
IEICE Electronics Express, Vol.9, No.12, 1044–1050

Flexible and high-efficiency
turbo product code decoder
design

Li Zhoua), Hengzhu Liu, and Botao Zhang
Computer School, National University of Defense Technology, Changsha, China

a) zhouli06@nudt.edu.cn

Abstract: This paper presents a flexible and high-efficiency decoder
for turbo product code using extended Hamming code. The supported
component code ranges from (8, 4) to (128, 120) to provide enough flex-
ibility for various communication standards. A novel Chase decoder
architecture is developed with high efficiency using a low complexity
algorithm. Moreover, a conflict free interleave memory access model
for variable length is provided. A 90 nm standard cell technology shows
that the decoder sustains a maximum throughput of 5.6Gbps and con-
sumes 300 k gates.
Keywords: turbo product code, high efficiency VLSI, flexibility de-
coder
Classification: Integrated circuits

References

[1] K. Gracie and M. H. Hamon, “Turbo and Turbo-Like Codes: Principles
and Applications in Telecommunications,” Proc. IEEE, vol. 95, pp. 1228–
1254, 2007.

[2] S. A. Hirst, B. Honary, and G. Markarian, “Fast Chase algorithm with an
application in turbo decoding,” IEEE Trans. Commun., vol. 49, no. 10,
pp. 1693–1699, Oct. 2001.

[3] C. Argon and W. McLaughlin, “An efficient Chase decoder for turbo prod-
uct codes,” IEEE Trans. Commun., vol. 52, no. 6, pp. 896–898, June 2004.

[4] J. Cuevas, P. Adde, and S. Kerouedan, “Turbo decoding of product codes
for Gigabit per second applications and beyond,” European Transactions
on Telecommunications, vol. 17, pp. 45–55, Jan.-Feb. 2006.

[5] C. Jego, P. Adde, and C. Leroux, “Full-parallel architecture for turbo
decoding of product codes,” Electronics Letters, vol. 42, pp. 1052–1053,
2006.

[6] C. Leroux, C. Jego, P. Adde, D. Gupta, and M. Jezequel, “Turbo Product
Code Decoder Without Interleaving Resource: From Parallelism Explo-
ration to High Efficiency Architecture,” J. Signal Processing Systems for
Signal Image and Video Technology, vol. 64, pp. 17–29, July 2011.

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1044



IEICE Electronics Express, Vol.9, No.12, 1044–1050

1 Introduction

Turbo product code (TPC) performs close to the Shannon limit and has
lower complexity than turbo convolutional code [1]. TPC easily achieves
throughput of gigabit per second by decoding rows and columns in parallel.
Numerous wireless and optical communication protocols have adopted TPC,
but their code length varies. For example, TPC in IEEE 802.16 chose the
(16, 11), (32, 26), or (64, 57) extended Hamming code as component code in
both row and column dimensions. Thus, the TPC decoder urgently needs
high throughput and flexibility characteristics for future high data rate com-
munication systems.

A TPC decoder is composed of soft input soft output (SISO) decoder
and interleaving resource. Most TPC decoders use Chase algorithm for SISO
decoding of block code. Register file, memory, and connection network are
candidates for turbo code interleaving resource. Numerous implementations
have been proposed, but few have achieved high efficiency while supporting
flexibility. In this paper, a high-efficiency Chase decoder for TPC is designed
using a low complexity algorithm. Moreover, we propose the conflict free
memory access model of using memory as interleaving resource, and support
variable code length in our design. We implement the TPC decoder using
several Chase decoders and interleaving memory on Chartered 90 nm CMOS
technology.

2 TPC decoder design

2.1 Low complexity Chase decoding algorithm
The Chase algorithm of block code includes three steps: least reliable sorting,
test vector decoding, and soft output. In the least reliable sorting, input
R = {r0, r1 . . . rn−1} is sorted to determine the p least reliable value in R, and
a hard decision is defined by Y = sign(R). Then 2p test vectors are generated
according to p and Y , which traverse all possible codes on p locations. After
algebraic decoding of test vectors, a valid code set is generated, where D =
{d0, d1 . . . dn−1} is the code with minimal Euclidean distance to R. In the
soft output, the decoder seeks a candidate code C in the valid code set with
a minimal distance to R and di �= ci for every position i. The soft value is
then calculated by C and D.

The most complex part of the original Chase algorithm lies in the fol-
lowing procedures. First, decoding each test vector Ti requires syndrome
calculation Si = Ti ⊕ H. Second, Euclidean distance computing is diffi-
cult to implement in hardware, so a simplified expression should be devised.
Third, sorting in a candidate code search is necessary for each position i.
The complexity of these three tasks grows with the code length n, causing
low-efficiency Chase decoding in the case of variable code length. Several
modifications have been proposed to address these issues. In [2], test vector
decoding is done in Gray code order, which reduces its complexity to 1 vector-
matrix multiplication plus 2p − 1 vector-vector multiplications in GF(2). In
[3], dot product is applied instead of Euclidean distance. Only different bits

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1045



IEICE Electronics Express, Vol.9, No.12, 1044–1050

between a valid code and Y contribute to the metric.
For the least reliable position i, there are at least two test vectors with

an ith bit of 1 if p ≥ 2. They cannot be corrected both at the same time;
thus ci = 1 exists in the valid code set. Similarly, ci = 0 also exists in
the valid code set, so we can always find candidate codes for least reliable
positions. The extended Hamming code only corrects one error; thus, there
are at most p + 2 different bits and at least p − 2 between a valid code and
Y . Therefore, extrinsic information differs in the same range. Averaging p

is suitable for estimating extrinsic information when using maximum metric.
This approach is useful because searching candidate codes is not necessary
for all bits; only for the p least positions. This premise is true for all code
lengths.

Algorithm 1 is the modified algorithm with less complexity than the orig-
inal one and much less dependency on code length. Section 3 shows that the
coding gain of low-complexity algorithm only slightly declines, or becomes
even better in certain code lengths.

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1046



IEICE Electronics Express, Vol.9, No.12, 1044–1050

2.2 High-efficiency Chase decoder architecture
Figure 1 shows the proposed Chase decoder architecture, which takes input
ri and generates output λi serially. Three modules make up the algorithm
that implements three modules: least reliable sorting (lines 1–2); test vector
decoding (lines 3–9); and soft output (lines 10–19). Latency of the Chase
decoder includes input time n cycles and test vector decoding time 2p cycles.
Output also takes n cycles. The complexity which varies with n is hidden
by the input and output latency; only bit width of registers and combination
logic are relevant.

Fig. 1. Chase decoder architecture

Least reliable sorting module takes ri in from RAM, each with read ad-
dress increment 1. RAM will be read later by the other two modules. Sorting
occurs simultaneously with ri input. Hard decode Y with its syndrome, p

locations with ri, and corresponding p columns in H are obtained at the end
of input, and then stored in registers.

Test vector decoding module is divided into three stages in the pipeline.
The first stage inverts a bit of Tj in each cycle to generate a new test vector
and syndrome. Then, algebraic decoding corrects at most 1 bit of test vector
according to the syndrome. If necessary, RAM read request is sent to read
address generation unit (AGU) for access to ri at the corrected position. The
decoding result is compared with Y , and differences are recorded in stage 2.
Stage 3 uses the comparison to compute relative dot product M by adding
ri or −ri where different bits lie.

In the soft output module, sorting is performed once Mj is prepared in the
test vector module. There are p + 1 minimal sort logics for D and unreliable
bits, as well as 1 maximum sort logic for reliable bits. When the test vector
decoding is complete, minimal and maximal value in registers are ready for
soft output generation. Thus, we can use ri in RAM and then compute for
λi immediately.

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1047



IEICE Electronics Express, Vol.9, No.12, 1044–1050

2.3 Conflict-free memory access model
In Turbo code, interleaving resource is necessary to rearrange data in a
particular order between iterations. Usually, three kinds of hardware are
adopted: register, memory, and connection network. Register file is the sim-
plest way, but hardware overhead caused by large code matrix is intolerable.
The (128, 120)2 code needs 8 × 128 × 128 bit storages if symbols are quan-
tized by 8 bits. Some studies [4, 5] have addressed issues of using connection
networks, such as the Omega network. However, connection networks lack
the capability of supporting variable length. Suppose the SISO decoder con-
tains eight Chase decoders in TPC, so that eight rows or columns can be
processed in parallel. While decoding (8, 4)2 code matrix, the output of row
SISO can be delivered through interleaving connection network to column
SISO directly in a delicate manner and utilized without latency. However, in
the case of (16, 11)2 code, two subprocedures consisting of eight rows each are
needed for row SISO. Column SISO has to be divided as well. The rows are
separated, and thus, output of row SISO cannot ensure continuity to form
a whole column. So, the connection network cannot rearrange data into a
column order without storage. In our design, we use memory as interleaving
resource. Figure 2 shows a full iteration of TPC.

Fig. 2. A full iteration of TPC decoder

SISO decoder consists of eight Chase decoders. Two memory blocks al-
ternately read and write. Each memory block contains eight single port
8 bit widths, 2 k depth RAM 0-7, which provide data to Chase decoder 0–7.
Conflict-free memory access concerns data location and rearrangement issues.
TPC matrix is denoted by [Dx,y] in our design, and 0 ≤ x ≤ 2q1 − 1, 0 ≤ y ≤
2q2 −1, q1, q2 ∈ {3, 4, 5, 6, 7}. Data Dx,y is located at Ax,y = (k, l), where k is
bank index and l is internal address in the bank. More than one subprocedure
is needed if q1 > 3 or q2 > 3. For example, when the TPC matrix has 16 rows,
row SISO decoder first processes rows 0–7, and then processes rows 8–15. In
the memory for row, we place Dx,y at Ax,y = (x mod 8, y+�x/8�×2q2). Any
two data are stored in the same bank only if they are within the same row or
belong to two subprocedures. In the memory for column, a similar scheme
is applied to avoid reading conflict, where Ax,y = (y mod 8, x + �y/8� × 2q1).
This address scheme ensures conflict-free memory reading, because any two

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1048



IEICE Electronics Express, Vol.9, No.12, 1044–1050

data in a bank would not be read at the same time.
We solve data rearrangement issues and avoid memory write conflicts in

a way inspired by data interleaving with connection network. Eight outputs
of row SISO are to be written in memory for column according to the ad-
dress described above. Write conflict is avoided by the ith Chase decoder
generating output data Λ : {λ0, λ1, . . . λn−1} in the order of output0 = λi,
outputt+1 = outputt+1 mod n. For example, Chase decoder 0’s output order
is {D0,0, D0,1, . . .}, Chase decoder 1’s output order is {D1,1, D1,2, . . .}. This
setup makes the eight outputs of row SISO different from each other in the
sense of mod 8; thus, they will be stored in different banks. Barrel shifter
is inserted to direct data to the bank where it belongs. The output order of
Column SISO rearranges data similarly.

3 Result and comparison

The proposed TPC decoder is implemented in HDL and synthesized on Char-
tered 90 nm technology by Synopsys Design Compiler. The whole decoder
has four duplications of architecture in Fig. 2, consisting of eight SISO de-
coders (with eight Chase decoders each) and eight interleaving memories
(2 ∗ 8 ∗ 2 k bit each). Ignoring latency of fulfilling four iterations, through-
put is calculated by T = f × P , where f is the decoder frequency and P

is the number of Chase decoders in an SISO. Area A is represented by the
number of equivalent two input NAND gates. If the Chase decoder supports
a maximum code length of 2q, the complexity of decoding a bit is o(q). A
fair comparison of TPC decoders with different code length is obtained using
efficiency E = qT

A . Table I compares the synthesized result at 700 MHz with
the related TPC decoders. Our proposed decoder shows high efficiency while
supporting variable code length compared with other architectures. Coding
gain only slightly declines and is even better in (32, 26)2. Throughput can be
improved by duplicating more Chase decoders that do not affect efficiency.

Table I. Comparison of related decoders

4 Conclusions

This paper proposes a high-efficiency Chase decoder using low complexity al-
gorithms. Moreover, conflict-free memory access model is provided to avoid

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1049



IEICE Electronics Express, Vol.9, No.12, 1044–1050

decoder read and write congestion. The TPC decoder exhibits high efficiency
in cases of variable code length. Proven to be highly flexible and more ef-
ficient than others, our decoder is suitable for future wireless and optical
communication.

Acknowledgments

This work was supported in part by the National NFSC of China
(No. 06970037).

c© IEICE 2012
DOI: 10.1587/elex.9.1044
Received May 07, 2012
Accepted June 04, 2012
Published June 22, 2012

1050


