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Abstract: This paper proposes a test pattern generation and com-
pression method to reduce test volume for VLSI testing. Unlike tradi-
tional approaches, the proposed scheme predefines linear relationships
between vectors or within a vector of a test sequence firstly. Then, it
determines test patterns by fault simulation. Therefore, patterns of a
deterministic test set keep the predefined linear relationships, and can
be highly compressed. Simulation results on ISCAS’89 benchmarks
demonstrate that the proposed method can significantly reduce the
data size with high fault coverage.
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1 Introduction

For multiple parallel scan chains, test volume and test time usually grow
quickly with the circuit under test (CUT)’s size. So test compression has been
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Fig. 1. (a) Flow chart of the HC algorithm (b) Symbolic
representation of a HC pattern for scan chains

an important research topic. Test compression schemes fall broadly into three
categories: code-based schemes [1], linear-decompression-based schemes [2]
and broadcast-scan-based schemes. This paper proposes a novel ATPG (au-
tomatic test pattern generation) and compression technique. In section 2, it
describes the generation method of the highly compressible test sequence and
its characteristics. Section 3 presents the compression algorithm and decom-
pression mechanism. Experiment results are showed in Section 4. Section 5
concludes this paper.

2 Principle of the highly compressible test sequence

Fig. 1 (a) illustrates the proposed test generation flow. It can be divided into
two phases:

Phase 1—Test patterns generation. Step 1 to step 9 find a class of test
sequences which is called the highly compressible (HC) test sequence in this
paper. At time t, a vector of the test sequence is the bitwise exclusive OR
result of an LFSR vector and a Johnson vector, and p(t) and q(t) are used
as labels to record sequence numbers of valuable test vectors. The value of
q(t) is increased every clock cycle, and the value of p(t) will be increased
once when q(t) equals 2 times of Johnson count stage. That is, the LFSR
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sequence will change once after the Johnson sequence is generated. We can
consider the LFSR vector as a seed vector. More definitions about p(t) and
q(t) can be found in Section 2.1. Step 8 in Fig. 1 (a) checks whether the
test set could meet the target fault coverage. Before compressing, redundant
test patterns of valuable test patterns, which are stored in set U, must be
eliminated by fault simulations. At step 9, we can obtain a test set U for
deterministic testing.

Phase 2—Compression process. Since every deterministic test pattern
only needs to store the corresponding LFSR vector and Johnson vector of
p(t) and q(t) for set U, step 10 to step 11 can get the first time compressed
test set V. Further analysis indicated that some test patterns in set V need
to preserve only a same LFSR value and the number of test patterns because
that these test patterns have the same LFSR. Since l-stage Johnson sequence
has 2l different Johnson vectors and every vector consists of successive ‘0’ or
‘1’, a l-bit Johnson vector can be represented by a (1+ �log2(2l)�)-bit binary
digit, where �x� is the least integer that is larger than or equal to x. The
leftmost bit of this digit denotes the value of leftmost bit in the Johnson
vector, and the remaining bits denote the number of consecutive bits that
have the same value as that of the leftmost bit. In this way, we can get the
second time compressed test set W, which is shown at step 12.

2.1 Extraction of the HC test sequence
Firstly, this section will introduce the generation method of the HC test
sequence generated by step 1 to step 7 in Fig. 1 (a). This paper aims to
search and generate the HC test sequence with following advantages: (a)
Linear relations with consecutive vectors or within a vector. The benefit is
to compress test data volume greatly. (b) The deterministic test set which is
screened out from the HC test sequence by fault simulation should achieve the
expected fault coverage. Based on the above, this paper converts Johnson
sequences to low transition sequences for each scan chain. Vectors of two
adjacent scan chains are within one clock delay, which enhances the com-
pressible ratio of test data.

It is assumed that the sequential circuit with full-scan design has m pri-
mary inputs and M scan chains, and each scan chain contains l scan cells.
At time t, the test vector is the bitwise exclusive OR result of the LFSR
vector and Johnson vector, and vectors generated by the m-stage LFSR
and the l-stage Johnson count are S(t) = [S0(t), S1(t), . . . , Sm−1(t)] and
J(t) = [J0(t), J1(t), . . . , Jl−1(t)], respectively. The test vector applied to the i-

th scan chain can be expressed as: Ci(t, x) =

[
l∑

j=1
Si(t)xj−1 + Ji(t, x)

]
x(i−1)l,

where i ∈ (1, M) and Ji(t, x) represents the corresponding polynomial of the
i-th Johnson cyclic code. Thus, the test vector applied to the combinational
logic of the CUT can be expressed as

X(t, x) =
m∑

j=1

Sj−1(t)xj−1 +
M∑
i=1

⎡
⎣ l∑

j=1

Si(t)xj−1 + Ji(t, x)

⎤
⎦x(i−1)l (1)c© IEICE 2011
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Theorem 1: The maximal period of X(t, x) is 2l(2m − 1)
Proof: Because the period of Johnson sequence is 2l, we have the fol-

lowing definitions at different time t and r: p(t) = �t/(2l)�, q(t) = t− 2lp(t),
p(r) = �r/(2l)�, q(r) = r − 2lp(r), where �x� is the greatest integer that is
less than or equal to x. Thus,

X(t, x) + X(r, x) =
m∑

j=1
(Sj−1(t) + Sj−1(r))xj−1 +

M∑
i=1

[
Jq(t)(i, x) + Jq(r)(i, x)

]
x(i−1)l+

M∑
i=1

[
l∑

j=1
(Sj−1(p(t)) + Sj−1(p(r)))xj−1

]
x(i−1)l

(2)

If |p(t) − p(r)| ≥ 1, p(t) and p(r) are corresponding to different LFSR
vectors. So:

M∑
i=1

⎡
⎣ l∑

j=1

(Sj−1(p(t)) + Sj−1(p(r)))xj−1

⎤
⎦x(i−1)l �= 0 (3)

If p(t) − p(r) = 0, Eq.2 can be simplified to

X(t, x)+X(r, x)=
m∑

j=1
(Sj−1(t)+Sj−1(r))xj−1+

M∑
i=1

[
Jq(t)(i, x)+Jq(r)(i, x)

]
x(i−1)l (4)

For a Johnson sequence, its vectors are unique. If Eq.4 is not equal to ‘0’ for
different q(t) and q(r), Eq.2 is also not equal to ‘0’. In addition, Eq.2 is not
equal to ‘0’ for a maximum length LFSR sequence by combining Eq.2 and
Eq.3, and the periods of l-bit Johnson sequence and m-bit LFSR sequence
are 2l and 2m − 1, respectively. Thus, the period of the sequence defined by
Eq.1 is 2l(2m − 1). The theory presented above states that there are enough
unique vectors. Also, there are linear relations between these vectors or
within a vector.

Fig. 1 (b) shows symbolic representation for a generated pattern. In the
first clock cycle, J0J1J2...Jl−1 will be bit-XORed with S0S1S2...Sm−1, and
the results X1Xl+1X2l+1...X(M−1)l+1 will be shifted into M scan chains, re-
spectively. In the second clock cycle, J0J1J2...Jl−1 will be circularly shifted
as Jl−1J0J1...Jl−2 which will also be bit-XORed with seed S0S1S2...Sm−1.
Results X2Xl+2X2l+2...X(M−1)l+2 will be shifted into M scan chains, respec-
tively. After l clocks, M scan chains will be fully loaded with a unique test
pattern, and seed S0S1S2...Sm−1 will be applied to m primary inputs.

3 Compression algorithm and decompression mechanism

This section will firstly introduce the compression process. Symbolic sim-
ulations in Fig. 1 (b) state that an m-bit seed and an l-bit Johnson vector
can be expanded to a HC pattern of (m + l × M) bits. Also, a LFSR seed
keeps unchanged at most times. Therefore, the deterministic test patterns,
which are screened out from the HC sequence by fault simulation at step 9
in Fig. 1 (a), can be compressed to their corresponding Johnson vectors and
LFSR seeds. Assuming there are N test patterns in a test set which includes
n(n ≤ N) different m-bit LFSR vectors. Supposing, too, the number of scan
cells is NPPI , the compression ratio (CR) can be expressed as:

CR =
TSU

TSC
=

N(m + NPPI)
n × s + N(�log2(2l)� + 1)

(5)
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Fig. 2. Decompression architecture

where TSU and TSC represent the uncompressed deterministic test set and
the compressed deterministic test set respectively, and s is the width of LFSR
vector. For instance in s13207, there are 78832 HC test vectors for achieving
high fault coverage. After fault simulations, we can obtain 428 deterministic
test patterns which contribute to new fault coverage. Among the 428 test
patterns, there are only 225 unique LFSR seeds. Since s13207 has 62 primary
inputs (PIs) and 638 DFFs. So the storage of uncompressed test data can be
calculated: 428 × (62 + 638) = 299600.

Since s13207 has 62 PIs, the stage of LFSR is 62. We determine the
number of scan chains as 20, so the corresponding Johnson vector should be
32-bit width which can be represented by a 7-bit binary digit. The leftmost
bit of this digit denotes the value of leftmost bit in the Johnson vector, and the
remaining bits denote the number of consecutive bits that have the same value
as that of the leftmost bit. For instance, 11111111110000000000000000000000
will be compressed to 1001010, of which the leftmost bit ‘1’ denotes that
the leftmost bit in the Johnson vector is ‘1’, and ‘001010’ represents the
number of ‘1’ in the Johnson vector is 10. We can also use 225 (2+62)-
bit binary digits to represent 428 62-bit LFSR vectors. The leftmost two
bits of every digit denote the number of patterns that have the same LFSR
seed which is represented by the remaining 62 bits. So the compressed data
storage is 225 × (62 + 2) + 428 × 7 = 17396, and the compression ratio is
299600 ÷ 17396 ≈ 17.2.

The working mechanism of the decompressor is the reverse process of the
compression algorithm. The main part of decompression circuit, shown in
Fig. 2, is actually a linear decompressor which is composed of a subtracting
counter and some assistant control circuits. The stored test data in ATE is
the m-stage LFSR vectors and the compressed Johnson sequence. The linear
decompressor decompresses a Johnson vector J0, and J0 will be circularly
shifted as J1. Similarly, J1 will be circularly shifted as J2 and so on. In
this paper, J1, J2, ..., JM−1 are called reconfigurable Johnson vectors. J0 and
reconfigurable Johnson vectors will bit-XOR with seed S0, S1, ..., SM−1, and
the results will be shifted into M scan chains, respectively. The overhead of
decompression circuit will be discussed later.
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Table I. Performance of the proposed ATPG
Circuit PIs+DFFs SFC(%) Prop. CR

#Patterns Stage(bit) #Seed DO CR [3] [4] [5]
Prop. [3] Johnson LFSR

S13207 62+638 98.08 98.46 428 32 62 225 273 17.2 10.88 9.10 12.5
S15850 77+534 96.68 96.68 486 27 77 267 274 11.2 9.46 3.98 8.40
S38417 28+1636 97.50 99.47 986 82 28 259 289 111.8 25.86 2.81 3.85
S35932 35+1728 99.97 89.90 274 87 35 21 288 165.00 41.85 NA NA
S38584 38+1426 99.39 95.85 727 72 38 434 290 47.40 22.86 3.45 4.26

4 Performance analysis of the proposed ATPGs

To analyze performances of the proposed ATPGs, experiments on full-scan
designs of ISCAS’89 benchmarks are conducted. Synthesis and optimization
are carried out using a SMIC 0.18µm technology library. The test frequency
is 100 MHz, and the power supply voltage is 1.1 V.

Table I compares the compression ratios of the proposed method with
those in [3, 4, 5]. The column labeled ‘SFC’ shows the stuck-at fault coverage
of the CUT. Sub-columns ‘#Patterns’ and ‘#Seed’ refer to the number of
test patterns and the number of seeds, respectively. Compared with the
method in [3, 4, 5], the proposed method demonstrates higher compression
ratios.

The stuck-at fault coverage achieved by the proposed method with higher
compression ratio is similar with that of [3]. In addition, the number of
test patterns is relatively small because we adopt the deterministic testing
method. It can be seen from Table I that the numbers of test patters are all
less than 1000, which means the test time of the proposed is relatively short.

The overhead of the proposed decompressor is shown in the sub-column
‘DO’ of Table I in gate equivalents (a gate equivalent corresponds to a two-
input NAND gate). The hardware overhead of [4] is approximately 377 to 582
gate equivalents. [5] only provided the overhead data of the decompressor
used for s15850, and the number of gate equivalents is about 1900. It is
obvious that the area occupied by the proposed decompressor is less than
that of the above techniques with higher compression ratios.

5 Conclusion

This paper proposes a easily compressible ATPG method. It firstly develops
a theory to express test sequence, and extracts a class of test sequences that
has no repetitive vectors and has linear relationship between their vectors. On
this basis, this paper develops an ATPG method, and analysis results show
that the test patterns generated by this method show the favorable features
of compressibility, uniqueness and low dependency relationship between fault
coverage and TPG’s initial states. Experiments on ISCAS’89 demonstrated
that the proposed method can achieve a stuck-at fault coverage of more than
96%. Test compression ratios are over 10 for all benchmarks, and some ratios
are over 100.
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