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Abstract: The problem of FIR filtering with noisy input and output
data can be solved by a total least squares (TLS) estimation. The per-
formance of the TLS estimation is very sensitive to the ratio between
the variances of the input and output noises. In this paper, we pro-
pose an iterative convex combination algorithm between TLS and least
squares (LS). We combine two typical iterative algorithms, the total
least mean square method (TLMS) and the least mean square method
(LMS). TLMS is a typical iterative algorithm for TLS and LMS is a
typical one for LS. This combined algorithm shows robustness against
the noise variance ratio. Consequently, the practical workability of the
TLS method with noisy data has been significantly broadened.
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1 Introduction

Noisy FIR (finite impulse response) filtering aims at estimating filter coef-
ficients of FIR systems where all variables are observed in noise; not only
the system output is corrupted by measurement noise, but also the measured
input signal often may be corrupted by additive noise. The standard least-
squares (LS) algorithm in noisy FIR filtering is well recognized as handling
the case of corrupted output only. The case of corrupted input and output
can be handled by a total least squares (TLS) method [1]. Strictly speaking,
TLS is optimal for the case of noise with the same variance in both input and
output. General noisy FIR filtering has different noise variance in input and
output [1, 2]. Generalized TLS has been proposed to cope with general noisy
FIR filtering [1, 2]. However, generalized TLS requires a priori information
about the ratio of the variances of input and output noises. As knowing such
information is not practical, we need a method without a priori information.
Zheng proposed such an algorithm in [3]. This was a simple average of two
different generalized TLS models. However, this algorithm still needs a rough
boundary for the ratio of variances of the input and output noises.

In this paper, we propose a new method, requiring no a priori information
about the variances ratio. This method adopts a kind of open boundary for
the ratio by considering LS and TLS simultaneously. The proposed algorithm
uses the convex combination described in [4]. In this work, we combine a
result from LS with that from TLS for more improvement in the estimation
accuracy than that from Zheng’s algorithm. This new method alleviates the
requirement for a priori knowledge of the variance ratio so that the practical
workability of the TLS algorithm is significantly broadened.

2 The convex combination between TLS and LS

2.1 An adaptive least squares solution and adaptive total
least squares solution

Given an unknown system with finite impulse response and assuming that
both the input and output are corrupted by Gaussian white noise, the sys-
tem can be estimated from a noisy observation of the input and output, as
indicated in Fig. 1. The unknown system is described by

w = [w0, w1, · · · , wN−1]H ∈ CN×1, (1)

where w may be time-varying or time-invariant. The output is given by

d̃(k) = xH(k)w + nout(n), (2)
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Fig. 1. The model of noisy FIR system

where the output noise nout(n) is a Gaussian white noise with variance σ2
out

and is independent of the input signal. The noise free input vector is repre-
sented as

x(k) = [x(k), x(k − 1), · · · , x(k − N + 1)]T . (3)

The output error signal with time index k is

eLS(k) = d̃(k) − wT
LS(k)x(k) = d̃(k) − yLS(k) (4)

The LS solutions for the wLS in Eq. (4) can be obtained by solving the
optimization problem

minE{e2
LS(k)}. (5)

In the LMS algorithm [5], Widrow has taken the squared-error, itself, as
an estimation of E{e2

LS(k)}. Then, at each iteration in the adaptive process,
we have a simple gradient estimation algorithm.

yLS(k) = wT
LS(k)x(k) (6)

wLS(k + 1) = wLS(k) + μLS(d̃(k) − yLS(k))x(k) (7)

In addition to output noise, when a system has a noisy input vector given
by

x̃(k) = x(k) + nin(k) ∈ CN×1, (8)

where the input noise vector nin(k) = [nin(k), nin(k − 1), · · · , nin(k − N +
1)]T and the element of the vector nin(k) is Gaussian white noise with variance
σ2

in, the total least squares estimation (TLS) provides an optimal solution [1].
Feng et al. proposed an iterative style solution for the TLS problem, the total
least mean squares algorithm (TLMS) [6, 7]. This algorithm looks like the
LMS algorithm in Eq. (6) and Eq. (7) with a complexity of O(N) [6, 7]. The
TLMS algorithm is derived by minimizing the following cost function,

minE{w̃HRw̃}, ‖w̃‖2 = α and wTLS = w̃(1 : N)/(−w̃(N + 1)), (9)

where x(n) = [x̃T (k), d(k)]T ∈ CN+1×1 and R̄ = E{x̄(k)x̄H(k)}. The TLMS
algorithm from [6] is

yTLMS(k) = wT
TLMS(k)x̃(k), (10)

w̃(k + 1) = w̃(k) + μTLMS(w̃(k) − ‖w̃(k)‖2
2 yTLMS(k)x̄(k)), (11)

wTLMS(k + 1) = w̃(1:N)(k + 1)/(−w̃(N+1)(k + 1)). (12)
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Although the TLS method is known to handle a noisy input and output
system, strictly speaking, TLS gives an optimal solution when the ratio of
the noise variances is one, γ = σ2

out

σ2
in

= 1. In other cases, the estimation
performance deteriorates [8, 9].

2.2 An adaptive convex combination of TLMS and LMS
In practical applications of TLS, there is uncertainty in the ratio between
input noise variance and output noise variance, γ = σ2

out

σ2
in

. Zheng proposed an
average method between the TLS parameters from the two different ratios in
[3]. However, this method still needs a boundary for the noise variance ratio.
We propose an adaptive convex combination method between TLS and LS.
The convex combination scheme has been used for LMS filters by Garcia et al.
in [4]. We expect to improve the estimation performance in uncertain noise
environments by applying a combination between TLS and LS. Generally,
we know that TLS provides an optimal solution when γ = σ2

out

σ2
in

= 1 and that

LS gives an optimal solution when γ = σ2
out

σ2
in

= ∞. Then, we expect this
combination to widen the boundary of the noise variance ratio, thereby not
needing a guess for the ratio of the input noise variance and the output noise
variance.

The combination method uses a convex combination between the param-
eter of the TLS estimators and that of LS estimation.

wcomb(k) = v(k)wTLMS(k) + (1 − v(k))wLS(k), (13)

where the v(k) is kept between the interval (0, 1) by defining it as v(k) =
1/(1 + e−a(k)). Using this expression, the error of the combined method can
be calculated in the form of

ecomb(k) = v(k)eTLMS(k) + (1 − v(k))eLS(k), (14)

where eTLMS(k) = d̃(k) − wT
TLMS(k)x̃(k) = d̃(k) − yTLMS(k) and eLS(k) =

d̃(k) − wT
LS(k)x̃(k) = d̃(k) − yLS(k). d̃(k) is a noisy desired output. The

combination coefficient v(k) is controlled by a(k). This parameter is adapted
to minimize the combined error using the LSM adaptation rule.

a(k + 1) = a(k) − μa

2

∂e2
comb(k)

∂a(k)

= a(k) + μecomb(k)(yTLMS(k) − yLS(k))v(k)(1 − v(k))
, (15)

because ∂e2
comb(k)

∂a(k) = 2ecomb
∂v(k)
∂a(k)(eTLMS(k)−eLS(k)) and eTLMS(k)−eLS(k) =

yLS(k) − yTLMS(k).

3 Simulations and results

We performed computer simulations to obtain an experimental evaluation of
the proposed algorithm. The example considered in this simulation is that
of identifying the unknown FIR system with the following coefficients

wtrue = [−0.3,−0.9, 0.8,−0.7, 0.6]T . (16)
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The true input signal x(t) is white Gaussian noise with zero mean and
unit variance. A study of this example was conducted in [8, 9].

The overall estimation is measured by the misalignment defined as

ρ = 10 log10

∣
∣wtrue − westim

∣
∣2

|wtrue|2
. (17)

The experiment initially starts with input noise nin(t) and output noise
nout(t), having variances of σ2

in = 0.1 and σ2
out = 0.1. These noise vari-

ances make this experiment a typical TLS problem. We set the input signal
power to as much as necessary so that the signal-to-noise ratio (SNR) at
the input becomes SNRin = 5 dB. Fig. 2 shows the convergence curves of 4
different algorithms. Fig. 2 illustrates the results for 4 different noise ratios,
γ = [1, 5, 10, 15], γ = σ2

out

σ2
in

. Fig. 3 also illustrates misalignment, ρ, with re-
spect to the noise ratio, γ, from the proposed algorithm, the TLMS algorithm
in [6], Zheng’s algorithm in [3] and the LMS algorithm. The curves are the
results from 5 different noise ratios, γ = [1, 5, 10, 15, 20], with a fixed σ2

in.
In the typical TLS case, where γ = 1, the TLMS is much better than the
other algorithms. As the output noise gets greater, the proposed algorithm
shows its superiority. Zheng’s algorithm in [3], which uses an elementary
combination method, also degrades when γ > 5. The mean impulse response
estimates of four different methods are shown in Table I, which also demon-

Fig. 2. The misalignment convergence curves comparison
((1): the proposed method, (2): LMS, dash, (3):
Zheng’s method [3], (4): TLMS [6])
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Fig. 3. The estimation error against the ratio between in-
put and output noise variances (solid line: the pro-
posed method, dashed line: LMS, dash and dotted
line: Zheng’s method [3], solid line with triangles:
TLMS [6])

Table I. Mean impulse response estimates of different
methods

Filter Coefficient w1 w2 w3 w4 w5 ρ
2)
av [dB]

Actual value -0.3 -0.9 0.8 -0.7 0.6

γ1) = 1

Proposed
algorithm

-0.258 -0.771 0.680 -0.591 0.508 -25.5

LMS -0.232 -0.691 0.607 -0.527 0.457 -22.0
TLMS [6] -0.299 -0.903 0.798 -0.701 0.594 -30.7
Zheng’s [3] -0.266 -0.797 0.703 -0.614 0.525 -27. 0

γ = 5

Proposed
algorithm

-0.277 -0.880 0.759 -0.680 0.590 -25.4

LMS -0.207 -0.685 0.586 -0.527 0.461 -20.5
TLMS [6] -0.424 -1.284 1.126 -1.006 0.855 -16.9
Zheng’s [3] -0.316 -0.984 0.856 -0.767 0.658 -25.2

γ = 10

Proposed
algorithm

-0.323 -0.967 0.843 -0.746 0.613 -24.4

LMS -0.244 -0.700 0.611 -0.541 0.438 -20.8
TLMS [6] -0.578 -1.848 1.614 -1.429 1.190 -9.6
Zheng’s [3] -0.411 -1.274 1.113 -0.985 0.814 -17.3

γ = 15

Proposed
algorithm

-0.312 -1.018 0.903 -0.786 0.674 -22.3

LMS -0.203 -0.685 0.608 -0.523 0.457 -19.8
TLMS [6] -0.748 -2.350 2.080 -1.840 1.541 -5.8
Zheng’s [3] -0.475 -1.517 1.344 -1.181 0.999 -13.0

1) γ means the ratio between output noise variance and input
noise variance.
2) ρav mean the average misalignment.
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strates the proposed algorithm significantly broadens the practical workable
region of the TLS algorithm.

4 Conclusion

We reported on our proposed algorithm to the problem of noisy FIR filtering
by means of a combination involving TLS and LMS. The focus was set on
the sensitivity with little tolerance in the TLS method with respect to the
ratio between the variances of the input and output noises. The proposed
combination algorithm has greatly widened the range of the noise variances
ratio. Therefore, the practical workability of the TLS method with noisy
data has been significantly broadened.
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