
IEICE Electronics Express, Vol.6, No.5, 237–243

Secure searchable public
key encryption scheme
against keyword guessing
attacks

Hyun Sook Rhee1a), Willy Susilo1b), and Hyun-Jeong Kim2c)

1 University of Wollongong, Australia
2 Korea Environmental Council in Europe (KECE), Belgium

a) hyunsook.rhee@gmail.com

b) wsusilo@uow.edu.au

c) security@kece.eu

Abstract: Byun et al. firstly proposed off-line keyword guessing
(KG) attacks and proved that some searchable public key encryption
(PEKS) schemes are insecure against these attacks. They supposed
an open problem on how to construct PEKS schemes secure against
keyword guessing attacks. In this letter, we answer this question affir-
matively.
Keywords: Public key encryption with keyword search, Keyword
guessing attacks
Classification: Storage technology

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.
Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable encryption
revisited: consistency properties, relation to anonymous IBE, and exten-
sions,” Proc. Crypto’05, LNCS 3621, 2005.

[2] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption with
keyword search revisited,” Proc. ACIS’06, 2006.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” Proc. Eurocrypt’04, LNCS 3027, 2004.

[4] J. W. Byun, H. S. Rhee, H. A. Park, and D. H. Lee, “Off-Line Keyword
Guessing Attacks on Recent Keyword Search Schemes over Encrypted
Data,” Proc. SDM’06, LNCS 4165, 2006.

[5] I. R. Jeong, J. O. Kwon, and D. H. Lee, “Constructiong PEKS schemes
secure against keyword guessing attacks is possible?,” Elsevier’s Computer
Communications, vol. 32, 2009.

[6] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable
public key encryption with designated tester,” Proc. ASIACCS’09 (to
appear), 2009.

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

237

IEICE Electronics Express, Vol.6, No.5, 237–243

1 Introduction

A searchable public encryption scheme (or PEKS for short) used on email
routing system was first introduced by Boneh et al. [3] to provide emails
privacy. In a PEKS scheme, an email sender, Bob, generates an encrypted
email (comprises of an encrypted email body and an encrypted list of key-
words) by using the public key of an email receiver, Alice, and sends the
encrypted email to Alice through an email server. Bob can use a standard
public-key encryption scheme (PKE) to encrypt the body of the email, and
a PEKS scheme to encrypt each keyword in the list of keywords. To search
the encrypted emails on the email server, Alice provides the server with an
encrypted keyword known as a trapdoor (generated by her secret key). Then
the server tests which keywords appended to encrypted emails are identical
to the keyword of the trapdoor without revealing any information about the
encrypted list of keywords.

Boneh et al. considered the security for a PEKS ciphertext (the list of
keywords encrypted by PEKS) against an active attacker who is able to
obtain trapdoors for any keyword chosen by himself in the sense of semantic-
security [3]. This security ensures that a PEKS ciphertext reveals no infor-
mation without the trapdoor related to the given PEKS ciphertext. However,
even though the security of a PEKS ciphertext is guaranteed, anyone who has
obtained several trapdoors about unknown keywords can store and use the
trapdoors to classify all captured encrypted emails. Baek et al. [2] proposed
a searchable public key encryption for designated tester (dPEKS) to solve
this problem. In a dPEKS scheme, only the designated server can test which
dPEKS ciphertext is related with a given trapdoor by using his private key.

Byun et al. firstly defined off-line keyword guessing (KG) attacks and
showed that the PEKS scheme [3] is insecure against KG attacks. Since
email users (a sender and a receiver) usually query commonly-used keywords
which have low entropy, KG attacks are meaningful. If an attacker A who can
guess the keyword w of the given trapdoor Tw obtains the replied message,
PEKS/dPEKS ciphertexts, by an email server, A can know that not only
the relation between the PEKS/dPEKS ciphertexts and the trapdoor Tw

but also the keyword about PEKS/dPEKS ciphertexts by using KG attacks.
As a result, if the security for a PEKS/dPEKS ciphertext is not provided
against KG attacks, the security for PEKS/dPEKS ciphertext cannot also
be guaranteed in the sense of semantic-security.

Jeong et al. [5] pointed that the consistency implies insecurity of a PEKS
scheme against KG attacks: Abdalla et al. [1] defined the notion of consis-
tency in a PEKS scheme, which means that if the keyword w used in gener-
ating a PEKS/dEPKS ciphertext by a sender is not identical to the keyword
w′ (w �= w′) used in generating a trapdoor by a receiver, the probability of
that a server determines w = w′ is negligible1. However, although a PEKS
(dPEKS) scheme satisfies the consistency, it is possible to construct a secure
PEKS scheme against KG attacks. If a keyword guessing attacker A cannot

1If h is negligible, for any constant k, there exists N such that h(n) < 1/nk for n > N .

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

238

IEICE Electronics Express, Vol.6, No.5, 237–243

guess the keyword w of a given trapdoor Tw in a PEKS (dPEKS) scheme,
the scheme is secure against KG attacks.

In this letter, we construct a new secure dPEKS scheme against KG
attacks. We show that our dPEKS scheme also satisfies the consistency and
the security of dPEKS ciphertext in the sense of semantic-security. Our
scheme is one solution for the open problem proposed by Byun et al. [4].

2 Preliminaries

Let G and GT be groups, where the computational Diffie-Hellman (CDH)
problem is hard. Let λ be a security parameter and Z be a set of integers.
Suppose that g is a generator of G and e(g, g) is a generator of GT . Let
H1 : {0, 1}∗ → G and H2 : GT → {0, 1}λ be hash functions. A bilinear map
e : G×G→ GT satisfies the following properties.
• Bilinear : for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
• Non-degenerate : e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently, and there exist a group GT and an efficiently computable bilinear
map e : G×G→ GT .

2.1 Review of PEKS/dPEKS Scheme
Let KS be a keyword space where the size is bounded by some polynomial.

PEKS Scheme. Boneh et al.’s PEKS scheme [3] works as follows:
• KeyGen(λ): Given a security parameter λ, it picks a random α ∈ Z∗

p and
outputs pk = (pk1, pk2) = (g, gx) and sk = x.
• PEKS(pk, w): This algorithm picks a random r ∈ Z∗

p and outputs a cipher-
text C = [A, B] = [gr, H2(e(H1(w), pkr

2))], where w ∈ KS.
• Trapdoor(sk, w): This algorithm outputs a trapdoor Tw = H1(w)sk.
• Test(C, Tw): This algorithm checks if B = H2(e(A, Tw)). If this equality is
satisfied, then output “1”. Otherwise, output “0”.

dPEKS Scheme. Baek et al.’s dPKES scheme [2] works as follows :
• Global Setup(λ): Given a security parameter λ, it returns a global param-
eter GP = (G, GT , e, H1(·), H2(·), g, KS).
• KeyGenServer(GP): This algorithm randomly chooses α ∈ Z∗

p and Q ∈ G

and returns sks = (GP, α) and pks = (GP, Q, Z) = (GP, Q, gα) as the server’s
secret and public key respectively.
• KeyGenReceiver(GP): This algorithm randomly chooses x ∈ Z∗

p and returns
skR = x and pkR = gx as the receiver’s secret and public key respectively.
• dPEKS(pkR , pks, w): This algorithm picks a random r ∈ Z∗

p and outputs a
ciphertext C = [gr, H2(k)], where k = e(Q, Z)r ·e(H1(w), pkR)r and w ∈ KS.
• Trapdoor(skR , w): This algorithm outputs Tw = H1(w)x, where w ∈ KS.
• dTest(C, sks, Tw): This algorithm checks if B = H2(e(Qα + Tw, A)). If this
equality is satisfied, then output “1”. Otherwise, output “0”.

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

239

IEICE Electronics Express, Vol.6, No.5, 237–243

2.2 Consistency in dPEKS
We define the notion of consistency in a dPEKS scheme, which is similar to
the notion of consistency in a PEKS scheme from [1]. Suppose there exists an
adversary A that wants to make consistency fail. The consistency is formally
defined as follows:

Experiment Expdpeks−cons

dPEKS,A(k)

(pkR , skR)← KeyGenReceiver(1
k) ; (pkS , skS)← KeyGenServer(1

k)
Pick random oracles H1 and H2

(w, w′)← A(pkR , pkS)
C ← dPEKSH1,H2(pkR , pkS , w) ; Tw′ ← TrapdoorH1(skR , w′)

if w �= w′ and dTest(T ′
w, skS , C) = 1, then return 1 else return 0.

We define the advantage of A as
Advdpeks−cons

dPEKS,A(k) = Pr[Expdpeks-cons
dPEKS,A(k) = 1] ,

where the probability is taken over all possible coin flips of all the algorithms
involved, and over all possible choices of random oracles H1 and H2. The
scheme is said to be computationally consistent if it is negligible for all poly-
nomial time adversaries A to win the above experiment.

3 PEKS Schemes versus KG attacks

We review KG attacks [4] on Boneh et al.’s PEKS scheme, show that Baek et
al.’s dPEKS scheme is insecure against KG attacks, and explain the reasons
why PEKS and dPEKS schemes are insecure against KG attacks.

3.1 Insecure PEKS/dPEKS Scheme against KG attacks
Let w ∈ KS be an unknown keyword and Tw be the trapdoor of w. Let
A be an outside attacker where the running time is bounded by t which is
polynomial in a security parameter k. We assume that A can determine
which keyword was used in generating a given trapdoor.

PEKS Scheme [4]. (1) A guesses an appropriate keyword w′ ∈ KS and
computes H1(w′). (2) A checks if the equality e(pkR , H1(w′)) = e(g, Tw) is
satisfied. If so, the guessed keyword is valid. Otherwise, go to (1). Suppose
that Tw = H1(w)x and w = w′. The equation e(pkR , H1(w′)) = e(g, H1(w′)x)
= e(g, Tw) is satisfied.

dPEKS Scheme. We show that Baek et al.’s dPEKS scheme is not se-
cure against KG attacks. Let pks = (GP, Q, Z) = (GP, Q, gα) and pkR =
(pks, Y) = (pks, g

x) be the server’s and receiver’s public keys. Suppose
that an attacker A is given a ciphertext C and a trapdoor Tw such that
dTest(C, Tw)= 1, and C and Tw are made with a keyword w in KS. A
can determine which keyword is used in generating C and Tw as follows:
(1) A guesses a keyword w′ ∈ KS and computes H1(w′). (2) A checks if
e(H1(w′), Y) = e(Tw, g). If so, the guessed keyword w′ is a valid keyword.
Otherwise, go to (1).

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

240

IEICE Electronics Express, Vol.6, No.5, 237–243

3.2 The Analysis of the PEKS/dPEKS Scheme against KG at-
tacks

Boneh et al.’s PEKS scheme [3] satisfies the following functionalities:
(1) Generating a PEKS ciphertext should be easy : It should be possible for
everyone to generate a PEKS ciphertext C = PEKS(w, pkA) where w is a
keyword and pkA is a receiver’s public key.
(2) Capability of searching should be restricted : It should be possible for only
the receiver to generate a trapdoor Tw with a keyword w and his/her secret
key skA .
(3) Consistency should be satisfied : To provide a correct routing configuration
of the email server, it should be satisfied that if w �= w′ then Pr[Test(C, Tw′) =
1] is negligible, where Tw′ = Trapdoor(w′, skA), C = PEKS(w, pkA), and w

and w′ are unknown keywords.

When a trapdoor Tw about an unknown keyword w is given in Boneh et
al.’s PEKS scheme, an attacker A can try to guess a keyword w′ of a key-
word space: we can generally assume that the size of the keyword space is
polynomial and a keyword has low entropy. Then, on the base of the above
functionalities, A can generate the PEKS ciphertext C ′ = PEKS(w′, pkA)
and check if Test(C ′, Tw) = 1 using the PEKS and Test algorithms. If A
gets the keyword w′ satisfying the equality of Test(C ′, Tw) = 1 then A can
win in the KG attacks on Boneh et al.’s PEKS scheme. In particular, Byun
et al.’s KG attacks on Boneh et al.’s PEKS scheme considers the special
case of the above process, in which the first component gr of a ciphertext
C = [gr, H2(e(pkR , H1(w)r))] is fixed as g1, i.e., r = 1.

In Baek et al.’s dPEKS scheme, when the trapdoor Tw about an unknown
keyword w is given, only an email server chosen by an email sender can
process dTest algorithm. However, an attacker A wins in the KG attacks on
the dPEKS scheme by using the same process. The reason lies on that the
structure of a trapdoor in the dPEKS scheme is same to one in the PEKS
scheme. When the trapdoor Tw about an unknown keyword w is given,
A guesses a keyword w′ and generates the PEKS ciphertext C ′ instead of
the dPEKS ciphertext. Then, A can check the equality of Test(C ′, Tw) = 1
instead of dTest algorithm. To protect the dPEKS scheme from KG attacks,
the structure of a trapdoor should be changed. To this end, we suggest a
dPEKS scheme with a new structure of a trapdoor.

4 Secure dPEKS Scheme against KG Attacks

Our secure dPEKS scheme against KG attacks works as follows:
• Global Setup(λ): Given a security parameter λ, it returns a global param-
eter GP = (G, GT , e, H1(·), H2(·), g, KS), where KS is a keyword space.
• KeyGenServer(GP): This algorithm randomly chooses α ∈ Z∗

p and Q ∈ G,
and returns sks = α and pks = (GP, Q, ys) = (GP, Q, gα) as a server’s secret
and public keys, respectively.

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

241

IEICE Electronics Express, Vol.6, No.5, 237–243

• KeyGenReceiver(GP): This algorithm randomly chooses x ∈ Z∗
p and returns

skR = x and pkR = gx as a receiver’s secret and public keys, respectively.
• dPEKS(pkR , pkS , w): This algorithm picks a random value r ∈ Z∗

p and
outputs C = [A, B] = [(pkR)r, H2(e(ys, H1(w)r))], where w ∈ KS.
• Trapdoor(skR , w): This algorithm outputs Tw = [T1, T2] = [yr′

s , H1(w)1/x ·
gr′], where w ∈ KS.
• dTest(C, Tw): This algorithm computes T = (T2)α/(T1)α2

and checks if
B = H2(e(A, T)). If the equality is satisfied, then output “1”; otherwise,
output “0”.

Consistency and Security. Since the security of our dPEKS scheme is
similar to one in [6], we can identically show the security of a dPEKS cipher-
text in same manner in [6]. We omit the proof of the security of a dPEKS
ciphertext. We show that our scheme is computationally consistent and is
secure against KG attacks on the base that a discrete logarithm problem is
hard.

Theorem 1. Our dPEKS scheme satisfies computationally consistency.
Proof. Suppose A is any polynomial time adversary attacking the compu-
tational consistency of our dPEKS scheme. Let w and w′ be keywords that
A returns in the consistency experiment, and assume without loss of gener-
ality that w �= w′. Let r ∈ Z∗

p be a random value, A = e(H1(w), ys)r, and
A′ = e(H1(w′), ys)r. If w �= w′ and H2(A) = H2(A′), then A wins correctly.

Since H1 and H2 are random oracles and the probability of hash collisions
is relatively small, it is not easy that A obtains a non-negligible advantage
about the dPEKS-consistent. Suppose that qi (i = 1, 2) is the number of
the queries of A to Hi and E1 is the event that there exist distinct queries
w, w′ ∈ {0, 1}∗ such that H1(w) = H1(w′) and E2 is the event that there exist
x, x′ ∈ GT (x �= x′) such that H2(x) = H2(x′). If the hypothesis |G| > 2k

(2k < p < 2k+1) of the group G is used, Pr[E1] < (q1 + 2)2/|G| < (q1 +
2)2/2k, Pr[E2] < (q1 + 2)2/2k and Advdpeks−cons

dPEKS,A(k) ≤ Pr[E1] +Pr[E2] +

Pr[Expdpeks−cons

dPEKS,A(k) = 1∧E1 ∧E2]. If Pr[Expdpeks−cons

dPEKS,A(k) = 1∧E1 ∧E2]

is negligible, then the proof is completed. If E1 ∧ E2 and H1(w) �= H1(w′),
then there exists a, a′ ∈ Zp such that H1(w) = ga and H1(w′) = ga′

. Also,
e(g, g) is a generator of GT of prime order p, e(g, g)r is a generator of GT and
p is not divide with r, for every r ∈ Zp. Hence, (e(g, g)r)aα �= (e(g, g)r)a′α

where α ∈ Z∗
p is the server’s unknown private key.

Theorem 2. Our dPEKS scheme is secure against KG attacks.
Proof. Suppose B is a KG attacker in our scheme with advantage ε. Assume
that Tw = [T1, T2] is a trapdoor. To obtain a correct keyword w ∈ KS from
the given Tw, it should be possible that B gets H1(w)1/x or H1(w) from Tw.
Since a discrete logarithm problem is hard, B cannot easily get the unknown
r′ or α ∈ Z∗

p from T2 = yr′
s , where ys = gα. Furthermore, even though B can

compute e(ys, T2)/e(g, T1) = e(ys, H1(w)1/x · gr′)/e(g, yr′
s)= e(ys, H1(w)1/x),

B cannot guess w ∈ KS such that e(ys, H1(w)1/x) without a knowledge of a
receiver’s secret key x or a server’s secret key α. Therefore, it is hard that Bc© IEICE 2009

DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

242

IEICE Electronics Express, Vol.6, No.5, 237–243

guesses H1(w)1/x or H1(w) from Tw.

5 Conclusion

We proposed that a secure dPEKS scheme against KG attacks. This result
affirmatively answers the open problem proposed in Byun et al. [4].

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded
by the Korean Government [KRF-2008-357-D00258].

c© IEICE 2009
DOI: 10.1587/elex.6.237
Received December 19, 2008
Accepted January 13, 2009
Published March 10, 2009

243

