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Abstract: The method of physical optics is extended for wedge
diffraction. The classical integral of physical optics is taken into ac-
count for the diffraction problem of plane waves by a conducting half-
plane. The integral is decomposed according to the transmitted and re-
flected scattered waves. The sinusoidal term in the integrand is rewrit-
ten by considering the fact that the half-plane is a special case of the
wedge. Two cases of soft and hard surfaces are examined and the uni-
form diffracted waves are obtained by the asymptotic evaluation of the
integrals. The results are compared with the literature numerically.
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1 Introduction

The physical optics (PO) is a high frequency technique, which considers the
radiation of induced surface currents on an equivalent plane at the point of
scattering [1]. The method has been benefited in many areas of the electro-
magnetic theory. PO has some defects that limit the usage of the technique.
The edge point contributions of the PO integrals lead to the incorrect edge
diffracted waves [2]. There are some attempts in the literature in order to
eliminate this drawback. For example some authors proposed to add or mul-
tiply correction factors, obtained from the exact solutions of the canonical
diffraction problems [3, 4]. Ando et al studied on the modification of the edge
contour for the line integral reduction of the surface integrals [5]. Umul elim-
inated the mentioned defect of PO in its mathematical structure by defining
three axioms based on the diffraction theory [6]. The asymptotic evaluation
of the modified theory of physical optics (MTPO) integrals yielded the exact
diffracted waves. Later he developed the method for wedges and impedance
surfaces [7, 8]. Ando et al studied on the same problem by defining modi-
fied surface normal vectors [9, 10]. Another defect of PO is the zero current
density in the shadow zone of the scatterer. For this reason PO represents
a wedge diffraction problem with only one illuminated face, as a half-plane
problem. Umul investigated this problem in terms of the construction of the
MTPO integrals for the case of a conducting half-plane and showed that it
is possible to express the shadow currents in terms of PO integrals [11].

It is the aim of this study to obtain a PO type integral for the scattered
fields by a wedge. This approach may be seem to be trivial after the invention
of the wedge diffraction integrals of MTPO [7], but the classical technique of
PO is widely used at present by some authors in spite of its erroneous edge
point contributions [8, 9]. A second important point is the mathematical
structure of the PO integrals. The transformation of the integrand of edge
diffraction to the more general case of the wedge diffraction will give more

764



IEICE Electronics Express, Vol.6, No.11, 763-768

insight about the construction of the method. The integrand will be decom-
posed according to the transmitted and reflected waves in order to derive the
wedge diffracted waves. The obtained integrals will be evaluated asymptot-
ically and the resultant fields will be compared with the wedge diffraction
fields of PO and the exact theory.

A time factor of exp(jwt) is suppressed throughout the paper.

2 Theory

A conducting half plane, which is located at y = 0, z € (0,00) and z €
(—00, 00) is taken into account. An incident plane wave of ug exp[jk(z cos ¢+
ysingg)] is illuminating the screen. wg is the complex amplitude of the
electric or magnetic field. ¢q is the angle of incidence. k is the wave-number.
Two boundary conditions are considered as the conditions of Dirichlet (total
field is equal to zero on the soft surface) and Neumann (the normal derivative
of the total field is equal to zero on the hard surface). The total scattered
waves can be written as

u(P) = ui(P) — futp sin @;—ip(jﬂ/@ /OOO exp(jka’ cos ¢0)—exp\(/;i]'§R) dx’

(1)

+ Fuoexplym/4) ei‘/‘g”/ [ sin g expla’ cos ¢o)—exp\(/%m) o’
(2)

for soft and hard surfaces respectively [14]. u;(P) is the incident field at the
observation point. R is the distance between the integration and observation
points. [ is the angle between the —z axis and R. We will multiply and
divide the integrands of Egs. (1) and (2) by cos ¢g —cos 3. The trigonometric
relations of

1 _ 1 B —¢o B+ ¢o
cos g —cos 3 2sin ¢y (cotg 2 ~ coty 2 > 3)

and

1 B B — o B+ do
cos¢0—cosﬁ_2sinﬁ(00tg 2 +ootyg 2 ) )

can be obtained for the soft and hard surfaces respectively. Thus the PO
integrals can be expressed as

upo1(P)
_ kug exp(jm/4)

2V/2m
x /Ooo exp(jka’ cos ¢o)(cos g — cos B) cot g - _2 . expx(/_/’sil;C =

dx’
(5)

and
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upo2(P)
_ kuo exp(jm/4)

2V 27
o0

X /0 exp(jka’ cos ¢g)(cos ¢g — cos 3) cot gﬂ —;% exp\(/;i}fR) dz’
(6)

for the soft surface. The total scattered field is equal to u;(P) — upo1(P) +
upo2(P). We will deal with the soft surface. The same operations are also
valid for the hard surface. The cotangent functions, in the integrands of
Egs. (5) and (6), can be written as

BF oo
T =

Now we take into account the wedge diffraction geometry in Fig. 1.

tan

cot g @. (7)

Fig. 1. Geometry of the wedge

1 is the outer angle of the wedge. The parameter of n is defined as /7.
It is apparent that n is equal to 2 for a half-plane, because the outer angle
of a half-plane is 2r. With this knowledge in mind, Equation (7) can be
rewritten as
cos(m/n) — sin{[m — (8 F ¢o)|/n} (8)
cos(m/n) — cos{[r — (B F ¢o)]/n} |,
for wedge diffraction. Note that Eq. (8) directly reduces to Eq. (7) for n = 2.
As a result the PO integrals can be obtained as

cotg

= sin(7/n)

BF ¢o
2

k i /4) [ . —7kR
upo1,2(P) = %g:’/)/o exp(jka’ cos gbo)f;%dwl 9)

where f1 is equal to Eq. (8) multiplied by cos ¢g—cos 3. The signs of — and +
are related with the subscripts of 1 and 2, respectively. Equation (9) enables
one to evaluate the wedge diffracted waves with the PO integration. When
compared with Ref. [7], which introduced the MTPO integrals that lead to
the exact wedge diffracted waves, it can be seen that the only difference
occurs from the numerator of Eq. (10). This is the same term that causes
the erroneous edge diffracted fields of PO [14].

766



IEICE Electronics Express, Vol.6, No.11, 763-768

3 Asymptotic evaluation of the PO integral

In this section we will introduce the wedge diffracted fields of PO by the
uniform asymptotic evaluation of Eq. (9). The details of the method can be
found in Refs. [6, 7, 8]. At the edge point, 5 and R are equal to m — ¢ and p,
respectively. The uniform wedge diffracted waves of PO can be written as

upo = h_sign(§-)F[|E-|] — hysign(§4) F[|E+ ] (10)
for h4 can be expressed as

®F do
2

up2sin(mw/n)
hy = ————

expljkp cos(é F ¢o))] cos
, cos(n/n) — sin{(6 F do)/n)
cos(/n) — cos{ (¢ F o)/}

according to Eq. (8). sign(x) is the signum function, which is equal to one
for x > 0 and —1 otherwise. F'[z] is the Fresnel function that can be defined

(11)

as

exp(jm/4) /°° 2
Flz] = ————~= exp(—jt“)dt. 12
[z] N p(—jt°) (12)
&4 is the detour parameter and can be given by the equation of
+
&+ = —+/2kpcos ¢ 2¢0. (13)

Since the upper face of the wedge is illuminated, the surface current that will
flow on the surface at ¢ = v is equal to zero according to the method of PO.
The PO integral is evaluated for the face at ¢ = 0 and is equal to Eq. (1).
Thus the scattered fields of PO by a wedge can be obtained as the special
case of Eq. (10) for n = 2. The uniform expression of the scattered fields can
be written as

upoe = h—|n=2sign(§-) F[[§-[] — hy|n=2sign(§+) F[IE+]] (14)

immediately for the classical PO. The exact diffracted fields can be evaluated
by subtracting the GO waves from the exact series solution, given in Ref. [15].
The GO fields can be written as

ugo = up{expljkpcos(¢p — ¢o)|U(—E-) — expljkp cos(¢ + ¢0)|U(—E4+)} (15)

where U(x) is the unit step function, which is equal to one for z > 0 and
zero otherwise.

4 Numerical analysis

In this section, we will compare the uniform diffracted fields by wedge for the
extended PO, classical PO and exact solution.

Figure 2 shows the variation of the diffracted fields of exact, MTPO,
extended PO and classical PO methods, with respect to the observation
angle. The diffracted waves of MTPO can be obtained by eliminating the
terms in the numerator of Eq. (8) [7]. The distance of observation (p) is
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Fig. 2. Comparison of the diffracted waves

taken as 6\ where A is the wavelength. The angle of incidence (¢¢) is equal
to 60°. The outer angle of the wedge (v) is 330°. It can be seen that the field
that best fits to the exact solution is the diffracted waves of MTPO. The
extended PO approaches to the exact solution between the angles of 110"
and 250°. But the classical and extended PO does not satisfy the boundary
conditions.

5 Conclusion

In this study, we extended the classical method of PO for the problem of
diffraction of plane waves by a conducting wedge. The obtained integral, in
Eq. (9), gives information about the transition between the classical PO and
MTPO. The numerical results show that the extended PO is also does not
in exact harmony with the exact solution. This behavior is the result of the
term in the numerator of Eq. (8), which is also the reason of the erroneous
diffracted waves of classical PO. When these terms are eliminated, the scat-
tered waves of MTPO are obtained. Figure 2 shows that these improved field
expressions are in exact harmony with the rigorous solution.
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