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Abstract: In this paper a universal fuzzy flip-flop is proposed that
can be reconfigured as a fuzzy SR, D, JK, or T flip-flop. When inte-
grated with a multi layer neural network, the resulting reconfigurable
fuzzy-neural structure showed excellent learning ability. The sigmoid
activation function of neurons in the hidden layers of the multilayer neu-
ral network was replaced by the quasi-sigmoidal transfer characteristics
of the universal fuzzy flip-flop in the reconfigurable fuzzy-neural struc-
ture. Experimental results showed that the reconfigurable fuzzy-neural
structure can be effectively trained using either a large or sparse set of
data points to closely approximate nonlinear input functions.
Keywords: reconfigurable fuzzy flip-flop, function approximation
Classification: Science and engineering for electronics

References

[1] B. Choiand K. Tipnis, “New components for building fuzzy logic circuits,”
Proc. Int. Conf. Fuzzy Systems and Knowledge Discovery, vol. 2, pp. 586—
590, 2007.

[2] K. Hirota and K. Ozawa, “The concept of fuzzy flip-flop,” IEEE Trans.
Syst., Man, Cybern., vol. 19, no. 5, pp. 980-997, 1989.

[3] J. Virant, N. Zimic, and M. Mraz, “T-type fuzzy memory cells,” Fuzzy
Sets and Systems, vol. 102, no. 2, pp. 175-183, 1999.

[4] J. Diamond, W. Pedrycz, and D. McLeod, “Fuzzy JK flip-flops as com-
putational structures: design and implementation,” IEFE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 41, no. 3, pp. 215-226, 1994.

[6] W. Pedrycz and A. Gacek, “Learning of fuzzy automata,” Int. J. Compu-
tational Intelligence and Applications, vol. 1, no. 1, pp. 19-33, 2001.

[6] R. Lovassy, L. T. Koczy, and L. Gal, “Function approximation capability
of a novel fuzzy flip-flop based neural network,” Int. Joint Conf. Neural
Networks, pp. 1900-1907, 2009.

[7] M. Sugeno and T. Yakahiro, “A fuzzy-logic-based approach to qualitative
modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, 1993.

[8] R. Scherer, “Neuro-fuzzy relational systems for nonlinear approximation
and prediction,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 71, no. 12, pp. e1420-e1425, 2009.

1119




IEICE Electronics Express, Vol.7, No.15, 1119-1124

1 Introduction

With advances in technology, fuzzy logic applications have been implemented
using dedicated hardware at chip level and are therefore conducive to embed-
ded applications. Several researchers have proposed designs of fuzzy gates [1]
and fuzzy flip-flops [1, 2, 3, 4] for dedicated fuzzy logic systems. Using the
fuzzy flip-flop as a basic building block, researchers have also proposed com-
bining it with neural networks to design intelligent fuzzy state machines [5],
while other researchers have extended this further to approximate nonlinear
functions [6]. The integration of fuzzy logic and neural networks produces
intelligent machine-learning hardware with the ability to learn from its in-
put data. In the literature, most applications focused on individual fuzzy
flip-flops.

In this paper, we propose the design of a reconfigurable universal fuzzy
flip-flop that can be configured as a fuzzy SR flip-flop, fuzzy D flip-flop, fuzzy
JK flip-flop or fuzzy T flip-flop. Such a building block is useful for rapid pro-
totyping and designing complex fuzzy systems. The reconfigurable universal
fuzzy flip-flop is integrated with a neural network to form a fuzzy-neural
structure that has the benefits of both a neural network and a fuzzy system.
The ability of the resulting fuzzy-neural structure to learn any nonlinear in-
put function and generate an output that closely approximates the input is
studied.

2 Proposed reconfigurable universal fuzzy flip-flop design

Unlike existing fuzzy flip-flops that are treated as individual fuzzy logic de-
vices, the proposed universal fuzzy flip-flop building block has the flexibility
to reconfigure the appropriate fuzzy memory element for a given application.
The reconfiguration is easily implemented to (a) meet design specifications,
(b) select an alternate fuzzy memory computing structure in the event of
component failure, or (c) incorporate design modifications when additional
features are added or changed. Fig. 1(a) shows the four modes of the pro-
posed reconfigurable universal fuzzy flip-flop controlled by signals X and Y.
For each mode, the inputs A and B of the universal fuzzy flip-flop generate
fuzzy output signals. The characteristic equation Q4+ of the proposed univer-
sal fuzzy flip-flop is obtained by transforming the binary operators of logical
product, logical sum, and complement to corresponding fuzzy logic operators.
The logical product is transformed to fuzzy intersection operator referred to
as a t-norm (7) or triangular norm operator. The logical sum is transformed
to a fuzzy union operator referred to as an s-norm (S) or t-conorm operator
and the logical complement is replaced by fuzzy negation operator (N). In
the literature, there are several definitions of t-norms and s-norms. In this
paper, we use algebraic norms where, (a T'b) = a.b, (a S b) = a+b—ab, and
N (a) = 1 — a. Using the algebraic fuzzy norms, the binary characteristic
equation of the reconfigurable universal flip-flop defined in Eq. (1),

Q+=A+Q(Y+A+B)(X +Y + A)
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(X+A+B+Q)X+Y +A4+Q) (1)
is transformed to the fuzzy characteristic equation given by,
Q+ = (1= X)(1 = V)[(A+Q — AQ)(AB — B+ 1) +
1-X)Y[AA+Q — AQ)] +
X1-Y)(1-ABQ)(A+Q —-AQ)(AB—-B+1)]+
XY[(AQ - 1)(ABQ - 1)(A+ Q — AQ)] (2)

Control inputs X and Y are binary while the inputs A and B of the
universal fuzzy flip-flop take any value from 0 to 1. Each input combination
yields a large number of output sequences for the present state @), and next
state Q+. Fig. 1 (b)—(e) shows a representative sample of the fuzzy dynamic
output characteristics between the present state () and the next state Q-+
for different values of A and B, and for different modes of the universal fuzzy
flip-flop. This unlimited output response patterns makes the universal fuzzy
flip-flop a powerful building block for fuzzy logic system design.
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Fig. 1. (a) Reconfigurable universal fuzzy flip-flop and its
dynamic characteristics in four operating modes
(b) SR FFF (c¢) D FFF (d) JK FFF (e) T FFF

3 Proposed reconfigurable fuzzy-neural structure

In this section, we will use the proposed reconfigurable universal fuzzy flip-
flop to learn any nonlinear input function and generate an approximate func-
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tion at the output. It is well known that feedforward multilayer neural net-
works can uniformly approximate any nonlinear continuous function. Fig. 2
shows a multilayer feedforward fuzzy-neural network with two hidden lay-
ers. In general, the output F' is expressed as a function of the input  and
interconnection weights w.

F(z,w) =

@0 | D wynap2 | D Whohy P1 (Z WhyiTi + bhl) +bp, | +0y | (3)
ha hi i
where ¢ = 1,2,...,n; wy,; is the synaptic weight between input z; and a
neuron in the first hidden layer; wp,p, is the synaptic weight between a
neuron hi in the first hidden layer and a neuron ho in the second hidden
layer; and wy,p, is the synaptic weight between a neuron hs in the second
hidden layer and a neuron y; in the output layer. by, by,, by,, are the bias
vectors of the first hidden layer, the second hidden layer and the output layer.

Neuron in the hidden layers of the neural network is

universal fuzzy flip flop

: Xy
k2 L
. E> . A Q-
kp b Q—:
1st Hidden 2nd Hidden
Input Layer Layer Output

Fig. 2. Fuzzy-neural network structure

In the proposed reconfigurable fuzzy-neural structure, the sigmoid ac-
tivation functions ¢1(.) and @o(.) are defined by the quasi-sigmoid trans-
fer characteristics of the universal fuzzy flip-flop as delineated in the fuzzy
characteristic Eq. (2). The output sigmoid activation function ¢g(.) in the
feedforward neural network is a linear transfer function. This reconfigurable
fuzzy-neural structure will demonstrate the learning ability to perform non-
linear input-output mapping for function approximation.

4 Experimental results

To study the performance of the proposed reconfigurable fuzzy-neural struc-
ture when approximating complex nonlinear input functions, we considered
two functions y;(x) and yo(x1,22). The first complex function was repre-
sented by y1(z) = [sin(4x)cos(20x)/2.5] + 0.5. Using this function, a large
number of data points (1000) was generated. We next considered a second
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nonlinear complex function represented by yo(z1,22) = (1 + x1_2 + x5 1:5)2
where 1 < (x1,22) < 5. For our experiment, a sparse dataset (50 data points)
identical to the data points used by other researchers for similar applications
was chosen, providing a baseline for comparing the efficacy of the proposed
reconfigurable fuzzy-neural network with previously published results [7, 8].
In the case of the first nonlinear complex function y(x), we compared the
performance of the proposed reconfigurable fuzzy-neural network with the
feedforward neural network using the hyperbolic tangent sigmoid activation
function (tansig) which yielded the best performance. These two datasets
show the learning ability when the data points are large and when the data
points are sparse. Furthermore, since the proposed universal fuzzy flip-flop
can be reconfigured to a fuzzy SR flip-flop, fuzzy D flip-flop, fuzzy JK flip-flop
or fuzzy T flip-flop, we further studied the performance of function approxi-
mation in each of these modes.

When approximating the function y; (z) using the multilayer neural net-
work, we sampled the data points uniformly and the corresponding values
of yi(x) were evaluated. The pairs of data points were used to train the
multilayer neural network using the Levenberg-Marquardt algorithm with a
maximum of 120 epochs. In our experiment, each hidden layer had 20 neurons
and each neuron in the first and second hidden layers had a tansig activation
function. The neurons in the output layer had a linear transfer function.
The initial weights were randomly assigned small values. The approximated
function generated by the multilayer neural network and the proposed recon-
figurable fuzzy-neural structure for each mode of the universal fuzzy flip-flop
are shown in Fig. 3 (a). The graphs show that the function approximation
of the fuzzy-neural structure for each mode closely matched the performance
of the feedforward neural network. The mean squared error (MSE) was cal-
culated for all five cases representing the fuzzy-neural structure, based on
the four modes of the reconfigurable universal flip-flop and the multilayer
neural network with tansig activation function in the hidden layers. These
results are shown in Fig. 3 (b). The average MSE values were obtained after
running the experiment 150 times. The best approximation of the function
y1(z) was obtained when the universal fuzzy flip-flop was configured in the
fuzzy T flip-flop mode. The results are comparable to those obtained with
the multilayer neural network using tansig activation function.

In the first hidden layer, a subset of neurons extracts the local features
of the nonlinear function by partitioning the input space into regions. The
remaining neurons in the first layer learn the characteristics of these indi-
vidual regions. In the second hidden layer, each neuron learns the global
features of each individual region in the first layer and is combined to gen-
erate the approximated function at the output. Higher accuracy is obtained
by increasing the number of neurons in the hidden layers.

Next the function ys(z1, x2) was approximated with only 50 data points,
as used in similar experiments by other researchers [7, 8]. The universal
fuzzy flip-flop in the fuzzy-neural structure was reconfigured in the fuzzy T
flip-flop mode to obtain the best performance. We ran the tests 30,000 times
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Fig. 3. (a) Performance of reconfigurable universal fuzzy-
neural structure as function approximator (b)
Quantitative comparison

to be consistent with the experimental design of previously published work.
Fig. 3 (b) compares the results of MSE obtained by the proposed fuzzy-neural
structure when the universal flip-flop is configured in the fuzzy T flip-flop
mode with the results obtained by Sugeno et al. [7] and by Scherer [8]. The
results show that even with the sparse dataset, the reconfigurable neuro-
fuzzy structure has good learning ability and performed better as a function
approximator compared with the recently proposed relational neuro-fuzzy
system [8] and the results reported in [7].

5 Conclusion

In this paper we proposed the design of a reconfigurable universal fuzzy
flip-flop, as an alternative to previous designs that have focused on selected
individual fuzzy flip-flops such as fuzzy JK, D or T flip-flops. The function-
ality of the reconfigurable universal fuzzy flip-flop is extended to generate
a myriad of responses to optimize the performance for specific applications.
We integrated the reconfigurable universal fuzzy flip-flop in the hidden layers
of a multilayer neural network. This replaced the sigmoid activation function
of the neurons by the quasi-sigmoid transfer characteristics of the universal
fuzzy flip-flop. The learning ability of the resulting reconfigurable fuzzy-
neural structure was demonstrated by a function approximation application.
The universal fuzzy flip-flop was configured in each of the four modes by
selecting different values for the fuzzy inputs. The learning ability of the
proposed reconfigurable fuzzy-neural structure was studied when the avail-
able data points were large and when the data points were sparse. The MSE
results obtained by using two nonlinear complex functions showed that the
fuzzy-neural structure has very good learning ability, as demonstrated in the
function approximator application.
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