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Abstract: A successive elimination algorithm for two-bit transform
(2BT) based motion estimation (ME) is proposed. By mathematically
deriving the lower bound for 2BT-based matching criterion, we can
discard the impossible candidates earlier and save computations sub-
stantially. Experimental results show that although the performance
of the proposed algorithm is the same as that of the full search 2BT
(FS-2BT) based ME algorithm, the computational complexity has been
reduced significantly.
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1 Introduction

The block matching algorithm (BMA) for ME is the most popular and is de-
ployed in many video compression standards because of its implementation
simplicity and effectiveness [1, 2]. The full search algorithm (FSA) can give
the optimal estimation of the motion in terms of minimal matching error
by checking all the candidates within the search range, but the prohibitively
huge computational complexity makes it impractical for the real-time video
applications. Thus, many fast algorithms are proposed in the literature in-
cluding successive elimination algorithm (SEA) [3]. In SEA, the sum norms
of the blocks were used to decide whether the matching computation should
be executed at a certain search position in the search range and to reduce the
number of matching calculations in the FSA. Note that the ME accuracy of
the SEA is the same as that of the FSA.

The techniques that exploit different matching criteria instead of the clas-
sical sum of absolute differences (SAD) such as one-bit transform (1BT),
multiplication-free 1BT, and 2BT were proposed to make the faster com-
putation of the matching criteria using Boolean exclusive-OR (XOR) oper-
ations [4, 5, 6]. In [4], 1BT-based ME where the reference frames and the
current frames are transformed into one-bit representations by comparing the
original image frame against a bandpass filtered output was proposed. Each
frame I is filtered with a 17× 17 kernel K which is given as (1). The filtered
frame IF is compared with the original frame I to create a one-bit frame B

as in (2).

K(i, j) =

{
1/25, i, j ∈ [0, 4, 8, 12, 16]

0, otherwise
(1)

B(i, j) =

{
1, I(i, j) ≥ IF (i, j)
0, otherwise

(2)

After this transform, the matching error criterion between two one-bit
image frames, which is called the number of non-matching points of 1BT
(NNMP1BT ), is given by

NNMP1BT (m, n) =
N−1∑
i=0

N−1∑
j=0

{Bt(i, j) ⊕ Bt−1(i + m, j + n)} (3)

where Bt(i, j) and Bt−1(i, j) are the 1BT representations of the current and
the previous image frames, respectively, ⊕ denotes the Boolean XOR oper-
ation, the motion block size is N × N , and −s ≤ m, n ≤ s is the search
range [4].

2BT-based ME was proposed to enhance the ME accuracy of 1BT-based
ME algorithms [6]. In 2BT-based ME, the values of local mean μ, variance σ2,
and the approximate standard deviation σa are used to convert frames into
two-bit representations which are calculated as [6]:

μ = E[Itw]

σ2 = E[I2
tw] − E2[Itw] (4)

σa = 15 + 0.0125σ2
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where Itw are the pixel values in the local threshold window around the
transforming block. The 2BT representations can then be attained as:

B1(i, j) =

{
1, I(i, j) ≥ μ

0, otherwise

B2(i, j) =

{
1, I(i, j) ≥ μ + σ or I(i, j) ≤ μ − σ

0, otherwise
(5)

where I(i, j) are the pixel values of the transforming block and B1(i, j) and
B2(i, j) are the 2BT representations. The 2BT-based ME uses the number
of non-matching points (NNMP2BT ) as a matching criterion given as:

NNMP2BT (m, n) =
N−1∑
i=0

N−1∑
j=0

{Bt
1(i, j) ⊕ Bt−1

1 (i + m, j + n)}

‖ {Bt
2(i, j) ⊕ Bt−1

2 (i + m, j + n)} (6)

where Bt
1,2(i, j) and Bt−1

1,2 (i, j) are the 2BT representations of the current and
the previous image frames, respectively, ‖ denotes the Boolean OR operation,
the motion block size is N × N , and −s ≤ m, n ≤ s is the search range.

In this paper, we propose a SEA for 2BT-based ME to reduce the compu-
tational complexity. The experimental results show that the proposed algo-
rithm reduces the computational complexity dramatically without affecting
the prediction accuracy.

2 SEA for 1BT-based ME

In this Section, we derive the SEA for 1BT-based ME since it is one of
the bases of our proposed algorithm. Although the SEA for 1BT-based ME
is already proposed in [7], we derive the same result in somewhat different
approach.

To derive a SEA for 1BT-based ME, we define the Boolean XOR-based
correlations (BXC) which is the fundamental operation in the matching crite-
rion of 1BT. We also define the Boolean OR-based correlation (BOC) which
is the fundamental operation in the matching criterion of 2BT. Given two
binary vectors x and y of length k, BXC and BOC are defined as follows:

BXC (x,y) �
k−1∑
n=0

{x(n) ⊕ y(n)}

= wH(x ⊕ y) (7)

where wH(·) denotes the Hamming weight which is the number of nonzero
components. We identify a vector x as a sequence x(n) (0 ≤ n < k). Note the
connection between the Boolean operations [8] and the Hamming weight. To
visualize the relationship between the Boolean operations and the Hamming
weight, we define the index set X whose elements are the indices of the
1’s positions in vector x. For example, if x = (0, 1, 1, 0, 1), then X =
{1, 2, 4}. Note that wH(x) = order(X), where order(X) denotes the number
of elements of a set X.
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Fig. 1. Venn Diagrams of (a) X ⊕ Y, (b) X & Y and
(c) X ‖ Y

Then, the Venn diagrams of the X ⊕ Y, X & Y and X ‖ Y are given in
Figure 1.

By using the Figure 1, we have the following equations:

wH(x ⊕ y) = wH(x ‖ y) − wH(x & y) (8)

wH(x ‖ y) = wH(x) + wH(y) − wH(x & y). (9)

By the property of the Boolean AND operation, the inequality (10) holds
for arbitrary binary vectors a and b,

wH(a) ≥ wH(a & b) (10)

where & denotes the Boolean AND operation. Therefore, we obtain the
following inequalities:

wH(x) ≥ wH(x & y) (11)

wH(y) ≥ wH(x & y). (12)

By (9), (11), and (12), we can obtain the following inequalities:

wH(x ‖ y) = wH(x) + (wH(y) − wH(x & y)) ≥ wH(x) (13)

wH(x ‖ y) = wH(y) + (wH(x) − wH(x & y)) ≥ wH(y) (14)

Since wH(x‖ y) must satisfy both inequalities (13) and (14), we obtain
the following inequality:

wH(x ‖ y) ≥ max(wH(x), wH(y)). (15)

By (10) and Fig. 1 (b), we obtain

wH(x & y) ≤ min(wH(x), wH(y)). (16)

By (8), (15) and (16), we obtain

wH(x ⊕ y) = wH(x ‖ y) − wH(x & y)

≥ max{wH(x), wH(y)} − min{wH(x), wH(y)}
= |wH(x) − wH(y)|. (17)

= BXC (x,y)

Note that NNMP1BT , which is the matching criterion of 1BT-based ME
is nothing but a BXC (Bt,Bt−1), where we identify a vector Bt as Bt(i, j)
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(0 ≤ i, j < N) which is the 1BT representation of the current frame and
a vector Bt−1 as Bt−1(i, j) (i + m, j + n) (0 ≤ i, j < N), which is that of the
reference frame. Finally, we attain the SEA for 1BT-based ME which is the
same result of [7] as follows:

NNMP1BT (m, n) =
N−1∑
i=0

N−1∑
j=0

{Bt(i, j) ⊕ Bt−1(i + m, j + n)}

≥ |wH(Bt) − wH(Bt−1)|. (18)

3 Proposed algorithm

In this section, we derive the lower bound for 2BT matching criterion using
the result in Section 2.

Let xmn = Bt
1⊕Bt−1

1,mn and ymn = Bt
2⊕Bt−1

2,mn be binary vectors of length
N ×N . In this case, we identify a vector Bt

l as Bt
l (i, j) and a vector Bt−1

l,mn as
Bt−1

l (i+m, j +n) (l = 1, 2 and 0 ≤ i, j < N) for some fixed order. Applying
the inequality (15) into the equation (9), we obtain the following inequality:

NNMP2BT (m, n) =
N−1∑
i=0

N−1∑
j=0

{Bt
1(i, j) ⊕ Bt−1

1 (i + m, j + n)}

‖ {Bt
2(i, j) ⊕ Bt−1

2 (i + m, j + n)} (19)

= wH(xmn ‖ ymn)

≥ max(wH(Bt
1 ⊕ Bt−1

1,mn), wH(Bt
2 ⊕ Bt−1

2,mn))

By (18), we obtain

wH(Bt
1 ⊕ Bt−1

1,mn) ≥ |wH(Bt
1) − wH(Bt−1

1,mn)|
wH(Bt

2 ⊕ Bt−1
2,mn) ≥ |wH(Bt

2) − wH(Bt−1
2,mn)|. (20)

The following is the main result of the proposed algorithm:

NNMP2BT (m, n) ≥ max(|wH(Bt
1) − wH(Bt−1

1,mn)|, |wH(Bt
2) − wH(Bt−1

2,mn)|).
(21)

In the search process, max(|wH(Bt
1)−wH(Bt−1

1,mn)|, |wH(Bt
2)−wH(Bt−1

2,mn)|)
is compared with the NNMPmin which is the up-to-date minimum
NNMP2BT in the search process. When max(|wH(Bt

1) − wH(Bt−1
1,mn)|,

|wH(Bt
2) − wH(Bt−1

2,mn)|) is less than NNMPmin , we calculate the NNMP2BT

of eq. (6). Otherwise, we discard this search position and move on to the
next search position. Note that the calculation of Hamming weights of bi-
nary vectors can be done efficiently using the method in [3] of calculating the
sum norms.

4 Experimental results

Several experiments were conducted on the first 100 frames of 5 QCIF (176×
144) sequences and 5 CIF (352 × 288) sequences. The motion block size is
16 × 16 and the search range is ±16, and all the searching processes were in
spiral order.
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Before we address the comparison of the computational reduction between
the proposed algorithm and the FS-2BT based ME, we tested whether the
ME accuracy of the proposed algorithm be the same as that of the FS-2BT
based ME. Figure 2 shows the frame-wise PSNR performance of the sequence
“Foreman” reconstructed by the FS-2BT based ME and the proposed algo-
rithm, respectively. As can be seen from the figure, the PSNR performance
of the FS-2BT based ME and that of the proposed algorithm is the same and
their graphs overlap. From this figure and the mathematical derivation in
Section 3, we can conclude that the ME accuracy of the proposed algorithm
is perfectly same as that of the FS-2BT.

Fig. 2. Frame-wise PSNR Performance Comparison of
the sequence “Foreman”

Table I. Experimental results of QCIF-size sequences

We compared the performance of the proposed algorithm with that of
FS-2BT based ME. Table I and II show the experimental results of the
sequences of QCIF size and CIF size, respectively. The computational com-
plexity is shown as the average number of checking positions per motion
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Table II. Experimental results of CIF-size sequences

block. Note that the average PSNR performance of the proposed algorithm
and the FS-2BT based ME is the same. The performance gains of the pro-
posed algorithm are 91.37% and 74.23% in average over FS-2BT based ME
when the test sequences are of QCIF size and of CIF size, respectively.

5 Conclusions

In this paper, a SEA for 2BT has been proposed to reduce the computational
complexity of the typical 2BT-based ME. Using the mathematical deriva-
tion, the proposed algorithm can efficiently evaluate lower bounds for 2BT
matching criterion and eliminate the impossible candidates earlier and save
computations significantly. Experimental results show that although the per-
formance of the proposed algorithm is the same as that of the FS-2BT based
ME, the computational complexity has been reduced substantially.
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