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Abstract: Due to the inherent nature of kernel implementation, the
kernel Fisher discriminant suffers from the small sample size problem.
In this paper, we introduce a novel variant of the kernel Fisher discrim-
inant formulation to circumvent this problem. By adopting a two-fold
regularization scheme on the scatter matrices, we show both effective-
ness and reliability of the proposed method particularly regarding the
small sample size and the lack of dimensionality issues.
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1 Introduction

The linear discriminant analysis (LDA) has been widely applied as an effec-
tive feature extraction method in the area of face recognition. Essentially,
LDA calculates the discriminating subspace based on the Fisher’s criterion.
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Owing to the direct discriminant and supervised nature of this criterion, the
LDA has shown remarkable performance in terms of recognition accuracy. To
enhance the performance for nonlinear decision boundaries, several nonlinear
discriminant subspaces have been proposed [1, 2]. Via a kernel trick, these
methods offer an effective subspace in the high dimensional feature space.

The Fisher’s criterion is defined on a ratio of the between-class scatter
matrix and the within-class scatter matrix which needs to be inverted. In
consequence, conventional LDA suffers from the so-called small sample size
(SSS) problem [5] which is caused by a singular within-class scatter matrix. A
common way to resolve SSS problem is to collect training images more than
the matrix size. However, for kernel-based implementation of the Fisher’s
criterion, due to the inherent characteristic of the kernel trick, the within-
class scatter matrix becomes always singular, and thus the SSS problem
is unavoidable. The SSS problem also results in sampling noise such that
most of the small eigenvalues of the within-class scatter matrix become very
unreliable during matrix inversion [4].

Another problem of the Fisher criterion is the small dimensionality avail-
able for extracting features. The discriminating subspace is calculated from
an intersection of the subspaces spanned by the within-class scatter and the
between class scatter. Since the rank of between-class scatter is bounded by
C − 1, which is one less than the number of classes/identities (C), the inter-
section happens to possess an even smaller dimensionality. This shortage of
dimensionality eventually leads to loss of useful discriminative information
from the training data.

To compensate for these problems in kernel discriminant analysis (KDA),
a regularization scheme would be necessary. Recently Jiang et al. suggested
an eigen-spectrum regularization (ER) technique for linear feature extrac-
tion [4]. ER modifies small and zero eigenvalues via a modeling function.
This relaxes those sample noises residing in the zone of small eigenvalues
and allows utilization of the null-space for computation of the inverse of the
within-class scatter.

Motivated by the reliability and effectiveness of ER in linear feature ex-
traction, in this work we propose a new variant of KDA, a two-fold regularized
kernel discriminant analysis (R-KDA), for face recognition. By applying the
regularization scheme of eigenfeature regularization and extraction (ERE) [3],
this R-KDA attempts to alleviate the SSS problem and the dimensionality
problem.

2 A two-fold regularization procedure for kernel Fisher dis-
criminant

Suppose we have a nonlinear mapping function φ which implicitly maps the
input space (xi ∈ S) into a high-dimensional feature space (φi ∈ F):

φ : S → F.

The KDA finds the discriminating subspace within the feature space (F)
where the complex classification structure is hopefully linearized. The bases
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(v) of the demanded subspace can be driven by solving the following eigen-
value problem:

v = arg max
v

(∣∣∣∣ vTTv

vTWv

∣∣∣∣
)

, (1)

where T and W are the total scatter matrix and the within-class scatter
matrix, respectively. Different from the conventional Fisher’s criterion, we
used T instead of the between-class scatter (B) following [4]. Using T has
more advantageous characteristic than B in the aspect of regularization. It
is also empirically supported by [4] where Jiang et al. tested both B and
T. Since T can be decomposed into a sum of W and B [5], maximizing
(1) is equivalent to maximizing the conventional Fisher’s criterion with a
regularization term:

λ =
vT (B + W) v

vTWv
=

vTBv

vTWv
+ vTIv, (2)

where λ is the eigenvalue and I is the identity matrix. By utilizing T, we
obtain a higher rank (N − 1) in the numerator, where N is the number of
training samples, instead of B with rank C − 1. Here, the dimensionality
limit by B is much loosened so that the entire sample space is covered.

Since any eigenvector (v) with λ �= 0 must lie within the span of training
samples, it can be represented as a linear combination of Φ [1, 2]:

v =
∑N

i=1
αiφi = Φα, (3)

where Φ = [φi, . . . , φN] correspond to the training samples in feature space,
and α = [α1, . . . , αN] correspond to a weighting factor in linear combination.
T and W can be expressed in terms of Φ as follows:

T =
1
N

∑N

i=1
(φi − φ̄)(φi − φ̄)T = Φ(I − 2A + AA)ΦT,

W =
1
N

C∑
i=1

Ni∑
j=1

(φij − φ̄i)(φij − φ̄i)T = Φ(I − 2AC + ACAC)ΦT
(4)

where φ̄ is the mean of training samples, φ̄i is the mean of ith class, A is an
(NxN) matrix with all terms equal to 1/N, AC is an (NxN) block diagonal
matrix where the ith diagonal term is an (NixNi) matrix being filled with
1/Ni, and Ni is the number of the ith class samples. These representations of
T and W are simpler than those in [2] via omitting the redundant centering
procedure in feature space, but yield exactly the same results. Then we can
rewrite the above criterion in (2) as:

λ =
αTΦTTΦα

αTΦTWΦα
=

αTΦTΦ(I − 2A + AA)ΦTΦα

αTΦTΦ(I − 2AC + ACAC)ΦTΦα

=
αTK(I − 2A + AA)Kα

αTK(I − 2AC + ACAC)Kα
=

αTT′α
αTW′α

(5)

where K is an (NxN) kernel matrix consisting of the inner products of samples
in the feature space wherein each matrix element is given by: ki,j = φi ·φj =
k(xi, xj). Now, the criterion has been transformed into another eigenvalue
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problem of the newly defined tractable matrices T′ and W′ with eigenvector
α.

To solve the eigenvalue problem, W′ needs to be inversed. Here, we
adopt the ER scheme [4] to treat the inverse problem reliably and with-
out any loss of dimension. First, we diagonalize W′ via a singular value
decomposition (SVD), and then sort its eigenvalues (λW

i )i=1,...,N and the cor-
responding eigenvectors (vW

i )i=1,...,N in a decreasing order. By thresholding
the eigenvalues based on λW

m and λW
r (the minimum reliable eigenvalue and

the smallest nonzero eigenvalue), ER separates the space spanned by W′

into three subspaces: a reliable subspace (face space), an unstable subspace
(noise space), and a null subspace [4]. r is set to the maximum integer sat-
isfying λW

r > e where e is a very small value compared to λW
1 , and m is set

to an integer satisfying λW
m+1 = max

{∀λW
i | λW

i < (λW
med + μ(λW

med − λW
r ))

}
where λW

med = median
(
[λW

i ]i=1,...,r

)
. The transition of the eigenvalues of

the face space is then modeled by a reciprocal function αer/(i + βer). The
model parameters αer and βer are calculated substituting the first and the
last eigenvalues of the face space, λW

1 and λW
m :

αer =
λW

1 λW
m (m − 1)

λW
1 − λW

m

and βer =
mλW

m − λW
1

λW
1 − λW

m

.

Then the eigenvalues are regularized separately for each subspace:

λ̃i =

⎧⎪⎪⎨
⎪⎪⎩

λk, i ≤ m (face space)

αer/(i + βer) m < i ≤ r (noise space)

αer/(r + 1 + βer) r < i ≤ N (null space)

. (6)

Since available dimensionality is limited to the sample space in kernel imple-
mentation, the range of the null space of (6) is modified to be upper bounded
by the number of samples N , and not by the size of training image as that
in [4]. Using the regularized eigenvalues (Λ̃W = diag[λ̃W

1 , . . . , λ̃W
N ]) and the

eigenvectors (VW = [vW
1 , . . . , vW

N ]), we can compose a regularized within-class
scatter matrix W̃′ = VWΛ̃WVT

W. This regularization substantially raises the
small eigenvalues which are susceptible to sample noises. Consequently, the
corresponding eigenvectors are de-emphasized for increasing overall stability.
Also, the regularization on zero eigenvalues allows the usage of null-space.

The inverse problem of W̃′ can be solved by a whitening procedure.
The whitening transform matrix is defined as P = VWΛ̃−1/2

W where W̃′

is whitened as: PTW̃′P = (Λ̃−1/2
W VT

W)(VWΛ̃WVT
W)(VWΛ̃−1/2

W ) = I. Since
P is a full-rank matrix, there exists a unique solution α satisfying α = Pα′.
Substituting these representations into (5), we can diagonalize W̃′ and col-
lapse the denominator by α′Tα′ = 1:

αTT′α
αTW′α

=
α′TPTT′Pα′

α′TPTW̃′Pα′ =
α′TPTT′Pα′

α′TIα′ = α′TPTT′Pα′. (7)

Here, we have a regular form of eigenvalue problem with the new eigenvector
α′ instead of α of (5). By solving the eigenvalue problem, we can find α′,
and the discriminant feature vector v is derived as:

v = Φα = ΦPa′. (8)
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For an arbitrary input y, its projection onto the subspace spanned by the
feature vectors, v, can be computed as:

z = vTφ(y) = a′TPT(ΦTφ(y)) = a′TPTKy (9)

where Ky is a (Nx1) kernel matrix with its ith term given by φi · φ(y) =
k(xi, y).

To summarize, we introduced several detailed problems of KDA which
are differentiated from those of LDA, and applied a two-fold regularization
procedure to alleviate those problems. Meanwhile, we made several modifi-
cations both on the ER procedure to compute the scatter matrices for our
implementation of R-KDA.

3 Experiments

In order to evaluate the proposed method, the AR database [6] is adopted
in this study. A total of 1680 face images from 120 identities have been
randomly divided into two subsets without any common identity. We con-
sider only the verification scenario where the results are reported in terms
of the average equal error rates (EERs) measured from the two-fold cross
validation. The proposed R-KDA will be compared with three other variants
of Fisher discriminant: generalized discriminant analysis (GDA) [1], kernel
direct discriminant analysis (KDDA) [2], and ERE [4].

Two experiments will be performed in this evaluation. The first exper-
iment is to compare among the above mentioned kernel-based methods. A
polynomial kernel function was adopted and the comparison was performed
by varying a crucial kernel parameter in:

k(xi, xj) = (w(xi · xj) + b)D (10)

For simplicity, we fixed the bias parameter (b) to one and the degree param-
eter (D) to three, and changed only the weight parameter (w). To compare
each algorithm with an individual value of D, the optimal number of feature
vectors which show the best performance has been used. Fig. 1 (a) shows the
error rates plotted over w varying ranging from 10−9 to 103. The ERE [4]
cannot be included in this comparison because no kernel function has been
adopted in its original form.

As seen from Fig. 1 (a), the performance trends of KDDA and GDA ap-
pear complementary at the two extremes of w values, whereas the proposed
method shows the best performance over the entire range of kernel param-
eter setting. This stable performance of R-KDA can be attributed to the
leveraging of advantageous strategies of both methods by appropriate regu-
larization. Especially, R-KDA well suppresses the sample noises, its EERs
fluctuate less over w values than those of KDDA and GDA.

In the second experiment, we test all four algorithms by varying the
number of feature vectors. The kernel parameter w is set to its optimum
value for each method. The results are shown in Fig. 1 (b). Since both
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Fig. 1. Equal error rates (a) as functions of the kernel
parameter, and (b) as functions of the number of
feature vectors

KDDA and GDA discard those small eigenvalues and use only the conven-
tional between-class scatter, the available dimensionality is much limited. As
seen in Fig. 1 (b), this dimensionality limitation confines the performance of
the algorithms. On the other hand, R-KDA utilizes the entire sample space
to find the discriminant vectors. Although the maximum rank of between-
class scatter is limited to 59, since data from 60 different identities have been
used in our experiment, the EER of R-KDA decreases even when the number
of basis vectors used is larger than 60. This result evidences the effective-
ness of R-KDA which comes from the alleviation of the dimensionality limit
allowing a better extraction of useful information from the training data.
The effectiveness is also evidenced by the observation that R-KDA showing
a much smaller recognition error rate in the range of small feature sizes. The
original ERE shows a similar trend with the proposed method, but its best
performance seems to be limited by its linearity nature.

4 Conclusion

Despite of its effectiveness in nonlinear classification, the kernel expansion
of Fisher’s criterion carries two major drawbacks: sample noise and lack of
dimensionality. Attributed to a two-fold regularization on both the between-
class scatter and the within-class scatter, the proposed algorithm successfully
alleviated these problems with an improvement over the conventional kernel
Fisher discriminant.
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