
IEICE Electronics Express, Vol.7, No.20, 1520–1526

Multithreaded pattern
matching algorithm with
data rearrangement

Doohwan Oh, Seunghun Kim, and Won W. Roa)

School of Electrical and Electronic Engineering, Yonsei University,

134 Shinchon-Dong, Seodaemun-Gu, Seoul,120–749, Korea

a) wro@yonsei.ac.kr

Abstract: This letter proposes a multithreaded pattern matching
algorithm which can efficiently distribute the patterns to be searched
on multiple threads to achieve rapid pattern matching operation. The
proposed idea is designed to fully exploit thread-level parallelism to en-
hance searching speed. By distributing a large number of patterns over
multiple threads, pattern matching procedure experiences less cache
misses and shows better performance. In addition, we propose to sort
the target patterns according to the alphabetic order to achieve effi-
cient data decomposition. From detailed experiments and performance
analysis, our algorithm shows remarkable performance gain compared
to the original Wu-Manber algorithm.
Keywords: multiple pattern matching, multithreading, data decom-
position
Classification: Science and engineering for electronics

References

[1] S. Wu and U. Manber, “A Fast Algorithm for Multi-Pattern Searching,”
Department of Computer Science, UA Tech. rep., TR94-17, 1994.

[2] C. Gibas and P. Jambeck, “Developing Bioinformatics Computer Skills”.
[3] D. Gusfield, “Algorithms on Strings, Trees and Sequences Computer Sci-

ence and Computational Biology”.
[4] SNORT, [Online] http://www.snort.org/
[5] F. Sanchez, E. Salami, A. Ramirez, and M. Valero, “Parallel processing in

biological sequence comparison using general purpose processors,” Proc.
IEEE Int. Symp. Workload Characterization 2005.

[6] AMD Code Analyst Tool, [Online] http://deveoper.amd.com/
[7] Advanced Micro Devices, Inc., “Software Optimization Guide for AMD

Family 10h Processors,” May 2009.

1 Introduction

Multiple pattern matching is an operation to search multiple strings in a
target text (database) simultaneously; the Wu-Manber algorithm [1] is one of
the famous multiple pattern matching algorithms and widely used in many

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1520



IEICE Electronics Express, Vol.7, No.20, 1520–1526

applications including genome search programs and anti-virus software [2,
3, 4]. Although the original algorithm has shown good performance and
has been widely adopted in various applications, it has suffered from heavy
computation overhead when the number of patterns to be searched becomes
large [5].

In fact, the size of memory resource used for a large number of patterns
causes excessive cache misses and severely degrades the overall performance.
To address this problem, we have developed a multithreaded multiple pat-
tern matching algorithm and have distributed the patterns over the multiple
threads; each thread is required to find only the assigned patterns.

In addition, we have developed an efficient way to decompose the pat-
terns over multiple threads; instead of randomly distributing the patterns,
we first sort the patterns according to the alphabetic order. This results in
a reduced number of data accesses during the prefix comparison process of
the algorithm.

Consequently, the proposed idea with alphabetic data decomposition pol-
icy improves the overall performance by reducing the amount of workload on
a single thread and results in less data accesses. In fact, it has maximum
5.7 times higher performance than the original Wu-Manber algorithm on
32-threads on a single-core.

2 Background Research: Wu-Manber Algorithm

The Wu-Manber algorithm exploits three kinds of tables for matching mul-
tiple patterns, which are shift table, hash table, and prefix table. The bad
character shift table of Boyer-Moore has been adapted to the Wu-Manber al-
gorithms as the form of shift table. The table informs the shift value for each
matching block; a block is an n-character piece which is used for string com-
parison. The table is constructed at the pre-processing stage by analyzing
the multiple patterns to be simultaneously searched. The shift table con-
tains entries for all two-character blocks within the multiple patterns. This
table basically informs the number of characters to be skipped at finding
each block pattern. However, if the entry shows a zero value for a certain
block pattern, it means that the current block matches to the suffix of some
patterns. In this case, the next procedures would be initiated to compare the
rest of characters in the patterns.

In order to compare the rest of characters in the patterns, the Wu-Manber
algorithm also introduces two additional tables called hash table and prefix
table. The hash table groups the patterns which share the same suffix. With
the hash table, we now compare the prefixes under the current suffix. At the
matching of the prefix, the procedure looks up content of the prefix, which
points the location of each full pattern. Indeed, through these tables, the
patterns with the same suffix and prefix can be filtered without comparing
every character in the patterns.

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1521



IEICE Electronics Express, Vol.7, No.20, 1520–1526

3 Multithreaded implementation of the multiple pattern
matching algorithms

To lessen the workload on the original algorithm, we have adopted the multi-
threading technique from the commercial Linux operating systems. Our idea
intends to lessen the centralized workload by distributing the patterns over
the multiple running threads. For efficient multithreaded implementation,
the patterns are distributed on each thread which has a dedicated private
memory address-space for the assigned patterns. On the other hand, we
allocate the target text (which is a database to be searched for the pattern
matching purpose) on the shared memory address-space which can be easily
accessed by all running threads.

The contribution of the proposed idea is found in reducing the number
of patterns dedicated on a single thread; by distributing the patterns with
the proposed multithreaded algorithm, a large pattern-set is decomposed and
distributed over multiple threads. In fact, when the number of patterns to
be searched on a thread is large, it could introduce extremely long execution
time due to a large number of cache misses. In fact, reduction of the number
of patterns assigned on a thread can reduce the number of cache misses.
In addition, our multithreading approach which is based on coarse-grained
multithreading method can hide cache miss penalty by context switching on
a core when the thread has a cache miss.

In addition, we propose a further enhancement on the pattern decom-
position policy in order to efficiently distribute the patterns over multiple
threads; we have made the rearrangement of patterns according to the al-
phabetic order before we distribute the patterns over multiple threads. With
data sorting, the patterns with an identical or similar prefixes can be allo-
cated on a thread. This, consequently, results in a less number of entries in
the prefix table, less cache misses, and a less total number of instructions
executed.

To show the effectiveness of pattern rearrangement, we show the difference
with two different decomposition policies: random data decomposition and
sorted data decomposition (Fig. 1). Each of the approaches has two threads;
each thread has three assigned patterns which are evenly distributed from
total six patterns to be searched simultaneously. Fig. 1-(a) shows the multi-
threaded Wu-Manber without the rearrangement of patterns (random order)
and Fig. 1-(b) depicts the scenario with a sorted partitioning according to
the alphabetic order. We name a random order partitioning as “random
decomposition”, and a sorted partitioning in alphabetic order as “sorted de-
composition”.

In Fig. 1-(a), the prefix table for thread 0 has several indexes for “ab”
and “ca”. However, the prefix table for thread 0 in Fig. 1-(b) has only one
index for the “ab” prefix. Hence, data hit ratio (of course, assuming a lot
more patterns to be searched exist) in the sorted decomposition (Fig. 1-(a))
would be improved compared to the random decomposition. Moreover, in
Fig. 1-(b), the matching procedure for prefix “ab” happens only at thread

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1522



IEICE Electronics Express, Vol.7, No.20, 1520–1526

0 since all patterns have the prefix “ab” are found only on thread 0 not on
thread 1. However, in the case with the random decomposition in Fig. 1-(a),
the prefix “ab” is found in both thread 0 and thread 1. Hence, the matching
procedure for prefix “ab” redundantly occurs on both threads. As a result,
the decomposition in the alphabetic order not only improves the hit ratio at
accessing the prefix table, but also reduces the number of redundant prefix
matching procedures.

Fig. 1. Working examples of multithreaded Wu-Manber
algorithms for the random and sorted decomposi-
tion policies

4 Experimental results and performance analysis

To demonstrate the advantages of the proposed algorithm, we have performed
the detailed experiments with searching 10000, 30000, and 50000 multiple
patterns. Fig. 2 shows the processing times of the multithreaded multiple
pattern matching algorithms using different numbers of threads. The base-
line performance is obtained by using the original Wu-Manber algorithm
(WM) [1]. All the experiments are performed using only a single core of

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1523



IEICE Electronics Express, Vol.7, No.20, 1520–1526

the AMD Phenom X4 Quad-Core processor (2.2 GHz). In other words, the
threads are running only on a single core in a time-shared manner. In this
way, we can see the effect of multithreading with a fair condition, excluding
the help of multiple physical cores.

In the diagram, the “sorted decomposition” means the data decompo-
sition is made according to the alphabetic order and the “random decom-
position” indicates the randomly distributed data decomposition. The best
performance is achieved with running 32 threads at searching 50000 patterns.
With the “sorted decomposition” policy, the processing time reaches up to 5.7
times faster compared to the original Wu-Manber algorithm which is ‘WM’
in Fig. 2. Considering that the same amount of hardware is used (single
core), the processing time is remarkable and demonstrates that our proposed
approach is superior to the original single threaded algorithm.

For each configuration, the peak performance is observed with a specific
thread numbers. For example, in the case of searching 50000 patterns with
the “random decomposition” policy, the peak performance is observed with
32 threads; moreover, the performance with 64 threads is severely degraded.
We believe this is due to the contexts switching overhead caused by the
large number of thread creations. The overhead becomes too large to take
advantage of our approach.

In addition, we have observed that the performance improvement with the
10000 pattern matching is not remarkable. With 30000 and 50000 patterns,
the processing times show notable improvement. Indeed, as the numbers of
patterns increase, the results show better performance with multithreading.
Therefore, this observation supports that our approach provides a good so-
lution for the problem caused by heavy computation with the large number
of patterns to be searched.

When we compare two different data decomposition policies, the “sorted
decomposition” policy shows better results in most cases; it has achieved a
maximum of 19% better performance compared to the “random decomposi-
tion” policy (which is achieved with 8-threads on 50000 pattern searching).

Fig. 2. The processing times with various numbers of
threads on a single-core

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1524



IEICE Electronics Express, Vol.7, No.20, 1520–1526

The reason is that the hit rate at accessing prefix table is improved and
overall computation load is reduced in the sorted data decomposition policy.

For further analysis, we obtain the data for the processing behavior using
“AMD CodeAnalyst Performance Analyzer” [6]. Table I shows the hit rate
and the number of accesses on L1 data cache and L2 unified cache. The
data is obtained with searching 50000 patterns on a single-core. In addition,
there are statistics for the number of instructions retired during the overall
execution. As the number of threads increases, the hit rate generally shows
better results; the hit rates on L1 and L2 cache show remarkable improvement
compared to the traditional sequential algorithm (WM). The reason why
more L2 accesses happen than the L2 cache misses is due to the automatic
stride based prefetching from the L2 cache to the L1 cache [7].

Regardless of data decomposition policy, our approach has almost 60%
higher hit rate on the L1 data cache with 64-thread compared to the single-
thread execution. Indeed, the “random decomposition” shows a little better
rate as comparison with “sorted decomposition”. The case of L2 cache also
has shown similar results. This is due to the fact that the sorting operation
is added and causes more cache misses in the “sorted decomposition” pol-
icy. In the case of number of retired instructions, the “sorted decomposition”
shows a smaller dynamic instruction counts than the “random decomposi-
tion”; the matching procedures which redundantly occur on multiple threads
cause more dynamic instructions to be executed with the random decompo-
sition policy.

Table I. The analyzed data for 50000 patterns with dif-
ferent number of threads in different pattern ar-
rangement on single-core processor

5 Conclusion

The proposed multithreaded multiple pattern matching algorithm provides
remarkable performance gain with proper data decomposition; the perfor-
mance results show better execution time with higher cache hit rate. Our
method provides a high-performance multithreaded approach which exploits
both instruction-level and data-level parallelisms.

Especially, the data decomposition with alphabetic sorting has reduced
c© IEICE 2010

DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1525



IEICE Electronics Express, Vol.7, No.20, 1520–1526

the number of instructions executed as well as the number of data accesses.
Overall, the proposed idea provides better results when the number of pat-
terns to be searched increases. On conclusion, our approach achieves per-
formance enhancement through not only multithreading but also pattern
decomposition policy. As a future work, we will extend the algorithm further
targeting today’s multi-core processors.

Acknowledgements

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (2009-0077326).

c© IEICE 2010
DOI: 10.1587/elex.7.1520
Received August 04, 2010
Accepted September 15, 2010
Published October 25, 2010

1526


