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Abstract: This paper tackles challenges of general realtime posi-
tion based visual servoing without using model information. These are
mainly speed limitations of suitably affordable vision processing sys-
tem, generally reliable features and faithfully tracking the target to
keep it in field of view. Feature detection is not only time consuming
but also depends on actual feature parameters. The proposed auto-
tuned feature detection enables the system in reaching a higher speed
by reducing processing time and also has the advantage of easiest porta-
bility to another vision processing system. Simulations with real images
and experiments have been conducted to prove the effectiveness of the
method.
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1 Introduction

Model based visual servoing systems are fast [1] as target geometry is rigid,
well known and prominently marked features with known locations are used.
This severely restricts visual servoing where we cannot use highly prominent
marks on objects. In some cases of Position Based Visual Servoing (PBVS)
and Image Based Visual Servoing (IBVS) [2], severe problems do arrive for
example in PBVS the target may get out of the field of view of camera (FOV)
because of processing delay and also in highly noisy environments [3] which
leads to failure. To overcome the problem proposed autotuning equations
greatly reduce processing delay. Because corners are most reliable features
which can be detected even when lines cannot be detected (especially when
lines are parallel to direction of motion) and corners are also invariant to
rotation, translation (and scaling to large extent). It is quite challenging
to formulate a general approach for visual servoing which does not depend
on prior model information, and is also self-tuning according to the vision
processing system. A solution to the problem demands that the vision pro-
cessing system must automatically adjust for lesser accuracy if the relative
speed goes higher, so that it comes out of fine calculations and gives its
best to keep the object in camera view. As the speed decreases, the system
should provide more accurate results. If the vision algorithm is implemented
on another platform, it should adjust maximum allowed relative speed and
maximum tolerable error, at higher speeds, to as low as possible. Basic idea
of the research presented in this paper is auto-tuning equations for general
purpose position based visual servoing. It can be used with classifier which af-
ter recognition windows the object regions and calls feature-extractor within
the window (windows). It can also be used where prominently marked fea-
tures are used where feature occlusion may occur and number of identified
features (e.g. less than 4) can not determine pose, the proposed method finds
redundant corners within the window of identified features to determine pose.

2 Harris corner detector

Harris detector [4] becomes a highly reliable, robust and fast if used with
precalculated template of Gaussian circular function which gives optimal
smoothing to reduce noise and preserves image features. It is based on:

M =

[
A B

C D

]
(1)

where A = I2
x ⊗ w, B = I2

y ⊗ w, C = (IxIy)2 ⊗ w, Ix and Iy are image
gradients along x and y direction respectively, ⊗ is convolution operator and
w is the template of Gaussian smoothing filter which for row i and column j
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of the image can be, wi,j = exp −(i−x)2−(j−y)2

2×σ ). For metric matrix R:

R = AB − C2 − k(A + B)2 (2)

Where k is sensitivity parameter, with smaller value of k, likelihood of sharp
corners detection inreases. In eq. (2)R = R(x, y), and it is positive in the
corner region, negative in the edge region and small in flat region. Now,
corners belong to maxima of R for R ≥ 0 which is ensured by 0 ≤ k ≤ 0.25.
We can set a threshold Rth such that a corner is detected for R ≥ Rth. Using
eq. (2) directly avoids calculating eigenvalues which gives processing speed
and adds flexibility of using k. The number N of corners detected increases
with lower value of k. which beyond a certain maximum, severely limits the
maximum attainable speed of control. Again for robustness, redundancy is
required, and N must not fall below a minimum value. It was practically
found under various conditions that 0.5 ≤ σ ≤ 1.82 is most reliable range
which also allows us to use auto-tuning of k. For other ranges of σ, k has lesser
effect. σ = 0.97 gives optimal results in most cases (noise level≤ 10 pixels).
If noise level increases then σ should be increased for more smoothing. Weak
corners should be suppressed with non-maximum suppression.

3 Position Based Visual Servoing (PBVS)

The main difficulties with PBVS are related to the difficulty of building 3D
representation of the target in real time. Because this approach has no direct
control over the image itself, and processing delay can cause the object of
interest to leave the FOV [3] if image acquisition, processing, pose estimation
and control are not tuned to the situation. Therefore the proposed approach
is aimed to improve PBVS by auto-tuned feature detection and robust feature
selection (like maximum likelihood/RANSAC [6], etc.) under the limitations
of processing system. Note that techniques of limiting the search criterion for
point (or corner) matching fail under various conditions, especially at higher
speeds when high percentage of features occlude and appear. For example,
if there is no translation (pure rotation) between two successive frames, then
epipolar geometry fails and we cannot limit search to epipolar line. It also
fails badly at higher speeds when many features occlude and appear. More-
over epipolar geometry is not known before features are matched. So, for a
general case, it is recommended to use robust methods, like RANSAC [6].
Remarkable improvements can be achieved by using hardware implemented
SAD (sum of absolute difference) algorithm for feature matching.

3.1 Autotuned position based visual servoing
Successive image blur or distortion increases as camera velocity increases,
or feature occlusion may increase, which in turn results in lower number of
detected corners. This either decreases redundancy and robustness (or results
in failure of control). There may also be a large no of detected features if
a larger number of occluded features suddenly appear again. This decreases
feature processing speed and limits maximum attainable speed of the system.
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To overcome all such problems, we have to optimize feature detection such
that it can be detected when it is faint or strong, and we also have to set
an optimized upper limit on the number of features selected for processing,
depending on the speed benchmark index of the hardware+algorithm.

Let I1 and I2 be the previous and current image respectively, L1 = [L1x

L1y]T , L2 = [L2x L2y]T be the locations of features (e.g., corners) in the
respective images. Let there be n1 features in I1 and n2 features in I2, and
n = min(n1, n2), then the steps are:

1. Find matching points by using maximum likelihood or least sum of
absolute difference, SAD, of square window of size w (e.g., w=4) around
the features of images. Let there be SAD value Si,j for comparing ith

feature in I1 with jth feature in I2 given by:

Si,j =
w∑

x=−w

w∑
y=−w

|I1(Lix + x, Liy + y) − I2(Ljx + x, Ljy + y)| (3)

sk = min(Si,1, Si,2, Si,3, ..., Si,n2), i = 1..n (4)

or sk = min(S1,j , S2,j , S3,j , ..., Sn1,j), j = 1..n (5)

where n is minimum number of features detected in either image. Use
eq. (4) if n=n1, otherwise use eq. (5). Now if sk is arranged in ascending
order, then first n feature pairs related to sk are matched.

2. Use reliable methods like RANSAC to verify that features have been
correctly identified and mapped. Also let μ= 1

n

∑n
k=1 sk.

3. Find the geometrical transformation that best describes the mapped
features. This can be implemented as a fitting function in RANSAC.
Alternatively other methods can be used to find rotation R and nor-
malized translation Tn = T/||T || of the camera displacement [5].

4. Calculate or chose the camera velocity V = [v w]T with PID controller.
Any other control can be used but for simplicity consider the control
scheme used by [3] where camera velocity is chosen such that object
remains in FOV. The calculations are based on the following equation:

[
v

w

]
=

[
λiμTn

λrR

]
(6)

5. Tune the feature detection parameters k, Rth and N by: δk ∝ V , δN

∝ −V
is

, δ Rth ∝ −V
is

. And in terms of iterative calculations:

ki = k1 + c1|vi + wi| (7)

Ni = N1 − c2
|vi + wi|

is
(8)

Rthi = Rth1 − c3m
|vi + wi|

is
(9)
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The second term in each equation represents update. The constants c1, c2

and c3 are defined such that k, Rth and N remain within bounds with the
desired lower and upper bounds of the camera velocity and m is the mean
of the local image window in corner detection. The initial values of k, Rth

and N are k1, Rth1 and N1. Examples at the end show the values of these
constants taken and results have been plotted.

4 Results and comparisons

Experimental setup was based on TMS320DM642AZD board with 720 MHz
fixed point DSP processor, XDS 560JTAG, code composer studio v3.2, CCD
color camera LTC 450/50 and 6DOF Robot RV12-SLC. The statistics and
calculated control commands were sent to Intel’s dual core processor 2.4 GHz
based PC running windows XP SP3. The settings were: Speed index is is set
to 1 for the board. This can be set to any value but it will inversely change the
values of c1 and c2 on the same platform. These constants remain unchanged
if is is changed proportional to the time profile of algorithm on another (e.g.
better/faster) system. This has been verified by profiles of the same algorithm
coded in Matlab on different computers and shows easiest portability. For
better results, the recommended bounds of k, Rth and N are: 0 ≤ k ≤ 0.25,
0.00001 ≤ Rth ≤ 0.001, and 10 ≤ N ≤ 300. And initial values being k1 =
0.12, Rth1 = 0.0001 and N1 = 300. In our case maximum allowed speed was
±5 m/s for translational component and ±0.5 rad/s for rotational component
of camera velocity in eye-in-hand configuration. Values of the constants were
c1 = (0.24 − k1)/ceil(5 + .5) = 0.02, c2 = (N1 − 10)/ceil(5 + .5) = 48.333
and c3 = Rth1/(ceil(5 + .5) + 1) = 1.4286e − 5. Results of auto-tuning are
shown in following figures. Note 1 iteration=28.073 ms. Fig. 1 and fig. 2 show
changes in parameters k,N and Rth as velocity changes. Weak corners are

Fig. 1. Velocity components and absolute velocity

Fig. 2. Auto-tuned values of k,N and Rth.

suppressed along with noise by non-maximum suppression. Fig. 3 shows the
effect of σ, non-maximum suppression radius r and sensitivity parameter k

on rotational and translation error. Note that with higher σ and r noise is
suppressed along with weak corners which improves accuracy but speed of
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processing is reduced as non-maximum suppression radius is increased. To
increase speed by 25 percent, k was increased and r = 2 set as shown in fig. 3
part 3. This resulted in about same error level as in part 1 of fig. 3 but with
25 percent lesser CPU time. In all other simulations and experiments r = 2
was kept fixed and k was varied relative to the speed of object w.r.t camera.
Autotuned method proved far efficient than other general methods based on

Fig. 3. Percent Errors in Rotation and Translation.

point features. Although PnP methods are even faster than those which do
not depend on known prior correspondence between image points and world
frame. A comparison, fig. 4 part 1, of the autotuned method with Globally
Optimal Pose and SeDuMiSolver [7] for rotational and translation error less
than 6 percent shows improved response of the proposed method. This is
because the proposed method uses variable points within limits of maximum
N and minimum 5 point, it takes lesser CPU time and tracks the target faster
using maximum N points compared to algorithms which use fixed N . Fig. 4
part 2 and 3, show the higher accuracy of the method with same CPU time
and variable N (5≤ N ≤ 300) against Generelized Linear Pose Estimation
(GLPE) and Fiore methods [8] which use fixed N .

Fig. 4. CPU Time (part 1) and Error (part 2,3) compar-
ison for N points.

5 Conclusion

The tests were successful at 30 frames/sec with any of TCP/IP, UDP and
HRTDX connections used for sending commands and results. As abs (v +w)
increases, k increases reducing n1 and n2 (number of features to be matched).
Rth decreases to counter the effect of blur. Blur effect is also countered by
increased value of k. Also N (the number of feature pairs to be used for pose
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determination) decreases reducing processing time. In this way auto-tuned
feature detection greatly resolves the speed and portability issues of real-time
visual servoing. Note that with Harris detector, edges can be detected for
R ≤ 0 using eq. (2). So, the algorithm can be easily adopted for edges as well.
In future this method will be used for corners and edges, with a classifier to
recognize objects, window the region of object, use autotuned method within
the window and find pose/track in an artificially intelligent environment.
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