
IEICE Electronics Express, Vol.8, No.22, 1856–1862

Cooperative communication
based barrier
synchronization in on-chip
mesh architectures

Xiaowen Chen1,2ab), Zhonghai Lu2, Axel Jantsch2,
Shuming Chen1, and Hai Liu1

1 National University of Defense Technology, 410073, Changsha, China
2 KTH - Royal Institute of Technology, 16440 Kista, Stockholm, Sweden

a) xiaowenc@kth.se

b) xwchen@nudt.edu.cn

Abstract: We propose cooperative communication as a means to en-
able efficient and scalable barrier synchronization on mesh-based many-
core architectures. Our approach is different from but orthogonal to
conventional algorithm-based optimizations. It relies on collaborating
routers to provide efficient gather and multicast communication. In
conjunction with a master-slave algorithm, it exploits the mesh regular-
ity to achieve efficiency. The gather and multicast functions have been
implemented in our router. Synthesis results suggest marginal area
overhead. With synthetic and benchmark experiments, we show that
our approach significantly reduces synchronization completion time and
increases speedup.
Keywords: cooperative communication, barrier synchronization
Classification: Other communication hardwares

References

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 4th Edition, Morgan Kaufmann Publishers, 2007.

[2] T. Hoefler, et al., “A Survey of Barrier Algorithms for Coarse Grained
Supercomputers,” Chemnitzer Informatik Berichte, vol. 4, no. 3, Dec.
2004.

[3] B. Wilkinson, Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers, Prentice Hall, 2004.

[4] O. Villa, et al., “Efficiency and Scalability of Barrier Synchronization on
NoC Based Many-core Architectures,” Proc. Int’l Conf. on Compilers,
Architectures and Synthesis for Embedded Systems (CASES’08), pp. 81–
89, 2008.

[5] J. Mellor-Crummey and M. Scott, “Algorithms for Scalable Synchro-
nization on Shared-memory Multiprocessors,” ACM Trans. Computer
Systems, vol. 9, no. 1, pp. 21–65, Jan. 1991.

[6] E. D. Brooks, “The Butterfly Barrier,” Int’l J. of Parallel Programming,
vol. 15, pp. 295–307, Oct. 1986.

[7] M. Monchiero, et al., “Efficient Synchronization for Embedded On-chip
Multiprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1856



IEICE Electronics Express, Vol.8, No.22, 1856–1862

vol. 14, no. 10, pp. 1049–1062, Oct. 2005.
[8] A. Marongiu, et al., “Lightweight Barrier-based Parallelization Support

for non-cache-coherent MPSoC Platforms,” Proc. Int’l Conf. on Com-
pilers, Architectures, and Synthesis for Embedded Systems (CASES’05),
pp. 145–149, 2007.

[9] P. McKinley, et al., “Collective Communication in Wormhole-routed
Massively Parallel Computers,” IEEE Computer, vol. 28, no. 12, pp. 39–
50, Oct. 1995.

[10] Q. Ali, et al., “Modeling Advanced Collective Communication Algo-
rithms on Cell-based Systems,” Proc. ACM Symp. on Principles and
Practice of Parallel Programming (PPoPP’10), pp. 293–304, Jan. 2010.

1 Introduction and related work

Barrier synchronization is a classic problem which has been extensively stud-
ied in the context of parallel machines [1, 2]. It should be carefully designed to
achieve low latency communication and to minimize overall completion time.
Conventional approaches for addressing the barrier synchronization problem
have been algorithm oriented. There are four main classes of algorithms:
master-slave [3], all-to-all [4], tree-based [3, 5], and butterfly [6]. Recently,
as a single chip is being able to integrate many cores, barrier synchroniza-
tion becomes a critical concern in single-chip systems due to its impact on
application performance. To speed up barrier synchronization in MPSoCs,
Monchiero et al. proposed a centralized hardware approach [7] based on the
master-slave algorithm. Due to the centralized nature and non-availability
of support for collective communication, this proposal performs well only
for less than 10 cores. In [8], Marongiu et al. discussed the use of a run-
time lightweight barrier construct in non-cache coherent MPSoCs. However,
they fell short of exploiting efficient communication, harvesting only limited
scalability.

As many cores are networked in a single chip, communication is on the
critical path of system performance and contended synchronization requests
may cause large performance penalty. Motivated by this, this paper chooses
another direction (i.e. exploiting efficient communication) to address the bar-
rier synchronization problem. Barrier synchronization typically involves two
kinds of collective communication [9, 10], namely, gather for barrier acquire
and multicast for barrier release. In this paper, we propose the cooperative
gather and multicast communication as a means to achieve efficient and scal-
able barrier synchronization. It is cooperative since all participating routers
collaborate with each other to accomplish a barrier synchronization task.
With the cooperative gather communication, multiple barrier acquire packets
for the same barrier can be merged into a single barrier acquire packet when
they pass through a router. With the cooperative multicast communication,
barrier release packets are replicated at intermediate nodes depending on the
incoming ports that barrier acquire packets went through before. Therefore,
a multi-destination header is not required and wiring cost is saved. Though

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1857



IEICE Electronics Express, Vol.8, No.22, 1856–1862

different, our approach is orthogonal to the algorithm-based approaches. We
combine it with the master-slave algorithm to show its effectiveness. Through
experiments on synthetic and benchmark cases, we show that our approach
greatly reduces barrier synchronization time and improves speedup for dif-
ferent scales of mesh networks.

2 Cooperative barrier communication

2.1 Mesh-based many-core architecture
We consider a regular mesh architecture for our many-core system. Fig. 1 a
shows a 3 × 3 example. Each processing core, P, is connected to a router,
R. Routers are interconnected with bidirectional links. The mesh network is
packet-switched, performs dimension-order XY routing, provides best-effort
service and also guarantees in-order packet delivery. Besides, moving one
hop in the network takes one cycle.

2.2 Cooperative gather and multicast
The idea of cooperative barrier gathering is to merge multiple barrier acquire
packets from slave nodes into one barrier acquire packet at intermediate
routers when they traverse in the network. We exemplify this packet merging
action. Fig. 2 a shows a 4×4 mesh on which node (2, 2) is the master node and
all others are slave nodes, targeting the same barrier. At cycle t, all nodes

Fig. 1. A 3× 3 mesh architecture with a router enhanced
by a cooperative communicator (CC)

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1858



IEICE Electronics Express, Vol.8, No.22, 1856–1862

Fig. 2. (a) Barrier acquire packet merging and (b) barrier
release packet multicasting

send a barrier acquire request encapsulated by a barrier acquire packet to
the master node, as shown in the left picture of Fig. 2 a. At cycle t + 1,
an intermediate node may receive multiple barrier acquire packets. As they
target the same barrier, these packets are merged into a single packet. For
instance, the barrier acquire packets from nodes (1, 3), (2, 4) and (3, 3) reach
node (2, 3) (see the left picture of Fig. 2 a), and are then merged into one
packet (see the right picture of Fig. 2 a). Such merging action not only
avoids serialization of packet transmission over shared links but also reduces
workload.

The idea of cooperative barrier multicasting is to replicate and distribute
barrier release packets to all nodes as fast as possible. At barrier acquire
stage of barrier synchronization, when barrier acquire packets pass through
a router, their incoming ports are recorded. Such incoming port information
in all routers constructs the multicast path for multicasting barrier release
packets. At barrier release stage, barrier release packets are routed and
replicated depending on the recorded incoming port information. Hence, the
multi-destination header is not required and wiring recourses are saved. In
our design, we use a set of Port Status Registers (PRSs) (See Fig. 1 d) to
record barrier acquire packets’ incoming ports. For instance, when a barrier
acquire packet aims for #1 barrier and goes into a router via the east inport,
the ‘E’ field of #1 PRS is set. Fig. 2 b shows an example of the multicasting
action on the 4 × 4 mesh. For instance, the ‘L’ and ‘S’ fields of #0 PRS

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1859



IEICE Electronics Express, Vol.8, No.22, 1856–1862

in router (3, 2) were set. Therefore, when a barrier release packet for #0
barrier comes from router (2, 2) to router (3, 2), it’s duplicated to generate
two copies. One is sent to the local node via the local outport and the other
is sent to router (4, 2) via the south outport.

2.3 Cooperative Communicator (CC)
To realize the cooperative gather and multicast, the router is enhanced with
a Cooperative Communicator (CC). The CC consists of six functional units:
five Acquire Mergers (AMs) (see Fig. 1 c) and a Release Multicaster (RM)
(see Fig. 1 d).

For each outport, there is an AM. As shown in Fig. 1 c, the AM is
responsible for checking incoming barrier acquire packets and those barrier
acquire packets that has been stored in the output buffer and merging the
barrier acquire packets that aim for the same barrier counter into one barrier
acquire packet. Its function contains three steps. (1) The Classifier groups
incoming barrier acquire packets into several groups according to their barrier
ids. Incoming barrier acquire packets may be classified into up to 5 groups,
since they may aim for 5 different barriers, one group for one barrier. (2) A
Merger merges a group of barrier acquire packets into one barrier acquire
packet. It extracts all values in “ReqNum” field1 of these packets, adds them
together, and puts the sum into the “ReqNum” field of the merged barrier
acquire packet. (3) If in the output buffer there is a stored barrier acquire
packet that has the same barrier id with the merged barrier acquire packet
from the Merger, the Buffer Maintainer adds the “ReqNum” of the merged
barrier acquire packet into that of the stored barrier acquire packet; if not,
the Buffer Maintainer puts the merged barrier acquire packet into the tail of
the output buffer.

As depicted in Fig. 1 d, the RM is responsible for establishing the mul-
ticast path at barrier acquire stage and replicating and distributing barrier
release packets at barrier release stage. At barrier acquire stage, when a bar-
rier acquire packet with barrier id comes from port p (p ∈ {L, E, S, W, N}),
the corresponding p field in the #id PRS is set. After barrier acquiring,
all PRSs in routers provide enough information to construct the path for
multicasting barrier release packets. At barrier release stage, when a barrier
release packet is coming, the RM replicates and distributes the barrier release
packet depending on the recorded incoming port information in PRSs. The
Buffer Maintainer takes charge of putting the generated barrier release pack-
ets into their corresponding output buffers. Meanwhile, the corresponding
records are removed out of PRSs. There are 5 copiers, one for replicating the
barrier release packets from each port.

The CC design is synthesized under TSMC R© 65 nm process. It consumes
10.98k NAND gates (10 PRSs) and runs at 2.44 GHz (0.41 ns).

1The barrier acquire packet has a “ReqNum” field that denotes how many barrier acquire
requests are included. Initially, when a barrier acquire packet is issued by a node, its
“ReqNum” is equal to 1.

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1860



IEICE Electronics Express, Vol.8, No.22, 1856–1862

3 Experiments and results

3.1 Experimental setup
We compare our approach (master-slave algorithm with cooperative com-
munication, denoted by MS+CC) with the four algorithm-based mecha-
nisms with unicast communication, namely, master-slave algorithm with uni-
cast (MS+Un), all-to-all algorithm with unicast (A2A+Un), tree-based al-
gorithm with unicast (Tree+Un), and butterfly algorithm with unicast (But-
terfly+Un). We constructed a RT-level mesh-based many-core simulation
platform as described in Section 2.1. Synthetic experiments and application
benchmarks are performed on the platform with a variety of mesh (M × N)
sizes up to 256 nodes (M = N = 16). All nodes participate in the barrier
synchronization and the master node is a network center (�M/2�, �N/2�).

3.2 Synthetic experiments
Node i sends a barrier acquire request after Di cycles delay2 when an exper-
iment starts, and an experiment finishes when the release reaches all nodes,
and the completion time is measured from the starting till then. Fig. 3 a–c
plots the completion time of barrier synchronization versus the network size.
We can see that:

• For all network sizes, our approach (MS+CC) achieves minimal com-
pletion time. Due to specialized gather and multicast communication,
there is no contention incurred in the network. As a consequence, the
completion time can be theoretically determined as (�M/2�+ �N/2�+
2) × 2 + max{Di − Dj}.

• As the network size increases, the completion time of MS+CC increases
very slowly, while that of A2A+Un and MS+Un increases quickly due
to the serialization of barrier acquiring and releasing. A2A+Un shows
better performance than MS+Un and Tree+Un for networks of small
sizes, but it does not scale well due to quadratically increased number
of packets (MN)2.

• The completion time of Tree+Un also increases slowly due to its al-
leviated network contention. But from 8 cores upward, Tree+Un is
3 to 4 times worse than MS+CC respectively due to increased non-
contentional delay since the barrier synchronization event has to move
up and down the entire logical tree.

• Among algorithm-based schemes with unicast, Butterfly+Un shows the
best performance and scalability. Still, our MS+CC is outstanding and
it reduces the completion time of Butterfly+Un by 36% on average.

3.3 Application benchmarks
In this set of experiments, a real application, namely, 1024-point 1D DIT
FFT, is mapped. Its computational tasks are uniformly mapped onto all
nodes. Depending on the mesh size (M × N), each node assumes J/MN

2In experiments, we set a maximal delay: MaxD. Di is a random integer between 0
and MaxD.

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1861



IEICE Electronics Express, Vol.8, No.22, 1856–1862

Fig. 3. (a)–(c): Completion time versus network size;
(d): Speedup results of 1024-point 1D DIT FFT

tasks, where J is the total number of tasks. For the FFT, J is 1024 and
there are 9 times of barrier synchronization.

Fig. 3 d shows the speedup (Ωm)3 results, which exhibit the same per-
formance trend as Fig. 3 a. Note that, due to overwhelming contention,
A2A+Un’s speedup for 16 × 16 decreases. For 16 × 16 case, compared with
A2A+Un, MS+Un, Tree+Un, and Butterfly+Un, the respective performance
improvement is 67.99%, 30.38%, 15.22%, and 5.93%. Since application cases
have computation tasks besides synchronization tasks, the improvement is
less than that from synthetic experiments.

4 Future work

In the future, we plan to link this cooperative communication strategy with
other algorithms. Another direction is to look into the power savings, as our
scheme greatly decreases the amount and distance of communication.

Acknowledgment

The research is partially supported by the Major Project of “Core elec-
tronic devices, High-end general chip and Fundamental software” in China
(No. 2009ZX01034-001-001-006), the National Natural Science Foundation of
China (No. 61070036 and No. 61133007), and the National 863 Program of
China (No. 2009AA011704).

3Ωm = T1node/Tmnode, where T1node is the single node execution time as the baseline
and Tmnode is the execution time of m node(s).

c© IEICE 2011
DOI: 10.1587/elex.8.1856
Received August 04, 2011
Accepted October 15, 2011
Published November 25, 2011

1862


