IEICE Electronics Express, Vol.7, No.18, 1329-1334

Improving dynamic texture
recognition with constraint
subspace learning

Tiesheng Wang® and Pengfei Shi”

Institute of Image Processing and Pattern Recognition,
Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai, 200240, China

a) tieshengw @ sjtu.edu.cn

b) pfshi@sjtu.edu.cn

Abstract: We present a new framework for recognizing dynamic tex-
tures modeled by linear dynamic systems (LDS). The new framework
improves previous methods by considering between-class subspace dif-
ferences. Specifically, common part among different class subspaces
is removed by projecting model subspaces onto a constraint subspace
before recognition. This operation increases the separability among
different classes of dynamic textures. The effectiveness of the new
framework is shown by experimental results.
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1 Introduction

Object recognition is a fundamental task in computer vision. In recent years,
recognizing dynamic textures has drawn increasing interests [1, 2, 3, 4, 5, 6].
Dynamic texture recognition aims at finding dynamic visual patterns with
repetitive motion, such as waving trees, flame, water waves, and traffic flow,
in video. There are many practical applications of recognizing dynamic
scenes. For example, in video surveillance of traffic scene, the traffic sta-
tus, such as light, medium, or heavy flow, can be automatically classified
based on the interpretation of dynamic textures [1]. Other examples include
recognizing action [4] and facial expression [3].

A framework for dynamic texture recognition usually contains two mod-
ules. The first one is the effective representation of dynamic textures with
certain features or models. Based on such representation, the second module
classifies dynamic textures based on certain distance or similarity measures.

Previous methods on dynamic texture recognition roughly fall into two
categories. The first category focuses on extracting local features, such as
optical flow [2], local binary pattern (LBP) [5], and histogram [6], for recogni-
tion. Other information, such as temporal periodicity, can be jointly used for
recognition. The second category uses linear dynamic system (LDS) models
to capture the underlying dynamic processes of the appearance of dynamic
textures [7, 8, 1]. In these methods, LDS model parameters, which span
a subspace, are used for recognition based on some distance or similarity
measures. Then, the distances or similarities among model subspaces were
directly compared.

The framework proposed in this paper belongs to the second category.
Though previous methods based on LDS representation may capture the un-
derlying dynamic processes [7, 8|, considering between-class differences may
provide extra benefits. If the overlap or intersection among different class sub-
spaces can be removed, the separability between different subspaces will be
improved and the recognition performance will be increased accordingly. We
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use a transformation similar to constraint mutual subspace methods (CMSM)
in [9] to improve previous methods for dynamic texture recognition. The ef-
fectiveness of using constraint subspace learning is show in our experiments.

The rest of this paper is arranged as follows. In Section 2, dynamic texture
recognition using LDS representation is introduced. Constraint subspace
learning is described in Section 3. Section 4 presents the proposed framework
for dynamic texture recognition. The performance of the new framework is

evaluated in Section 5.

2 Dynamic texture recognition based on LDS representation

The basic framework for dynamic texture recognition based on LDS repre-
sentation is briefly described in this section.

The underlying dynamic processes of dynamic textures can be captured
by LDS [7, 8]. Let the state at time ¢ be a vector z; € R? and the observed
texture appearance at ¢ be a vector y; € R™. Dynamic textures can be
described by the following state space models:

ry = Axp_1 + v
{ (1)

yr = Cxy + wy
where A € R¥? is the state transition matrix and C' € R"*? is the observa-
tion matrix. v; and w; are the zero-mean Gaussian noises, i.e., v ~ N (0, Q)
and wy ~ N(0, R), where @ and R are the corresponding covariance matrices.

When the model parameters in (1) is learned as in [8], the observa-
tion matrix C' is formed by the principal eigenvectors through principal
component analysis (PCA) of the observed dynamic textures. And the
estimated state vector, denoted as ¢, is obtained from projecting the ob-
served vector y; onto C, i.e., 2y = CTy;. Accordingly, A is estimated as
A=[&y - &p][#1 --- 2n_1]T, where t denotes generalized inverse.

Columns of the observability matrix O,, = [CT ATCT .. (AT)FCT]T of
the LDS model span a subspace, which is used for recognition. Therefore,
the closeness between dynamic textures can be measured by the distance or
similarity between subspaces.

Subspaces are known as points on Grassmann manifold [11]. Principal
angles between two subspaces are closely related to subspace distances. Let
U, € R4 and Uy € R™*? be basis matrices of two subspaces. The numeri-
cally stable way to compute principal angles is through the SVD of U 1T Us [12):

UTUy =VAWT, A =diag(h1,-- , \a) (2)

where \; = cos6; is the cosine value of the ¢th principal angle.
Based on principal angles, Martin distance between two subspaces is de-

fined as [10]:
B0 =[]~ = 23" ma 3
M( 1, 2)_nHi=1m__ Zi:ln 79 ()
Although there are other subspace distances [11], methods based on Martin
distance have shown promising results for dynamic texture recognition [7].
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Therefore, we also use Martin distance in our framework. Note that we use
(2) to compute principal angles while generalized SVD (GSVD) was used
in [7].

Based on LDS representation and subspace distance discussed above, dy-
namic texture recognition can be achieved by comparing subspace distances.
The simplest classifier is nearest neighbor (NN), which chooses the dynamic
texture with the smallest distance as the recognized one.

3 Learning constraint subspace

Different class subspaces of dynamic textures can be first projected onto a
constraint subspace to improve their separability. The aim of this operation is
to remove the common part among different subspaces. Then, the projected
subspaces are used for recognition. Although there are several ways to con-
struct constraint subspace, we use generalized difference subspace suggested
in [9].

Denote basis matrices for N class subspaces by U; € R4 i =1,...,N.
The sum of the N-class projection matrices is G = Zfi LUUL. Since G is
positive definite, based on the SVD of G, i.e.

G = DxDT, (4)

the generalized difference subspace H € R™*N¢ is formed by the Ny eigenvec-
tors corresponding to the Ny smallest eigenvalues of G. Or equivalently, H is
formed by discarding the first IV, eigenvectors of G corresponding to the IV,
largest eigenvalues. The optimal dimension Ny of the constraint subspace is
chosen experimentally.

Projecting the subspace matrix U; onto H is U; = HTU;, U; € RNaxd,
Note that Uj; is not necessarily an orthonormal matrix as U/ U; = Ul HH'U;.
Therefore, Gram-Schimit orgthogonalization and normalization should be
applied to U; to obtain the orthonormal basis matrix U; of the projected
subspace corresponding to the ith class.

The procedure of learning a constraint subspace is as follows. First, obtain
subspace basis matrices U; and the constraint subspace H. Second, project
U; onto H and perform Gram-Schmidt orthonormalization to obtain the new

subspace bases U;.

4 Proposed framework for dynamic texture recognition

While LDS representation is useful for dynamic textures as shown in [7, 8], it
may not be optimal for recognition task. As described in Section 3, the trans-
formation with constraint subspace considers between-class subspace differ-
ence to remove the intersection among different class subspaces. Therefore,
LDS based dynamic texture recognition can be augmented with constraint
subspace learning to improve the separability among different models.

First, model parameters {C;, 4;}, i = 1,--- , N can be estimated for N
classes of dynamic textures, and the observability matrices O, ; are formed
according to Section 2.
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Then, the basis matrix U; can be computed from the observability matrix
Op,; via Gram-Schmidt orthogonalization. The generalized difference matrix
H can be computed based on the SVD of G, the sum of projection matrices,
according to the description in Section 3.

Based on the idea of constraint subspace learning, we can project the
subspace basis matrix U; onto the constraint subspace H. In this way, we
obtain the projected subspaces U; = HTU;. Since the projected subspace U;
is not necessarily orthogonal, it is orthogonalized with Gram-Schmidt method
and normalized to obtain the new subspace basis matrix U;.

Finally, as the standard framework in Section 2, Martin distance and NN
classifier are adopted in our framework for dynamic texture recognition. The
subspace basis matrices U; are input into the standard recognition framework.
The probe dynamic texture with (:/'p as the transformed subspace basis matrix
is recognized as the dynamic texture with class label i* according to:

i* = argmin d3;(U;, Up). (5)
2

5 Experimental results

To test the performance of the proposed method, the old DynTex data-
base [13] was used in our experiments. There are altogether 35 color videos
in this database. Each video represents one class of dynamic textures, which
include tree leaves, flag, sea waves, and so on. Each video lasts for 10 seconds
with 25 frames per second and the size for each frame is 400 x 300 pixels.

To simplify computation, we resize each frame into size 52 x 39 pixels and
use gray scale image in experiments. We extract two video sequences from
each video. Several examples are shown in Fig. 1. The first 100 frames of
each video was used for training and the last 100 frames was used for test.
We observed that there are obvious appearance changes in these two clipped
sub-videos. In this way, there are 35 sequences for training and 35 sequences
for test.

We compared two methods for dynamic texture recognition. The first one
is the basic framework based on LDS and Martin distance, which is without
constraint subspace learning, as described in Section 2. The second one is
the presented framework based on LDS and Martin distance with constrained
subspace learning, as described in Section 4. We denote the former as ‘LDS’
and the latter as ‘CLDS’.

Fig. 1. Examples of dynamic textures from DynTex
database [13]. From left to right: ‘lame’, ‘smoke’,
‘sea_waves’, and ‘flag’.
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Table I. Performance comparison of two frameworks, LDS
and CLDS, for dynamic texture recognition. d is
the dimension of subspace.

Recognition rate (%)
Method d=5 10 15 20 25 30
LDS  62.86 65.71 71.43 74.29 77.14 74.29
CLDS 7429 71.43 82.86 80.0 85.71 82.86

For both methods, the first 60 principal components with PCA of each
dynamic texture are chosen to estimate C' in (1). Such a choice was to keep
around 95% of data energy for each dynamic texture in estimating PCA sub-
space. For computational simplicity, £ = 1 is chosen to form the observability
matrix. And the dimension of constraint subspace was experimentally set as
N, = 40. Note that if there is no constraint subspace used, i.e. N, = 0,
CLDS reduces to LDS.

Based on the above parameter selection, the comparison of recognition
performance for the two frameworks, LDS and CLDS, are presented in Ta-
ble I, where the recognition rate corresponding to different choice of subspace
dimension d are shown. As can be seen from the table, for the same d, CLDS
has obtained improved recognition performance over LDS. When d = 25,
the highest recognition rates are obtained for both methods, i.e., 77.14% for
LDS and 85.71% for CLDS. The experimental results indicate that using a
constraint subspace for dynamic texture recognition has obtained improved
recognition performance since the difference between the two frameworks is
whether the constraint subspace is used.

6 Conclusions

We present a new framework for recognizing dynamic textures based on LDS
representation. The new framework improves the separability among differ-
ent classes of dynamic textures with a transformation, which is achieved by
projecting class subspaces onto a constraint subspace. As indicated by exper-
imental results, using constrained subspace learning has obtained improved
performance for dynamic texture recognition. Our future work is to use a dis-
criminant learning framework for dynamic texture recognition by considering
not only the between-class but also the within-class subspace differences.
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