed step size, which can be easily
observed from the figure. Moreover, it also adapts better and faster after the
change of the optimal filter at the 2000th sample. From the point of EMSE,
it is also clear that the proposed algorithms provide far lower EMSE than
Weepeng’s as shown in Fig. 3.

In comparison with the MCLMS, Fig. 3 shows that both the proposed
algorithms converge faster than MCLMS. After the change in the optimal
filter, moreover, the proposed algorithms converge better with lower EMSE
than the MCLMS. As a result, the proposed algorithms show more robust
performance than conventional adaptive LMS algorithms.

Fig. 2. Change in Step Size of VSSLMS algorithms

Fig. 3. Change in Excessive Mean Square Error

3.3 Experiment results – simplicity
To assess the simplicity of the proposed algorithms, we investigated the com-
plexity of each algorithm by counting the number of multiplications. Table I
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Table I. Comparison in Complexity

shows the number of multiplications used in general and in the simulation.
Here, M means the LMS filter length, L means the number of the FSS fil-
ters used in MCLMS. Comparing the proposed algorithms with a single VSS
filter, it is clear that the CVSSLMS algorithm needs less complexity than
Weepeng’s VSS algorithm. In comparing with multiple LMS filters, it is
also clear that the CCVSSLMS algorithm requires lower complexity than the
MCLMS.

4 Conclusions

In this letter, a Categorized Variable Step Size Least Mean Square
(CVSSLMS) algorithm was proposed that updates its step size more ef-
fectively reflecting the gradient state. As an extended form, a Combined
CVSSLMS (CCVSSLMS) algorithm is also proposed for the case that the
robustness is highly important. To verify the performance of the proposed
algorithms, nonstationary environment experiments were carried out, which
confirmed that the proposed algorithms outperformed conventional LMS al-
gorithms with lower complexity, lower EMSE, and faster convergence rate.
This proves that the proposed algorithms – CVSSLMS and CCVSSLMS – are
therefore great alternatives to existing LMS algorithms, with their simplicity
of the logic and the efficiency and robustness in performance.

c© IEICE 2009
DOI: 10.1587/elex.6.1361
Received July 15, 2009
Accepted August 28, 2009
Published September 25, 2009

1367


