
IEICE Electronics Express, Vol.6, No.12, 837–843

Scalable distributed
memory embedded
system with a low-cost
hardware message passing
interface

Ha-young Jeonga), Won Hur, and Yong-surk Lee
Processor Laboratory, School of Electrical and Electronic Engineering,

Yonsei University,

262 Seongsanno, Seodaemun-gu, Seoul 120–749, Korea

a) hyjeong@mpu.yonsei.ac.kr

Abstract: In this paper, we propose a scalable distributed mem-
ory system with a low-cost hardware message-passing interface. The
proposed interface improves the communication performance between
nodes to decrease the overhead synchronization with a receiver reser-
vation technique. The simulation results indicate that the performance
is increased by 20% on 4x4 communications. The synthesis result of
the proposed MPI indicates that the area was only 4.49% of each com-
puting node. As a result, the proposed system is a useful embedded
MPSoCs (Multiprocessor System on a Chip) for its low-cost implemen-
tation and scalability.
Keywords: distributed memory system, MPSoC, multiprocessor,
message-passing interface
Classification: Science and engineering for electronics

References

[1] L. Benini and G. de Micheli, “Networks On Chips: A New SoC Paradigm,”
IEEE Comput., 2002.

[2] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi,
and M. Poncino, “Energy-Efficient Multiprocessor Systems-on-Chip for
Embedded Computing: Exploring Programming Models and Their Archi-
tectural Support,” IEEE Trans. Comput., 2007.

[3] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. A. Jerraya,
“Flexible MPSoC platform with fast interconnect exploration for optimal
system performance for a specific application,” Proc. Conf. Design, au-
tomation and test in Europe: Designers’ forum, pp. 166–171, 2006.

[4] S. Han, A. Baghdadi, M. Bonaciu, S. Chae, and A. A. Jerraya, “An ef-
ficient scalable and flexible data transfer architecture for multiprocessor
SoC with massive distributed memory,” Proc. 41st annual Conf. on De-
sign automation, San Diego, CA, USA, June 7–11, 2004.

[5] AMBA AXI Specification, ARM Limited 2003.
[6] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen, J. Sparso, and J.

Madsen, “A Network Traffic Generator Model for Fast Network-on-Chip

c© IEICE 2009
DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

837



IEICE Electronics Express, Vol.6, No.12, 837–843

Simulation,” Proc. Conf. Design, automation and test in Europe, Munich,
Germany, vol. 2, pp. 780–785, 2005.

1 Introduction

As of late, the MPSoCs (Multiprocessor Systems on a Chip) are the general
solution to reduce power consumption of digital devices. With this trend,
many commercial MPSoC have been designed, i.e. Cortext-A9 from ARM
and OMAP from Texas Instruments Inc. However, these MPSoCs use addi-
tional hardware support to keep memory coherence because their design is
based on using shared memory architecture. Consequently, this indicates a
limitation on scalability. By using distributed memory architecture on MP-
SoCs, however, we can reduce the scalability problem on conventional shared
memory MPSoCs [1].

The most recent research on distributed memory architecture systems is
focused on using a hardware MPI unit to improve communication perfor-
mance, which connects the network interface to communication hardware
and manages the messages from tasks in a queue [2, 3, 4]. Once the queued
messages are completely sent, the MPI unit automatically completes them,
since MPI hardware research is now designed based on performing one trans-
action per operation. Yet when applying the conventional MPI hardware
to a non-blocking interconnection, it has an optimization issue where a lit-
tle effort to the synchronization mechanism and the scheduling algorithms
between tasks improve the total bus performance. Thus, in this paper we
propose a novel low-cost MPI hardware unit for distributed memory archi-
tecture system which can manage synchronization through the unit itself and
reduce the burden of implementing a software MPI library.

2 Message passing interface hardware

In this paper, we propose an MPI unit that can support the general MPI
functions and exchange messages from units for a distributed memory sys-
tem. The proposed MPI unit can then synchronize, send, and receive mes-
sages between processor nodes. Since the MPI unit controls the message
exchange operation between processor nodes, the MPI unit can support the
non-blocking functions. As a result, the non-blocking operation can reduce
the data transfer overhead of the processors. The preservation and control
modules in the proposed MPI unit can reduce stall operations from programs,
as well as status mismatch between processors while reducing unnecessary
communication. Additionally, modules for non-blocking support and multi-
ple outstanding data transaction support are implemented in the proposed
MPI unit to optimize the data communication bandwidth on data dependent
operation between processors.

c© IEICE 2009
DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

838



IEICE Electronics Express, Vol.6, No.12, 837–843

2.1 Data transfer and synchronization mechanism
The proposed MPI unit uses send and receive functions to communicate
between two processors. We describe the data transfer and synchronization
process in steps:

Sender side:

1. The sender calls the “send()” function to initiate the transaction status
in the message-box.

2. The sender reserves the local message buffer and once the necessary size
of the buffer is guaranteed, it then writes data on the message buffer.

3. The sender waits for a data request signal from the receiver. Once the
sender receives the data request signal from the receiver node, it sends
a data reply grant signal to the receiver node. The receiver then reads
the message buffer of the sender’s message-box.

4. During data communication, the sender waits for the transaction ter-
minate signal. If it receives the termination signal, it terminates the
data transaction and deletes all involved entries.

Receiver side:

1. The receiver node calls the “receive()” function to guarantee enough
message buffer. It initiates the transaction status in the message-box.

2. The receiver sends a data request signal and waits for a response. Once
the data reply grant signal arrives from the sender node, it then pre-
pares a data transmission. The transferred data is stored to the local
memory.

3. After transmission, it then sends a transaction termination signal.
Transactions are terminated and all involved entries are deleted.

On distributed memory architecture there are synchronization issue be-
tween receive and send signal due to an imperfect synchronization. So to
compensate the imperfect synchronization, the MPI units should have ad-
ditional buffers. When the receiver node calls the receive function despite
the sender not transmitting any data, the sending processor node checks the
reserve entry if it is possible to reserve the request signal. If there is enough
space on the reserve entry, the request information is stored at the reserve
entry. After the sending processor prepares the data for the transaction, it
calls a send function to operate the message-box and notify the receiving
processor node by the order on the reserve entry. As a result, the usage of a
reserve entry, the node communication traffic and the communication delay
time can be reduced. To support multiple outstanding data transactions, the
MPI unit allocates a id tag per transaction on the AXI bus [5].

c© IEICE 2009
DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

839



IEICE Electronics Express, Vol.6, No.12, 837–843

3 Simulation

To measure the data communication bandwidth of the proposed MPI unit, we
have designed a BFM (Bus Functional Model) based on System C [6]. The
BFM considers delay time of each block and can generate communication
traffic for specific simulation environments. With the generated communica-
tion traffic, the performance of the proposed MPI unit was simulated. The
buffer size constraint, which can affect the data communication performance,
was set to a value of five words, where a word is 32-bits long.

3.1 One-to-many communication
An one-to-many communication is a communication where one processor
node deals with various processor nodes parallel. It can be said as a MPI
broadcasting of a collective communication, a gather communication, or a
master-slave communication. We have simulated a message communication
from one processor to many processor nodes with various message size from
4 bytes to 4096 bytes per message. Once the messages are fully sent, the total
data transfer bandwidth and the amount of data transfer were measured.

In figure 1, the results indicates a performance increase as the number
outstanding entries increase. This is because on one to many communication,
the communication is processed as one master processor nodes sends data to
large number of slave nodes.

3.2 Many-to-many communication
In this section, we have measured the bandwidth on many-to-many commu-
nications using the proposed MPI unit. The simulation was performed as
each processor nodes sends a random but a significant length data to ran-
dom processor nodes, while the average bandwidth was recorded for results.
The simulation was done on various numbers of outstanding-entries.

Fig. 1. Simulation results of 1 versus 4 communication
c© IEICE 2009

DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

840



IEICE Electronics Express, Vol.6, No.12, 837–843

Fig. 2. Simulation results of 4 versus 4 communication

Figure 2 shows the simulation results of 4 versus 4 nodes communication.
The results indicated that 20% to 25% of the performance has decreased when
compared to 1 versus 1 node communication. This was obvious because, as
the number of nodes communicating simultaneously increases, the depen-
dencies between communication and the delay time of communication would
increase. So as the number entries for outstanding increases, the results
indicated a larger communication bandwidth which was from the reduced
communication delay by reducing data dependency among processor nodes.
And also the results on 4 versus 4 nodes communication indicated that by
increasing the number of entries from 2 to 4, the performance increased by
24%. However, entries more than 4 did not show any significant performance
increase.

On 8 versus 8 node communication, the simulation results related to entry
numbers indicated a performance increase by increasing the number of entry
until 8 and the performance started to decrease as the numbers go up.

Figure 3 shows the simulation results on communication through 4 versus
4 nodes, 8 versus 8 nodes, and 12 versus 12 nodes. As shown in the figure,
the bandwidth increases as the number of outstanding entries increase, but
the bandwidth did not increase further when the entry number exceeded the
number of the nodes. It is obvious that the performance should decrease as
the number of communicating nodes would increase, but by controlling the
number of outstanding entries it can increase the performance proportional
to number of communicating nodes.

4 Proposed MPI unit hardware implementation and verifica-
tion

As to verify the proposed MPI unit, we have designed an embedded mul-
tiprocessor system based on a distributed memory architecture. The eachc© IEICE 2009

DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

841



IEICE Electronics Express, Vol.6, No.12, 837–843

Fig. 3. Simulation results on communication through 4
versus 4 nodes, 8 versus 8 nodes, and 12 versus 12
nodes

Fig. 4. Chip layout : two processing nodes with the pro-
posed MPI unit

processors on processor nodes were designed based on a RISC MIPS DLX
architecture. Each nodes were consisted with one RISC core and a message
box containing 16 kb private memory.

From figure 4, it indicated that the area for the memory took the most
part of the area. The processor core, as well as the MPI unit, did not take
a large portion of the total area. A 30% of area increase of the MPI unit
itself is negligible when considering a total area increase of the total chip area
is under 1%. Thus, with a negligible area increase effort, the total system
performance can increase by the proposed MPI unit.

5 Conclusion

In a recent developed embedded system, MPSoC’s are used and the number
of processor nodes are increasing. As the number of processor nodes in a MP-

c© IEICE 2009
DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

842



IEICE Electronics Express, Vol.6, No.12, 837–843

SoC increases, the communication overhead is a considerable bottleneck. To
reduce the bottleneck due to communication overheads from multiprocessor
environment, the use of distributed memory architecture over shared mem-
ory architecture is a solution because the communication overhead due to
increasing the number processor nodes is lower. Consequently, in this paper
we propose an MPI unit as to optimize the MPI performance in distributed
memory architecture. And the proposed MPI unit was designed to lessen
the burden of generating the MPI library. The proposed MPI unit uses the
non-blocking bus system and a mechanism by using more entry module to
enhance the message-passing performance between nodes. By using the pro-
posed MPI unit, an MPSoC system using distributed memory system can be
designed even more efficiently.

c© IEICE 2009
DOI: 10.1587/elex.6.837
Received March 16, 2009
Accepted May 20, 2009
Published June 25, 2009

843


