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Abstract: In this paper, we propose new symmetric cost functions
for global stereo methods. We first present a symmetric data cost
function for the likelihood and then propose a symmetric discontinuity
cost function for the prior in the MRF model for stereo. In defining cost
function, both the reference image and the target image are taken into
account to improve performance without modeling half-occluded pixels
explicitly. The performance improvement of stereo matching due to the
proposed symmetric cost functions is verified by applying the proposed
symmetric cost functions to the belief propagation (BP) based stereo
method.
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1 Introduction

Many global stereo methods have recently achieved good results by model-
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ing a disparity surface as a Markov random field (MRF) and by solving an
optimization problem [1]. They mainly focus on how to minimize conven-
tional cost functions efficiently to improve performance. However, lower cost
solutions do not always correspond to better performance as pointed out in
[2]. Therefore, it is more important to define cost functions to be minimized
than to improve optimization techniques for improving performance. Never-
theless, there is a relatively small amount of work on defining cost functions
well.

In this paper, we propose new symmetric cost functions for improving the
performance of global stereo methods. We first present a symmetric data cost
function for the likelihood and then propose a symmetric discontinuity cost
function for the prior in the MRF model for stereo. In defining cost functions,
we take both the reference image and the target image into account aiming
at improving performance without modeling half-occluded pixels explicitly
and without using color segmentation, which are also difficult problems.

2 MRF model for stereo matching

Although global stereo methods formulate the stereo problem in various ways,
the MRF formulation is most general. Bayesian stereo matching can be
formulated as a maximum a posteriori MRF (MAP–MRF) problem. Given
a rectified stereo pair of images, the stereo problem can be modeled as

P (D|I) =
P (I|D)P (D)

P (I)
(1)

where D is the smooth disparity field of the reference image and I is a pair of
input stereo images (i.e., I = (IL, IR) where IL is the reference image and IR
is the target image). The goal of the stereo problem is to find the disparity
field D that maximizes Eq. (1) for given I as

Dopt = arg max
D

P (D|I) = arg max
D

P (I|D)P (D)
P (I)

(2)

Here, P (I|D) is referred to as the likelihood and P (D) is referred to as the
prior. When assuming that the observation follows an independent identical
distribution (i.i.d.), the likelihood P (I|D) in Eq. (1) can be expressed as

P (I|D) ∝
∏
p

exp(−φ(p, dp, I)) (3)

where φ(p, dp, I) is the cost function of pixel p with disparity dp given obser-
vation I. Therefore, the likelihood P (I|D) is related to the data cost when
pixel p has the disparity dp with given images.

The Markov property asserts that the probability of each site in a field
depends only on its neighboring sites. By specifying the first order neighbor-
hood of pixel p, N(p), the prior can be expressed as

P (D) ∝
∏
p

∏
q∈N(p)

exp(−ψc(dp, dq)) (4)c© IEICE 2011
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where q is the neighboring pixel of p in N(p) and ψc(dp, dq) is the joint clique
potential function of two disparities dp and dq.

By combining Eq. (3) and Eq. (4), we can simply get the following equa-
tion.

− ln(P (D|I)) ∝
∑

p

φ(p, dp, I) +
∑

p

∑
q∈N(p)

ψc(dp, dq) (5)

Here, Eq. (5) can be rewritten in terms of cost functions as

E(D|I) =
∑

p

D(p, dp, I) +
∑

p

∑
q∈N(p)

V (dp, dq) (6)

where
E(D|I) ∝ − ln(P (D|I)) (7)

D(p, dp, I) = φ(p, dp, I) (8)

V (dp, dq) = ψc(dp, dq) (9)

E(D|I) is a global cost to be minimized to obtain a disparity map.
D(p, dp, I) is referred to as the data cost that measures the cost of assigning
disparity dp to pixel p with given I. On the other hand, V (dp, dq) is referred
to as the discontinuity cost that measures the cost of assigning disparities dp

and dq to two neighboring pixels p and q. Our goal is then to defineD(p, dp, I)
and V (dp, dq) in consideration of both the reference image and the target im-
age together to improve the performance of global methods without modeling
half-occluded pixels explicitly and without using color segmentation.

3 Symmetric data cost function for the likelihood

Most global methods compute the data cost using an individual pixel inten-
sity (or color) and then try to solve the image ambiguity using global rea-
soning with a smoothness constraint, which results from the ambiguous local
appearances of image pixels owing to image noise and insufficient/repetitive
texture. However, it is still difficult to get an accurate disparity map when
there are severe errors in the data cost.

To get the reliable data cost, it may be useful to use local support windows
as in local methods. However, local support windows cause the foreground
fattening phenomenon resulting in severe errors at depth discontinuities. In
this work, we use the symmetric data cost function that we have proposed
in [3]. This method provides the reliable data cost in consideration of the
reference image and the target image even near depth discontinuities even
when using large local support windows.

4 Symmetric discontinuity cost function for the prior

Among the two cost functions in the MRF formulation, the discontinuity
cost function between nodes, V (dp, dq), determines how support is aggre-
gated from neighboring nodes. This cost function is directly related to the
smoothness constraint. In most global methods, it is generally computed by
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using the truncated linear model or the Potts model [4] assuming piecewise
constant disparities. The typical Potts model can be expressed as

V (dp, dq) =

{
0 if dp = dq

ρ(ΔC) otherwise
(10)

The function ρ(ΔC) is defined in terms of the magnitude of image gradi-
ent between p and q, ΔC, as

ρ(ΔC) =

{
P × s ifΔC < T

s otherwise
(11)

where T is a magnitude threshold and s is a penalty term for violating the
smoothness constraint. P is a penalty term that increases the penalty when
the gradient magnitude is small. This form of the smoothness constraint
makes depth discontinuities coincide with color or intensity discontinuities.

The problem of the conventional Potts model is that it is based on only
the reference image. This may cause the erroneous discontinuity cost and
result in errors at depth discontinuities. To reduce the errors in the dis-
continuity cost owing to half-occluded pixels, it may be useful to consider
half-occluded pixels formally in the MRF formulation. However, modeling
the occlusion field and detecting half-occluded pixels are also difficult prob-
lems. To solve this problem, we propose the new symmetric Potts model by
redefining Eq. (10) and Eq. (11) while taking the reference and the target
images into account together as

Vs(dp, dq) =

{
0 if dp = dq

ρdp(ΔCr,ΔCt) otherwise
(12)

ρdp(ΔCr,ΔCt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pr × Pt × s ifΔCr < T,ΔCt < T

Pr × s ifΔCr < T,ΔCt ≥ T

Pt × s ifΔCr ≥ T,ΔCt < T

s otherwise

(13)

Here, ΔCr is the magnitude of color gradient between p and q in the reference
image and ΔCt is the magnitude of color gradient between p̄dp and q̄dp in the
target image when the disparity of p is dp. p̄dp and q̄dp are the corresponding
pixels in the target image when p and q in the reference image have the
disparity dp. Pr and Pt are penalty terms that increase the penalty when the
gradient magnitude is small. We can see that, as in the data cost function,
Eq. (13) is also symmetric — when the reference image and the target image
are switched, the form of this discontinuity cost function does not change. In
addition, it is worth of note that Vs(dp, dq) is dependent on actual dp and dq

values while V (dp, dq) in the conventional Potts model is not. In addition, it
is possible to redefine the linear model in the symmetric form as the Potts
model. The main advantage of the proposed symmetric discontinuity cost
function is that we can improve the performance of global stereo methods
at depth discontinuities without modeling half-occluded pixels explicitly and
without using color segmentation. This is because the effect of half-occluded
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pixels can be reduced by considering both images together when computing
the discontinuity cost.

5 Experiments

The proposed symmetric cost functions are simple and, therefore, can be
easily applied to global stereo methods without much modification. To verify
the performance improvement by the proposed symmetric cost functions,
we applied the proposed symmetric cost functions to the BP-based method
implemented by Tappen in [2] and we used well-known testbed images with
ground truth [1]. The stereo method is run with a constant parameter setting
across all images (T = 8, Pr = Pt = 2, s = 1.1, γc = 4.0, γp = 15.5, window
size = 31 × 31).

We first applied the proposed symmetric data cost function and the
proposed symmetric discontinuity cost function separately to the BP-based
method to check the performance improvement due to each cost function.
Fig. 1 shows the matching results for the ‘Tsukuba’ data set according to
the applied symmetric cost function and Fig. 2 shows the matching results
for testbed images with both the proposed symmetric cost functions. The
performance according to the applied cost functions is summarized in Ta-
ble I. The numbers in Table I represent the percentage of bad pixels. We
can see that both the proposed symmetric cost functions really improve the
performance of the BP-based method for all testbed images.

We then compared the performance of the BP-based method using the
proposed symmetric cost functions with the performance of other state-of-
the-art BP-based methods as shown in Table I, although the run parame-
ters in our experiments are not optimal. The performance of the BP-based
method with the proposed symmetric cost functions is comparable to the
performance of the state-of-the-art methods even without modeling half-
occluded pixels explicitly and without using color segmentation. However,
the result for the ‘Map’ data set is worse than other methods. This is because
the ‘Map’ images are highly textured while the proposed symmetric cost func-
tions are dependent on the color (or intensity) and disparity gradient in both
images.

Fig. 1. Matching results according to the applied cost
functions. From left to right, conventional, sym-
metric disc. cost, symmetric data cost, and sym-
metric disc.&data cost
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Fig. 2. Dense disparity maps for testbed images. From
left to right, left image, ground truth, our result,
and bad pixels (error > 1)

6 Conclusion

In this paper, we have proposed symmetric cost functions for both the likeli-
hood and the prior in the MRF model for stereo, aiming at improving perfor-
mance. In defining cost functions, we took both the reference image and the
target image into account. We finally verified the performance improvement
of stereo matching due to the proposed symmetric cost functions by applying
the proposed symmetric cost functions to the BP-based stereo method. Ex-
perimental results for standard testbed images show that the performance of
the BP based stereo method is greatly improved by the proposed symmetric
cost functions.
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