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Abstract: In this paper an efficient reverse converter for the new
five moduli set {2n, 22n+1 − 1, 2n/2 − 1, 2n/2 + 1, 2n + 1} for even
n is presented. With a little changes in latest introduced five moduli
set {2n, 2n/2 − 1, 2n/2 + 1, 2n + 1, 22n−1 − 1} in order to achieve
simple multiplicative inverse, this new moduli set is presented. The
converter is designed in two levels architecture. The first level is based
on CRT and the second one is based on MRC algorithm. The proposed
converter achieved significant improvement in terms of speed with less
hardware requirement comparing to other five moduli sets.
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1 Introduction

Residue Number System (RNS) is a carry free system. Using RNS leads
to independent and fast arithmetic operations like addition, subtraction and
multiplication. RNS is widely used in low power and high speed digital signal
processing (DSP) [1, 2]. Designing efficient reverse converter is one of the
important parts of the RNS. Efficiency of the reverse converter is depending
on the form of the moduli. For many years the most popular moduli set
was {2n, 2n − 1, 2n + 1}. But nowadays the provided dynamic range by
this moduli set is not sufficient for applications. Therefore moduli sets {2n,
22n − 1, 22n + 1} [3], {22n, 2n − 1, 2n+1 − 1} and {22n, 2n − 1, 2n−1 − 1} [4]
with higher dynamic ranges are proposed by researchers. Furthermore to
increase the parallelism of the RNS system, four moduli sets like {2n − 1,
2n, 2n + 1, 22n+1 − 1} and {2n − 1, 2n + 1, 22n, 22n + 1} are reported in [5].
To achieve more parallelism some five moduli set are reported like {2n−1,
2n, 2n + 1, 2n−1 − 1, 2n+1 − 1} [6]. The mentioned moduli set is balanced
but inefficient multiplicative inverse is one of the main disadvantages of this
moduli set resulting in a time consuming process to execute reverse converter
algorithm. In [7], authors reported a new five moduli set {2n, 2n/2−1, 2n/2+1,
2n + 1, 22n−1 − 1}. In their approach, two-level design to achieve an efficient
reverse converter are employed in which New Chinese Remainder Theorem
(New CRT-I) and Mixed Radix Conversion (MRC) are used in level one and
two, respectively.

In this paper a little changes in moduli set proposed in [7] are applied and
moduli set {2n, 22n+1−1, 2n/2−1, 2n/2+1, 2n+1} is yield to achieve a better
multiplicative inverse. Two-level designs are employed that are completely
different from the work reported in [7]. These two-levels consist of Chinese
Remainder Theorem (CRT) and MRC. With this new design remarkable
improvement in terms of speed of the reverse converter with less hardware
requirement comparing to other mentioned five moduli sets is achieved.

2 Related Background

RNS systems includes N relatively prime integers (m1, . . . ,mN) where gcd
(mi, mj) = 1 for i, j = 1, . . . ,N and i �= j. Where gcd (a, b) demonstrate
the greatest common divisor of “a” and “b”. An integer X is in range of [0,
M-1] where M = m1 × . . . × mN is the dynamic range of the RNS system.
Therefore we can represent each integer X uniquely like (x1, x2, . . . , xN) where
xi = |X|mi

= (X mod mi) implies that 0 < Ri < mi − 1. By CRT, the
weighted number Z from its residues (x1, x2, . . . , xN) can be achieved by the
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following formula,

Z =

(
n∑

i=1

mi〈m−1
i 〉mi · xi

)
M

(1)

Where

M =
N∏

i=1

mi,
∣∣∣m̄−1

i × m̄i

∣∣∣ = 1, m̄i =
M

mi

By MRC, the number X can be calculated from residues by

X = v1 + v2m1 + v3m2m1 + . . . + vn

n−1∏
i=1

mi (2)

The coefficients vis for three moduli can be obtained from residues by

v1 = x1

v2 =
∣∣∣∣(x2 − x1)

∣∣∣m−1
1

∣∣∣
m2

∣∣∣∣
m2

v3 =
∣∣∣∣
(

(x3 − x1)
∣∣∣m−1

1

∣∣∣
m3

− v2

) ∣∣∣m−1
2

∣∣∣
m3

∣∣∣∣
3 Designing Reverse Converter

To achieve an efficient reverse converter for moduli set {2n, 22n+1−1, 2n/2−1,
2n/2 +1, 2n +1}, two-level designs are employed. First, we consider m1 = 2n,
m2 = 22n+1 −1, m3 = 2n/2 −1, m4 = 2n/2 +1, m5 = 2n +1 and m6 = 22n −1.
In first step the subset {2n/2 − 1, 2n/2 + 1, 2n + 1} are calculated based on
CRT and in second level, the set {2n, 22n+1−1, 22n−1} are calculated based
on MRC, where m6 is the multiplication of three moduli {2n/2 − 1, 2n/2 + 1,
2n + 1}.

3.1 Designing Converter for {2n/2 − 1, 2n/2 + 1, 2n + 1} Based
on CRT

The multiplicative inverses needed in CRT algorithm, are precalculated as
follows:∣∣∣m−1

3

∣∣∣
m3

→
∣∣∣k1 ×

(
2n/2 + 1

)
(2n + 1)

∣∣∣
(2n/2−1)

= 1 → k1 = 2(n−4)/2 (3)

∣∣∣m−1
4

∣∣∣
m4

→
∣∣∣k2 ×

(
2n/2 − 1

)
(2n + 1)

∣∣∣
(2n/2+1)

→ k2 = 2(n−4)/2 (4)

∣∣∣m−1
5

∣∣∣
m5

→ |k3 × (2n − 1)|(2n+1) = 1 → k3 = 2n−1 (5)

The weighted number Z from its residues (x3, x4, x5), with considering M3 =
2n/2−1, M4 = 2n/2 +1 and M5 = 2n +1 in CRT, can be calculated as follows

Z =

∣∣∣∣∣∣
(
2n/2 + 1

)
(2n + 1) × 2(n−4)/2 × x3

+
(
2n/2 − 1

)
(2n + 1) × 2(n−4)/2 × x4 + (2n − 1) × 2n−1 × x5

∣∣∣∣∣∣
(22n−1)

(6)
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For residues in binary form we have: x1 = x1,n−1 · · ·x1,1x1,0, x2 = x2,2n · · ·
x2,1x2,0, x3 = x3,n−2/2 · · ·x3,1x3,0, x4 = x4,n/2 · · ·x4,1x4,0 and x5 = x5,n · · ·
x5,1x5,0. We can rewrite equation (6) as

Z = |z1 + z2 + z3|22n−1 (7)

Where,
z1 =

∣∣∣(2n/2 + 1)(2n + 1) × 2(n−4)/2 × x3

∣∣∣
22n−1

(8)

z2 =
∣∣∣(2n/2 − 1)(2n + 1) × 2(n−4)/2 × x4

∣∣∣
22n−1

(9)

z3 =
∣∣∣(2n − 1) × 2n−1 × x5

∣∣∣
22n−1

(10)

In the equations {,} denotes the concatenation.
In binary form we have,

z1 =
∣∣∣2(n−4)/2 × (2n + 1)(2n/2 + 1) × (x3,n−2/2) · · ·x3,1x3,0

∣∣∣
22n−1

(11)

z1 =∣∣∣∣∣∣∣2
(n−4)/2

⎛
⎜⎝x3,n−2/2· · ·x3,0x3,n−2/2· · ·x3,0︸ ︷︷ ︸

n bit

x3,n−2/2· · ·x3,0x3,n−2/2· · ·x3,0︸ ︷︷ ︸
n bit

⎞
⎟⎠
∣∣∣∣∣∣∣
22n−1

= x3,1x3,0 xn−2/2 · · ·x0︸ ︷︷ ︸
n/2 bit

xn−2/2 · · ·x0︸ ︷︷ ︸
n/2 bit

xn−2/2 · · ·x0︸ ︷︷ ︸
n/2 bit

x3,n−2/2 · · ·x3,3x3,2 (12)

z2 =

∣∣∣∣∣∣∣∣(2
n/2 − 1)(2n + 1) × 2(n−4)/2×

⎛
⎜⎜⎝ 0 · · · 00︸ ︷︷ ︸

(n−2)/2 bit

x4,n/2 · · ·x4,1x4,0︸ ︷︷ ︸
(n+2)/2 bit

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
22n−1

(13)

k1 = 0 · · · 00︸ ︷︷ ︸
(n−2)/2 bit

x4,n/2 · · ·x4,1x4,0︸ ︷︷ ︸
(n+2)/2 bit

(14)

z2 =
∣∣∣2(n−4)/2 × (2n/2 − 1) × (k1, k1)

∣∣∣
22n−1

(15)

z2 =

∣∣∣∣∣∣∣∣2
(n−4)/2 × (x4,(n−2)/2 · · ·x4,1x4,0︸ ︷︷ ︸

n/2 bit

k1 0 · · · 00︸ ︷︷ ︸
(n−2)/2 bit

x4,n/2 − k1, k1)

∣∣∣∣∣∣∣∣
22n−1

(16)

z2 =

∣∣∣∣∣∣∣∣∣∣

x4,1x4,0k1 0 · · · 00︸ ︷︷ ︸
(n−2)/2 bit

x4,n/2 · · ·x4,2︸ ︷︷ ︸
(n−2)/2

+1x̄4,n/2 · · · x̄4,2x̄4,1x̄4,0k̄1 1 · · · 11︸ ︷︷ ︸
(n−4)/2

∣∣∣∣∣∣∣∣∣∣
22n−1

(17)

z2 = |z21 + z22|22n−1 (18)
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z21 = x4,1x4,0k1 0 · · · 00︸ ︷︷ ︸
(n−2)/2 bit

x4,n/2 · · ·x4,2︸ ︷︷ ︸
(n−2)/2

z22 = 1x̄4,1x̄4,0k̄1x̄4,n/2 · · · x̄4,2 1 · · · 11︸ ︷︷ ︸
(n−4)/2

(19)

z3 =
∣∣∣(2n − 1) × 2n−1 × (x5,n · · ·x5,1x5,0)

∣∣∣
22n−1

(20)

z3 =

∣∣∣∣∣∣2n−1

⎛
⎝x5,n−1 · · ·x5,1x5,0 0 · · · 00︸ ︷︷ ︸

n−1 bit

x5,n + 1 · · · 11︸ ︷︷ ︸
n−1 bit

x̄5,n · · · x̄5,1x̄5,0

⎞
⎠
∣∣∣∣∣∣
22n−1

(21)

z3 =

∣∣∣∣∣∣
⎛
⎝x5,0 0 · · · 00︸ ︷︷ ︸

n−1 bit

x5,n · · ·x5,1 + x̄5,n · · · x̄5,1x̄5,0 1 · · · 11︸ ︷︷ ︸
n−1 bit

⎞
⎠
∣∣∣∣∣∣
22n−1

(22)

z3 = |z31 + z32|22n−1 (23)

z31 = x5,0 0 · · · 00︸ ︷︷ ︸
n−1 bit

x5,n · · ·x5,1 and z32 = x̄5,n · · · x̄5,1x̄5,0 1 · · · 11︸ ︷︷ ︸
n−1 bit

(24)

3.2 Designing the Converter for {2n, 22n+1 − 1, 22n − 1} Based
on MRC

With using MRC algorithm mentioned in equation (2) for these moduli set
we have: X = x1 + 2n(v2 + v3 × (22n+1 − 1)). Therefore we can consider
X = x1 + 2nY , where Y = v2 + v3 × (22n+1 − 1). Since x1 has n bits, with
calculating Y and concatenating x1 at the end of Y, weighted number X can
be achieved from its residues. Based on MRC algorithm, the multiplicative
inverses can be calculated as below∣∣∣∣∣∣∣m−1

1

∣∣∣
m2

× 2n

∣∣∣∣
22n+1−1

= 1 →
∣∣∣m−1

1

∣∣∣
m2

= 2n+1 (25)

∣∣∣∣∣∣∣m−1
1

∣∣∣
m6

× 2n

∣∣∣∣
22n−1

= 1 →
∣∣∣m−1

1

∣∣∣
m6

= 2n (26)

∣∣∣∣∣∣∣m−1
2

∣∣∣
m6

× (22n+1 − 1)
∣∣∣∣
22n−1

= 1 →
∣∣∣m−1

2

∣∣∣
m6

= 1 (27)

With considering Z = z2n−1 · · · z1z0 as 2n bit in modulo 22n − 1, we have

v2 =
∣∣∣(x2 − x1) × 2n+1

∣∣∣
22n+1−1

(28)

v2 =

∣∣∣∣∣∣x2,n−1 · · ·x2,0x2,2n · · ·x2,n + x̄1,n−1 · · · x̄1,0 1 · · · 11︸ ︷︷ ︸
n+1 bit

∣∣∣∣∣∣
22n+1−1

(29)
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Where,

v21 = x2,n−1 · · ·x2,0x2,2n · · ·x2,n and v22 = x̄1,n−1 · · · x̄1,0 1 · · · 11︸ ︷︷ ︸
n+1 bit

(30)

v3 =

∣∣∣∣∣∣
⎛
⎝z2n−1 · · · z0 − 0 · · · 00︸ ︷︷ ︸

n bit

x1,n−1 · · ·x1,0

⎞
⎠× 2n − v2

∣∣∣∣∣∣
22n−1

(31)

v3 =

∣∣∣∣∣∣∣∣∣
zn−1 · · · z0z2n−1 · · · zn−2 + x̄1,n−1 · · · x̄1,0 1 · · · 11︸ ︷︷ ︸

n bit

+ 1 · · · 11︸ ︷︷ ︸
2n−1 bit

v̄2,2n · · · v̄2,0

∣∣∣∣∣∣∣∣∣
22n−1

(32)

v3 = |v31 + v32 + v33 + v34|22n−1 (33)

Where

v31 = zn−1 · · · z0z2n−1 · · · zn−2, v32 = x̄1,n−1 · · · x̄1,0 1 · · · 11︸ ︷︷ ︸
n bit

v33 = 1 · · · 11︸ ︷︷ ︸
2n−1 bit

v̄2,2n and v34 = v̄2,2n−1 · · · v̄2,0
(34)

After calculating v2 and v3, we have:

Y = v2,2n · · · v2,0 + (v3,2n−1 · · · v3,0)(22n+1 − 1) (35)

Y = v2,2n · · · v2,0 + v3,2n−1 · · · v3,0 0 · · · 00︸ ︷︷ ︸
2n+1 bit

−v3,2n−1 · · · v3,0 (36)

Y = k − v3,2n−1 · · · v3,0 (37)

k = v3,2n−1 · · · v3,0v2,2n · · · v2,0 (38)

4 Hardware Implementation

Hardware implementation of the proposed reverse converter is shown in Fig-
ure 1. Designing the first level is based on the equations (12), (18), (23)
and (29). For designing the first level, modulo (22n − 1) adder is needed. To
achieve this, CSA with EAC tree are used to creates the inputs of the modulo
(22n −1) adders. The result of modulo (22n −1) adder is Z. Calculating v2 in
second level is independent from the result of Z. Therefore in the first level,
modulo (22n+1 − 1) adder is used to calculate v2. So, more parallelism and
speed is achieved. Designing the second level is based on the equations (33)
and (37). Two stages CSA with EAC are employed to create the input of
modulo (22n − 1) adder. After that, (4n + 1) bits regular CPA with ‘1’ carry
in, is used to achieve Y. Finally with concatenating x1 as n bits at the LSB
of Y, weighted number X will be achieved from its residues.
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5 Performance Evaluation

Comparison results regarding to speed and area of the reverse converters are
done between the proposed moduli set {2n, 22n+1 − 1, 2n/2 − 1, 2n/2 + 1,
2n + 1} and the moduli sets {2n − 1, 2n, 2n + 1, 2n−1 − 1, 2n+1 − 1} [6] and
{2n, 2n/2 − 1, 2n/2 +1, 2n +1, 22n−1 − 1} [7]. Dynamic range of the proposed
moduli set is higher than the other mentioned moduli sets. The converters
proposed in [6] and [7] have (18n+L+2)tFA and (13n+1)tFA +3tNOT delay,
respectively. The proposed converter has (12n + 6)tFA + 3tNOT delay for its
reverse converter. Therefore the proposed converter is faster than the other
reverse converters. Unit gate delay in order to achieve a fair comparison is
shown in Table I. In this model FA gates are considered with area of seven
gates and delay of four gates. Each two-input monotonic gates considered
with one area and delay and XOR/XNOR gates are considered with two gates
area and delay [7]. Results of Table I confirm that remarkable improve-
ment for speed of reverse converter and degraded hardware requirement are
achieved comparing to other five moduli sets.

Fig. 1. Hardware architecture: (a) First level, (b) Second
level

Table I. Performance Comparison for different five moduli
sets
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6 Conclusion

This paper introduces a new five moduli set {2n, 22n+1−1, 2n/2−1, 2n/2 +1,
2n + 1} with efficient implementation for its reverse converter. The design
of the reverse converter has been realized in two-level architecture. The
mixed of CRT and MRC algorithms constituted these two levels. Comparison
with other latest five moduli sets shows that we have achieved a significant
improvement in terms of speed and area in reverse converter implementation.
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