
IEICE Electronics Express, Vol.9, No.12, 1036–1043

Newton-type method in
spectrum estimaion-based
AOA estimation

Joon-Ho Leea), Sung-Woo Cho, and Hyung Seok Kim
Department of Information and Communication Engineering, Sejong University,

98 Kunja-dong, Kwangjin-gu, Seoul 143–747, Korea

a) joonhlee@sejong.ac.kr

Abstract: For numerical optimization of the cost function of the
maximum likelihood (ML) algorithm for angle-of-arrival (AOA) estima-
tion, Newton-type method has been widely employed. In this paper,
we apply the Newton-type method to the optimization of cost func-
tion for spectrum estimation-based AOA estimation algorithm of the
conventional beamforming, the Capon beamfomring and the MUSIC
algorithm. Explicit expressions of the first derivatives and the second
derivatives of the cost functions are presented. The expressions are
used for the Newton iteration to improve the accuracy of the initial
estimates. The performance improvement in terms of estimation accu-
racy and computational burden is demonstrated using the Monte-Carlo
simulations.
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1 Introduction

Determination of the AOA (angle-of-arrival) of signal has been of interest to
the signal processing community [1].

The spectrum estimation methods like the conventional beamforming,
the Capon beamforming and the MUSIC algorithm have p-dimensional cost
function where p is the number of parameters to be estimated per signal [2].
Therefore, to implement the optimization of the p-dimensional cost function,
we have to perform p-dimensional search. Note that, for spectrum estimation-
based algorithm, the search dimension is independent of the number of in-
cident signals, N . It is only dependent on the number of parameters to be
estimated for each incident signal, p.

For the maximum likelihood (ML) algorithm the dimension of the search
space is equal to Np, where N is the number of the incident signals [2].
Therefore, the computational burden of the ML algorithm is much larger
than that of the spectrum estimation-based algorithm.

The search can be exhaustive grid search or Newton-type search. For the
ML algorithm, it is very impractical to apply the exhaustive grid search for
optimization of Np-dimensional cost function, which is why there have been
many studies on the application of the Newton-type search to the nonlinear
optimization of the ML cost function [2, 3, 4]. The compact expressions for
the gradient, the Hessian and the approximate Hessian corresponding to each
ML algorithm for use with the Newton-type search have been derived [2, 3, 4].

We consider the case of p = 1, where the cost function for the beamformng
and the MUSIC is one-dimensional. We can easily extend the formulation
presented in this paper to the case of p = 2 or p = 3.

In this paper, we consider the application of the Newton-search for the op-
timization of the beamforming algorithm and the MUSIC algorithm. We call
the estimates from the exhaustive grid search the initial estimates. The fi-
nal estimates refer to the estimates obtained by applying the Newton-search
to the initial estimates. In this paper, to get the initial estimates, we use
the exhaustive search, but there are many other ways to get the initial es-
timates like the alternating projection [5] or iterative quadratic maximum
likelihood [3].

2 Proposed algorithm

Assume that there are N incident signals and that the array antenna con-
sists of M antennas. The cost function of the spectrum-estimation-based
algorithms like the conventional beamforming, the Capon beamforming and
the MUSIC algorithm for azimuth estimation and the simultaneous estima-
tion of azimuth/elevation can be written asc© IEICE 2012
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P (θ) =
M∑
k=1

M∑
i=1

a∗i (θ)Cikak(θ) azimuth (1)

P (θ, φ) =
M∑
k=1

M∑
i=1

a∗i (θ, φ)Cikak(θ, φ) azimuth and elevation (2)

where array manifolds can be explicitly writen as [1]

a(θ) = [exp(jψ1(θ)) exp(jψ2(θ)) · · · exp(jψM (θ))]T (3)

azimuth

a(θ, φ) = [exp(jψ1(θ, φ)) exp(jψ2(θ, φ)) · · · exp(jψM (θ, φ))]T. (4)

azimuth and elevation

ψm(θ) and ψm(θ, φ) is a phase response of the m-th antenna element for
azimuth estimation and azimuth/elevation estimation, respectively. Cik in
(1) or (2) for each algorithm is [1]

Cik = R̂ik Conventional beamforming (5)

Cik = R̂−1
ik Capon beamforming (6)

Cik = UNUH
N MUSIC (7)

where R̂ik is an entry of the estimate of the covariance matrix, R̂, and UN

is a matrix whose columns consist of the noise eigenvectors of R̂. Note that,
we have to maximize (1) or (2) in the conventional beamforming algorithm,
and have to minimize (1) or (2) in the Capon beamforming algorithm and
the MUSIC algorithm.

2.1 Estimation of azimuth
The Newton-iteration for estimation of the azimuth angle using the spectrum
estimation-based algorithm is, for i = 0, 1, · · ·, and n = 1, 2, · · · , N ,

θ̂(i+1)
n = θ̂(i)

n −
dP (θ̂

(i)
n )

dθ

d
dθ

(
dP (θ̂

(i)
n )

dθ

) . (8)

The first differentiation and the second differentiation of the cost function
in (8) with respect to the azimuth angle are

∂P (θ)
∂θ

=
M∑
k=1

M∑
i=1

(
∂ak(θ)
∂θ

∂P (θ)
∂ak(θ)

+
∂a∗i (θ)
∂θ

∂P (θ)
∂a∗i (θ)

)
(9)

=
M∑
k=1

M∑
i=1

(
ja∗i (θ)Cikak(θ)

(
∂ψk(θ)
∂θ

− ∂ψi(θ)
∂θ

))
(10)

∂

∂θ

(
∂P (θ)
∂θ

)
=

M∑
k=1

M∑
i=1

∂

∂θ

(
∂ak (θ)
∂θ

∂P (θ)
∂ak (θ)

+
∂a∗i (θ)
∂θ

∂P (θ)
∂a∗i (θ)

)
(11)

=
M∑
k=1

M∑
i=1

a∗iCikak
(

2
∂ψk (θ)
∂θ

∂ψi (θ)
∂θ

+j (ψi (θ) − ψk (θ)) −
(
∂ψk(θ)
∂θ

)2

−
(
∂ψi(θ)
∂θ

)2
)

(12)
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where we used the chain-rule, and ∂ai(θ)
∂ψi(θ)

= jai(θ),
∂a∗i (θ)
∂ψi(θ)

= −ja∗i (θ) and
∂2ψi(θ)
∂θ2

= −ψi(θ).
In the conventional beamforming algorithm, since the final estimates of

the Newton iteration should correspond to the local maxima of the cost
function in (1), the second derivatives evaluated at the final estimates should
be negative. On the contrary, in the Capon beamforming algorithm and the
MUSIC algorithm, since the final estimates should correspond to the local
minima of the cost function in (1) or (2), the second derivatives evaluated at
the final estimates should be positive.

2.2 Estimation of azimuth and elevation
The Newton iteration for simultaneous estimation of the azimuth angle and
the elevation angle is, for i = 0, 1, · · ·, and n = 1, 2, · · · , N ,

[
θ̂
(i+1)
n

φ̂
(i+1)
n

]
=

[
θ̂
(i)
n

φ̂
(i)
n

]
−
[

∂
∂θ

(
∂P (θ,φ)

∂θ

)
∂

∂φ

(
∂P (θ,φ)

∂θ

)
∂
∂θ

(
∂P (θ,φ)

∂φ

)
∂

∂φ

(
∂P (θ,φ)

∂φ

)
]−1∣∣∣∣∣ θ=θ̂

(i)
n

φ=φ̂
(i)
n

[
∂P (θ,φ)

∂θ

∂P (θ,φ)
∂φ

]∣∣∣∣∣ θ=θ̂
(i)
n

φ=φ̂
(i)
n

. (13)

Note that, for notational brevity, in the case of the estimation of the
azimuth and the elevation, we suppress the argument in (15)–(24) as follows:

P (θ, φ) ≡ P, ai (θ, φ) ≡ ai, ψi (θ, φ) ≡ ψi. (14)

The first differentiations are

∂P

∂θ
=

M∑
k=1

M∑
i=1

(
∂ak
∂θ

∂P

∂ak
+
∂a∗i
∂θ

∂P

∂a∗i

)
(15)

=
M∑
k=1

M∑
i=1

(
ja∗iCikak

(
∂ψk
∂θ

− ∂ψi
∂θ

))
(16)

∂P

∂φ
=

M∑
k=1

M∑
i=1

(
∂ak
∂φ

∂P

∂ak
+
∂a∗i
∂φ

∂P

∂a∗i

)
(17)

=
M∑
k=1

M∑
i=1

(
ja∗iCikak

(
∂ψk
∂φ

− ∂ψi
∂φ

))
(18)

The second differentiations are

∂

∂θ

(
∂P

∂θ

)
=

M∑
k=1

M∑
i=1

∂

∂θ

(
∂ak
∂θ

∂P

∂ak
+
∂a∗i
∂θ

∂P

∂a∗i

)
(19)

=
M∑
k=1

M∑
i=1

a∗iCikak
(

2
∂ψk
∂θ

∂ψi
∂θ

+j (ψi − ψk) −
(
∂ψk
∂θ

)2

−
(
∂ψi
∂θ

)2
)

(20)

∂

∂φ

(
∂P

∂θ

)
=

M∑
k=1

M∑
i=1

∂

∂φ

(
∂ak
∂θ

∂P

∂ak
+
∂a∗i
∂θ

∂P

∂a∗i

)
(21)

=
M∑
k=1

M∑
i=1

a∗iCikak
(
∂ψi
∂φ

∂ψk
∂θ

+
∂ψk
∂φ

∂ψi
∂θ
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+j
(
∂

∂φ

(
∂ψk
∂θ

)
− ∂

∂φ

(
∂ψi
∂θ

))
− ∂ψk

∂φ

∂ψk
∂θ

− ∂ψi
∂φ

∂ψi
∂θ

)
(22)

∂

∂φ

(
∂P

∂φ

)
=

M∑
k=1

M∑
i=1

∂

∂φ

(
∂ak
∂φ

∂P

∂ak
+
∂a∗i
∂φ

∂P

∂a∗i

)
(23)

=
M∑
k=1

M∑
i=1

a∗iCikak
(

2
∂ψk
∂φ

∂ψi
∂φ

+j (ψi − ψk) −
(
∂ψk
∂φ

)2

−
(
∂ψi
∂φ

)2
)
. (24)

Note that ∂
∂θ

(
∂P
∂φ

)
in (13) can be obtained from ∂

∂θ

(
∂P
∂φ

)
= ∂

∂φ

(
∂P
∂θ

)
.

In the conventional beamforming algorithm, since the final estimates of the
Newton iteration should correspond to the local maxima of the cost function
in (2), the Jacobian matrix evaluated at the final estimates should be nega-
tive definite. On the contrary, in the Capon beamforming algorithm and the
MUSIC algorithm, the final estimates should correspond to the local min-
ima of the cost function in (2), the Jacobian matrix evaluated at the final
estimates should be positive definite.

3 Numerical results

3.1 Estimation of azimuth
We compute the cost function of each algorithm at{

θstart, θstart + Δθ, θstart + 2Δθ, · · · θstart +
⌊
θstop − θstart

Δθ

⌋
Δθ
}

(25)

where �� rounds the argument toward zero. θstart and θstop specify a search
range of the angle, Δθ is a search step. This corresponds to the exhaustive
grid search with search step Δθ.

The array manifold for the ULA is, for m = 1, · · · ,M ,

ψm(θ) = (m− 1)π sin θ. (26)

The ULA is used and the number of the antenna element, M , is chosen to
be five. θ(start) and θ(stop) are selected to be θ(start) = −80◦ and θ(start) = 80◦.

The iterations in (8) is terminated when the criterion is met:

|θ̂(i+1) − θ̂(i)| < 10−5. (27)

The root mean square error (RMSE) and operation time in Fig. 1 are
obtained from the 1000 repetitions. The search steps, Δθ, in (25) are chosen
to be 4.7◦. We investigate the RMSE and the execution time. We consider
the case that there are two incident signals, which implies that N is equal to
two.

The results with legend ′CA′ and ′MU′ refer to the initial estimates for
the Capon beamforming and the MUSIC algorithm. The results with legend
′CA + NT′, and ′MU + NT′ refer to the final estimates for Capon beamform-
ing algorithm and the MUSIC algorithm, respectively.
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Fig. 1. The initial estimates with Δθ = 4.7◦ and the final
estimates ([θtrue

1 θtrue
2 ] = [−60◦ −6.9◦])

Fig. 1 shows how the Newton-type search improves the accuracy of the
initial estimates. The results with [θtrue

1 θtrue
2 ] = [−60◦ − 6.9◦] and with the

search step of Δθ = 4.7◦ for various SNR’s are shown in Fig. 1.
The final estimates are superior to the initial estimates in terms of the

RMSE, but getting the final estimates takes more time than getting the
initial estimates, which can be seen in the second figure of each case because
the final estimates are obtained by applying the Newton -type search to the
initial estimates.

3.2 Estimation of azimuth and elevation
Two-dimensional exhaustive grid search with search steps of Δθ and Δφ is
performed.

The iteration for the n-th incident signal stops if both of the following
criteria are met: ∣∣∣θ̂(i+1)

n − θ̂
(i)
n

∣∣∣ < tolerance∣∣∣φ̂(i+1)
n − φ̂

(i)
n

∣∣∣ < tolerance.
(28)

The array manifold for the UCA is, for m = 1, · · · ,M ,

ψm(θ, φ) = 2π
r

λ
cosφ cos

(
θ − 2π (m− 1)

M

)
. (29)

We will show the performance of the proposed scheme in this section.
The uniform circular array (UCA) with five antenna elements is considered.
[θstart θstop] = [−180◦ 180◦] and [θstart θstop] = [0◦ 90◦] are employed for the
numerical simulation to obtain the initial estimates of the Capon beamform-
ing algorithm and the MUSIC algorithm. In this simulation, Δθ = Δφ = 8.8◦

is adopted. The number of snapshots used for the calculation of the estimate
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of the covariance matrix is 64 and tolerance used for the termination crite-
rion which is the termination criterion for the iteration in (28) is 10−3. The
RMSE and operation time in Fig. 2 are obtained from the 1000 repetitions.
The simulation results in Fig. 2.(a) show how much improvement we can
get if we apply the Newton scheme to the initial estimates obtained from
the Capon beamforming algorithm. Fig. 2.(b) shows the corresponding re-
sults for the MUSIC algorithm. The results with legend ′CA′ and ′CA + NT′

correspond to the initial estimates and the final estimates of the Capon al-
gorithm, respectively. In Fig. 2, we can see that the computation complexity
required for the final estimates is nearly equal to that required for the initial
estimates, which can be seen in the lower figures. In addition, in the upper
figures, we can see that the final estimates are more accurate than the initial
estimates.

Fig. 2. The initial estimates with Δθ = Δφ = 8.8◦

and the final estimates ([θtrue
1 φtrue

1 ] = [30◦ 48◦]),
([θtrue

2 φtrue
2 ] = [120◦ 72◦])

4 Conclusions

In this paper, explicit expressions for the Newton-type search to improve
the accuracy of the initial estimates of two beamforming algorithms and the
MUSIC algorithm are presented. It is quite straightforward to extend the
proposed scheme to the other spectrum estimation-based AOA estimation
algorithm such as min-norm algorithm, maximum entropy algorithm and
Pisarenko algorithm by modifying the cost functions in (1) and (2) consis-
tently.

We showed the results for the case that there are two incident signals.
It is also possible to apply the proposed scheme when there are more than
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two incident signals because the Newton search is applied to each incident
signal independently. Similarly, the scheme can also be applied to any other
array structure by modifying the array vectors in (3), (4), (26) and (29)
consistently.

When we want to estimate the elevation as well as the azimuth using the
MUSIC or the beamforming algorithm, we have to optimize two-dimensional
cost function. Two dimensional exhaustive grid search can be computa-
tionally intensive if the search step is small. It is more useful to apply the
Newton-search for optimization of two-dimensional cost function than for op-
timization of one-dimensional cost function. For p = 2 or p = 3, the gradient
and the Hessian of the cost function need to be derived for the implementa-
tion.
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