
IEICE Electronics Express, Vol.8, No.13, 1064–1070

The design of a texture
mapping unit with effective
MIP-map level selection for
real-time ray tracing

Woo-Chan Park1a), Dong-Seok Kim1, Jeong-Soo Park2,
Sang-Duk Kim2, Hong-Sik Kim3, and Tack-Don Han2

1 Department of Computer Engineering, Sejong University

98 Gunja-dong, Gwangjin-gu, Seoul
2 Department of Computer Science, Yonsei University

134 Shinchon-dong, Seodeamun-gu, Seoul 120–749, Korea
3 Advanced Design Team, R&D Division, Hynix Semiconductor Inc.,

San 136–1 Ami-ri Bubal-eub, Icheon-si, Gyeonggi-do 467–701, Korea

a) pwchan@sejong.ac.kr

Abstract: We propose effective texture-mapping hardware for real-
time ray tracing. Therefore, we introduce a novel method to select the
MIP-map level of texture images, which requires only the total length
of the intersected ray and the pre-calculated value. The proposed ar-
chitecture can support the texture MIP-mapping by integrating simple
hardware logic in existing ray-tracing hardware.
Keywords: graphics processor, ray tracing, texture mapping
Classification: Integrated circuits

References

[1] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister, “MIP-Map Level
Selection for Texture Mapping,” IEEE Trans. Vis. Comput. Graphics,
vol. 4, no. 4, pp. 317–329, Dec. 1998.

[2] L. Gritz and J. Hahn, “BMRT: A Global Illumination Implementation of
the RenderMan Standard,” J. Graphics Tools, vol. 1, no. 3, pp. 29–47,
1996.

[3] H. Igehy, “Tracing Ray Differentials,” Proc. SIGGRAPH, pp. 179–186,
1999.

[4] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali, “Ray Tracing for
the Movie ‘Cars’,” Proc. IEEE Symp. Interactive Ray Tracing, pp. 1–6,
Sept. 2006.

[5] W. C. Park, J. H. Nah, J. S. Park, K. H. Lee, D. S. Kim, S. D. Kim, J. H.
Park, Y. S. Kang, S. B. Yang, and T. D. Han, “An FPGA Implementation
of Whitted-style Ray Tracing Accelerator,” Proc. IEEE Symp. Interactive
Ray Tracing, p. 187, 2008.

[6] P. Heckbert, “Texture Mapping Polygons in Perspective,” New York In-
stitute Technol. Tech. Memo 13, April 1983.

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1064

IEICE Electronics Express, Vol.8, No.13, 1064–1070

1 Introduction

Most contemporary graphics processing units (GPUs) are based on a z-buffer
algorithm. For realistic rendering, ray tracing algorithms have typically been
used to support global illumination effects by simulating the physical features
of lights and rays. However, the huge computation cost is a major drawback.
Recently, many acceleration techniques for real-time ray tracing have been
announced.

Texture mapping is a fundamental feature that generates high-quality
computer graphics images. In current GPUs, MIP-mapping is a common
technique to reduce texture aliasing. In [1], various practical methods for
MIP-map level selection were investigated within the context of the rasteri-
zation technique used in OpenGL. Several MIP-map level selection methods
using a ray tracing algorithm and based on the ray differential have been
proposed in [2, 3]. These were developed for production (off-line) renderers,
such as Pixar’s RenderMan [4].

In this paper, we propose a texture-mapping hardware architecture for
real-time ray tracing. Therefore, we provide an effective algorithm for fast
MIP-map level selection that calculates each MIP-map level based only on
the total ray length of the intersected ray and a pre-calculated value stored
in the intersected triangle itself. This algorithm can provide MIP-map level
selection using simple hardware logic. We also implement the proposed ar-
chitecture by integrating it into the existing ray tracing hardware in [5]. Ex-
perimental results show our approach significantly reduces the computation
requirements compared to [2].

2 The traditional MIP-Map selection algorithm

In current GPUs, MIP-mapping with bi-linear or tri-linear filtering is com-
monly used to reduce spatial aliasing artifacts [1]. A MIP-map is a pre-filtered
multi-resolution image pyramid. The highest resolution image is level 0 at
the base of the MIP-map pyramid. The next level is generated by averaging
groups of four neighboring texels with a level 0 texture image.

Several texels may map to one screen-space pixel. The ratio of this texture
space to screen space scaling is called texture minification [1]. Using this
per pixel-based texture minification ratio, the MIP-map level can be easily
calculated. If the MIP-map level is too high, the image may be excessively
blurred; if it is too low, the aliasing artifacts would be noticeable. The
following equation has been chosen as the best solution from among several
different methods in [6]. In

lod = log2(max(|du|, |dv |)), (1)

du and dv are the partial derivatives of a texture coordinate u and v with
respect to a screen coordinate x and y. These partial derivatives are approx-
imated using the longer of the two edges of the projected parallelogram of
the texture space.c© IEICE 2011

DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1065

IEICE Electronics Express, Vol.8, No.13, 1064–1070

Another technique to determine the texture minification ratio, called pixel
clipping, has been discussed in [1]. This technique uses an area-based ap-
proach and involves clipping the texture-mapped polygon. When the pro-
jected quadrilateral or parallelogram is thin, the rendered image of the former
is somewhat more blurred than that of the latter.

3 Previous MIP-Map selection algorithms for ray tracing

Conventional ray tracing consists of the following stages. First, a primary
ray is generated, originating from the eye and passing through each pixel.
Second, an acceleration structure, such as a kd-tree, is traversed until the
ray encounters a leaf node containing triangles. Third is the intersection test
stage, which tests ray intersections with all the triangles in the corresponding
leaf node. Finally, if there is any intersection, the shading stage calculates the
color, including texture mapping, on the ray-triangle hit point. If shadows
or secondary rays are required, new rays are generated and then passed back
to the second stage.

Ray differential-based techniques have been provided in [2, 3] to select
the proper MIP-map level for production (off-line) renderers, such as Pixar’s
RenderMan. A ray differential is defined as the difference between a ray
and its neighboring rays [3]. The differentials are monitored as the rays are
propagated. After calculating du and dv by approximation using the ray
differentials, a MIP-map level is determined according to equation (1).

The ray differential method described in [3] can be used to calculate
approximated du and dv on curved surfaces. For example, it can keep track
of the differentials of the reflected ray even when it hits a highly curved
surface. Because it requires many operations per ray, it is unsuitable for
real-time ray tracing.

Similar to the rasterization algorithm, BMRT [2] determine du and dv
by calculating the projection of texture coordinates onto the image plane.
Suppose P l is the total distance from the camera position to the sample
point P , ds is the distance between screen space samples, and dest is the world
space distance between screen samples at point P . The dest can be easily
calculated by multiplying P l and ds. Using the result of that calculation,
BMRT calculate the estimates of du and dv by dividing dest with |dPdu|
and dest with |dPdv|, respectively. Here, dPdu and dPdv are the partial
derivatives of the surface. Even though this algorithm is simple to implement,
its computational complexity is still too great for real-time processing.

4 Proposed algorithm

The basic idea behind the proposed algorithm is as follows. Initially, we
calculate Pb to represent a base texture position—the relative distance from
the camera position where the areas of a pixel and a texel are equal. It is
view-independent because it is a relative distance from the camera position,
so that it does not need to be re-calculated unless triangle coordinates are
changed.

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1066

IEICE Electronics Express, Vol.8, No.13, 1064–1070

We assume the intersected triangle is perpendicular to the view vector;
the corresponding MIP-map level can then be easily calculated using the
following equation:

lod = log2

(
Pl

Pb

)
= log2(Pl) − log2(Pb). (2)

In the pre-processing stage, log(Pb) is calculated for each texture-mapped
triangle. Processing is performed only once in the static scene, but is per-
formed for each frame whenever coordinates are changed in the dynamic
scene. After the pre-processing stage, only the subtraction operation after
the log operation is required to complete equation (2).

The process to calculate log(Pb) consists of the following five steps. The
first step is to determine the number of texels within the triangle with respect
to the texture space. This can be calculated by multiplying the triangle size
(or area) of the texture space with the texture resolution (RES texture), as
shown in the following equation. In

TXN =
((s0 · t1) + (s1 · t2) + (s2 · t0) − (t0 · s1) − (t1 · s2) − (t2 · s0))

2
· RES texture ,

(s0, t0), (s1, t1), and (s2, t2) are the three texture coordinates for each vertex.
In the second step, we calculate the ratio of texture resolution to screen

resolution:
XPR =

RES texture

RES screen
.

In the third step, we calculate the number of texels within the triangle
with respect to the screen space:

TXS = TXN · XPR.

In the fourth step, we calculate the triangle size:

(xt, yt, zt) = {(x1, y1, z1) − (x0, y0, z0)} × {(x2, y2, z2) − (x0, y0, z0)},

Tsize =
1
2

√
x2

t + y2
t + z2

t ,

where (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2) are the three vertices coordi-
nates of the triangle.

The value of Pb can be determined by the texel and pixel resolution, which
are produced in the third and fourth steps, respectively. Thus, the final step
determines log(Pb) based on TXS and Tsize . Tsize is a constant value for a
scene, whereas TXS s is increased to the second power as the distance between
the camera position and the given triangle increases. Thus, log(Pb) can be
calculated as follows:

log2(Pb) = log2

(√
TXS

Tsize

)
=

1
2
log2

(
TXS

Tsize

)
.

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1067

IEICE Electronics Express, Vol.8, No.13, 1064–1070

5 Proposed hardware architecture

Figure 1 shows the proposed hardware architecture for texture mapping in the
shading stage. As a result of the intersection test stage, triangle id, represent-
ing the triangle identifier of the intersected triangle, ray length, representing
the distance between a ray origin and a ray-triangle hit point, and texture id,
representing the texture identifier of the intersected triangle, are generated
and then input into the texture mapping unit. In the pre-processing step,
log(Pb) is calculated for each texture-mapped triangle, which is stored in the
triangle cache with other triangle information.

As for the processing flow, initially, log(Pb) of the intersected triangle is
accessed from the triangle cache. At the same time, a new P l is calculated
by adding ray length and the previously stored P l to the ray stack. With
these two result values, we calculate the MIP-map level according to equa-
tion (2). Finally, appropriate texture data corresponding to the MIP-map
level is accessed from the texture cache, at which point filtering is performed
to generate a texture-mapped color.

Because the number of secondary rays for a pixel varies according to the
number of ray bounces, the ray stack is essential to support ray tracing. In
traditional ray tracing, two rays (a reflection and a refraction ray) at most
can be generated for a secondary ray. If both rays are generated, one is sent
to the following stage and the other is stored in the ray stack. The current
P l is included in the ray information stored in the ray stack. Thus, recently
accumulated P l can be maintained by the ray stack.

Fig. 1. The proposed hardware architecture for texture
mapping

6 Experimental results

To evaluate the performance, we selected three scenes from well-known BART
benchmarks: kitchen, robot, and museum. We performed various simulations,

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1068

IEICE Electronics Express, Vol.8, No.13, 1064–1070

as shown in Table I. For each scene, we estimated the distributions of MIP-
map level selections. As a result, all scenes tend to select higher levels.

We also evaluated the computation requirements (for each floating point
addition, multiplication, division, square root, and log operation) to calculate
the MIP-map level of the proposed scheme and [2]. For our scheme, the
computational requirements were estimated separately; Pb was calculated in
the pre-processing step and the case that it is in ray tracing itself. In the
latter case, note that (xt, yt, zt) in the fourth step in calculating Pb is not
considered because it is calculated in the ray-triangle intersection test stage
for ray tracing. We also did not consider the resultant value of the second step
because it is constant during rendering. As seen in Table I, the evaluation
results show that our scheme outperforms [2].

We also integrated the proposed architecture into the ray tracing hard-
ware of [5] and then implemented all on a Xilinx Virtex 5 LX330 chip with
84 MHz core speed. Our design occupies approximately 88% of the FPGA’s
logics cells and 78% of the FPGA’s memory resources. The screen resolution
is 800 by 480. The secondary rays can be generated recursively up to 10
bounces. Figure 2 shows two kitchen scene images. Some aliasing artifacts
are noticeable on the floor in the left image, but are significantly reduced in
the right image due to the proposed MIP-map level selection.

The texture cache hit rate and FPS of each benchmark are measured
directly from running hardware and are shown in Table I. The texture cache
hit rate is significantly increased due to the MIP-map level selection. Also,
FPS is gracefully increased when MIP-map is on compared to when it is off.

Fig. 2. Kitchen scene images: MIP-map off (left) and
MIP-map on (right)

Table I. Experimental Results

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1069

IEICE Electronics Express, Vol.8, No.13, 1064–1070

7 Conclusion

In this paper, we proposed effective texture-mapping hardware for ray tracing
with simple logic for MIP-map level selection. According to the simulation
and implementation results, the proposed algorithm and hardware architec-
ture can provide accurate MIP-map level selection and considerably reduces
computational complexity compared to the previous algorithm.

Acknowledgments

This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF), funded by the Ministry
of Education, Science, and Technology (2011-0002712).

c© IEICE 2011
DOI: 10.1587/elex.8.1064
Received May 18, 2011
Accepted June 14, 2011
Published July 10, 2011

1070

