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Abstract: Implementation of a correlation-based learning rule, Spike-
Timing-Dependent-Plasticity (STDP), for asynchronous neuromorphic
networks is demonstrated using ‘memristive’ nanodevice. STDP is per-
formed using locally available information at the specific moment of
time, for which mapping to crossbar-based CMOS-Nano architectures,
such as CMOS-MOLecular (CMOL), is done rather easily. The learn-
ing method is dynamic and online in which the synaptic weights are
modified based on neural activity. The performance of the proposed
method is analyzed for specifically shaped spikes and simulation results
are provided for a synapse with STDP properties.
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1 Introduction

Hybrid CMOS-Nano architectures, such as CMOL [1], provide massive par-
allelism and high density for developing fault and defect tolerant neuromor-
phic networks (NNs) [2]. The implementation of NNs in such architectures,
however, would involve modifications compared to regular CMOS implemen-
tations. For example, regular implementation of correlation-based learning
rules by storage of spike timing in a certain window using a capacitor per
synapse [3] is impossible in such hybrid architectures, due to lack of one-to-
one connectivity between neurons. The challenge is to implement correlation-
based learning laws, such as STDP [4], based on the state of a two-terminal
nanodevice for long-term potentiation (LTP) (for pre-before-postsynaptic
spiking) and long-term depression (LTD) (for post-before-presynaptic spik-
ing) as well as state storage.

Conventional CMOL circuits [1, 5] comprise bistable single-electron de-
vices (SEDs) whose behavior are like single bit Resistance-change RAMs
(ReRAMs). But, the resistance of recently fabricated nanodevice, ‘memris-
tive’ [6], is nonlinear and varying between “On” (low resistance) state and
“Off” (high resistance) state by applying appropriate voltages. Thus, the
memristive nanodevice can function as analog devices, which lets it perform
as a continuous weight synapse.

Using memristive nanodevice, Snider has proposed self-organized com-
putation and STDP implementation in a synchronous paradigm, see [6] and
reference [19] therein. NNs which use spiking neurons, however, operate asyn-
chronously to express analog information by the timing of neural spike firing,
and it is expected that the asynchronous implementations operate faster than
the synchronous ones. In this paper, we show a possible asynchronous imple-
mentation of STDP learning in CMOL-based NNs using memristive nanode-
vice. We modify a local STDP learning rule, given in [7], and verify CMOL
mapping considerations and examine the learning method at cellular level.

2 CMOL-based NNs using memristive nanodevice

NNs are implemented in CMOL using CMOS circuits as neurons (somas);
nanowires as axons and dendrites; and nanodevices as synapses. Fig. 1 shows
the general architecture of CMOL NNs using memristive nanodevices. The
nanowire crossbar is connected to the bottom CMOS neuron circuits and
performs signal routing. Programmable nanodevices in CMOL circuits are
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formed at each crosspoint of the crossbar. We use the voltage-controlled
memristive nanodevice, by model definition of [6], at crosspoints as a synapse
whose weight variable is memristive conductance (MC). The function of the
device is ‘sinh-like’ in the voltage, v, and it can be approximated for each

value of MC by,
dMC

T A sinh(Bv) (1)
The parameters A and B depend upon the nanodevice material, thickness,
size and fabrication method. The nonlinearity is of prime importance; as well
as the fact that the small voltages across the nanodevice bellow its threshold,
|[Vin|, do not induce much change in MC, while larger voltages induce much
greater changes. The device has polarity and positive voltages increase MC,

while negative voltages decrease it.
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Fig. 1. Structural view of CMOL neuromorphic networks
using memristive nanodevices with nonlinear con-
ductance (g).

3 Proposed methodology

We use CMOS based spiking neuron which works basically the same as
conventional Integrate-and-Fire (I&F) neurons [3], but introducing special
shaped spike and specific back-propagation to adapt it to the CMOL plat-
form, as sketched in Fig. 2 (a). The total current received by a neuron input
depends on the MC of connected synapses and the voltage drop across the
synapses, as Ohm’s law. The sum of all input currents increases the den-
dritic voltage of the postsynaptic neuron until its integrator voltage (Vsoma)
reaches a threshold (Vinreshold). Then the neuron fires and sends a special
shaped spike forward to its axon and backward to its dendrite, simultane-
ously. Backward spike turns learning ON/OFF, and for non-plastic synapses,
such as fixed inhibitory synapses, one does not need to establish spike back-
propagation.
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3.1 Spike shape and learning analysis

Neurons in our topology fire special shaped spikes to carry the spike-timing
information and to form a learning window in a process similar to that de-
scribed in [8]. The spike comprises of two parts: a negative pulse followed
by a positive triangular pulse, Fig. 2 (b). The spike has a shorter negative
part than positive part, dy < dj. The longer part of the spike determines the
temporal extents of the learning window. When this positive part applied to
an “On” state memristive synapse creates a current pulse which increases the
dendritic voltage. The negative part is used to obtain the voltage threshold
needed to program the memristive nanodevice and since this part is narrow it
has less effect on dendritic voltage. The spike is approximated as a piecewise
linear function,

V_ V:eoma > ‘/threshold
X = —%(t—s)jtv+ s <t<s+d (2)
l
0 other wise

s is the time of arrival of the spike, and V_ and V are the peak amplitudes of
negative and positive parts, respectively. The peak amplitudes are somewhat
below memristive threshold, i.e. |V_|,|V}| < |Vipa|, to avoid too much MC
change by a single spike. If any pre- and postsynaptic neurons are well
synchronized, the voltage produced across the synapse located between them
will provide STDP properties.

Assume that X;,e and X;ost are pre- and postsynaptic spikes, respectively,
and Xpre occurs at time tpre= 0 and Xpos 0Occurs at time tpos, = s, Fig. 2(c),
then At = tpost-tpre = tpost = s. Following cases may occur depending on
the time of arrival of the post- and presynaptic spikes:

o If 0 < s < d; meaning that pre-before-postsynaptic spiking has hap-
pened and LTP would occur. In this case, during the ds of Xpos the
voltage across the memristive nanodevice is greater than its positive
threshold (Xpre-Xpost > Viny), Fig. 2(d) windows (1, 2). The more
synchronized the post- and presynaptic spikes, the greater the voltage
and the greater the LTP (with sinh rate).

e If —d; < s < 0 meaning that post-before-presynaptic spiking has hap-
pened and LTD would occur. In this case, during the ds of X.e the
voltage across the memristive nanodevice decreases below its negative
threshold (Xpre-Xpost < Vin—), Fig. 2(d) window (3).

o [f two spikes are not well synchronized, i.e. s < —d; or s > d; there will
be no overlap between pre- and postsynaptic spikes and MC will not
change, because the voltage across the memristive nanodevice does not
reach its threshold.

The spike shape has a vital role in our learning method, while CMOS cir-
cuit constraints or RC elements through routings may impact on the learning
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efficiency. We can successfully extend this method for a different spike shape
with a gradual transition and an exponential decaying part, as:

V_ Vsoma > ‘/:fhreshold

X = V++‘V—’ (t—
€
Viexp(—(t—s—¢e)/T) t>s+e

s)+ Vo s<t<s+e (3)

Fig. 2 (e) shows schematically the expanded (non-ideal) spike shape.
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Fig. 2. (a) Neuron structure and basic components
(b) Two-part spike that neurons use for learning
and processing (c) Pre-and postsynaptic priorities
of spikes (d) LTP and LTD learning rates (e) Ex-
panded spike shape.

4 Verifying STDP curves

Using memristive model as (1) and proposed spike shapes, in this section we
verify the STDP curves which will result in discussed neural structure. The
results of STDP curves are shown in Fig. 3, where the vertical axis shows
the average MC change per ds (the wider the narrow parts, the greater the
final LTP and LTD). The spike parameters are scalable and can be adjusted
by a control voltage (or current). Memristive parameters, as was mentioned
before, depend upon different manufacture conditions. Here, the default spike
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parameters are Vo = £0.5v, d; = 10 ms, dg = 0.2 ms and results are provided
for memristives with Vip+ &~ £0.55v. It is seen that the time length of the
learning window is almost equal to d; for both LTP and LTD parts.

Fig. 3 (a) shows STDP curves produced by the piecewise linear spike, de-
fined by (2). The results are provided for memristives with three different
values of A and B. The resulted STDP curves are superimposed on the con-
ventional ‘exp-like’ STDP curves, because the sinh(Bv) with Bv > 1 is very
close to 1/2 exp(Bv).

Fig. 3 (b) shows an example STDP curve produced by the expanded spike,
defined by (3), with e = 0.2ms and 7 = 4 ms. It is seen that in this non-ideal
case the resulted curve still has STDP properties and the provided learning
window has acceptable duration.

—a—plecewise linear spike
@ —8— A=1 B=5 - m
—— A=2,B=4 |—p— oxp decaying spike
A | g A=4,B=3 \ 1 o A=2,B=4
- 0 of
§ 53
< » T
- E
@ ol
0 s o 6 W D s 0 s 16
toost - tore  (mMS) toost - tyre (MS)

@ ®)

Fig. 3. STDP learning curves (a) using piecewise linear
spike and (b) example plot using expanded (non-
ideal) spike.

5 Conclusion

Using memristive nanodevice in CMOL architecture and a two-part spike,
we have been able to demonstrate STDP learning implementation. From
the computational view point, the presented learning method is scalable and
reliable. The special shaped spike has a vital role in the proposed learning
method, and simulation results show that even non-ideal shapes don’t destroy
the general trend of STDP curve for LTP and LTD. This would help us to
simplify the neuron circuit design.

We suggest the learning method for implementation in crossbar-based
CMOS-Nano hardwares, which requires neither significant computational re-
sources nor additional memory to store spike-timing information through
time windows.
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