
IEICE Electronics Express, Vol.9, No.16, 1310–1315

TimFastPlace: Critical-path
based timing driven
FastPlace

Jiliang Zhang1,2a), Yongqiang Lu1b), Qiang Zhou1, Qiang Wu2,
Yaping Lin2, and Kang Zhao1

1 Department of Computer Science and Technology, Tsinghua University

Beijing, China
2 College of Information Science and Engineering, Hunan University

Changsha, China

a) hnu.zjl@gmail.com

b) luyq@tsinghua.edu.cn

Abstract: In this paper, we propose a critical-path based timing
driven FastPlace, named TimFastPlace, which uses an iterative critical
path-based weighting model to optimize the critical path delay at the
equation solving stage. Experimental results on several industry cases
and ISCAS89 cases show that we are able to obtain up to 30.83% Worst
Negative Slack (WNS), an average of 23.42% WNS and 18.87% Total
Negative Slack (TNS) improvement in circuit delays at an average of
2.54% wire length increase. Besides, runtime is kept at the same level
as FastPlace.
Keywords: physical design, critical path, static timing analysis
Classification: Integrated circuits

References

[1] T. Kong, “A Novel Net Weighting Algorithm for Timing-Driven Place-
ment,” Proc. Int. Conf. Computer Aided Design, San Jose, USA, pp. 172–
176, Nov. 2002.

[2] W. Hou, X. Hong, W. Wu, and Y. Cai, “A Path-based Timing-driven
Quadratic Placement Algorithm,” Proc. Conf. Asia and South Pacific De-
sign Automation, Kitakyushu, Japan, pp. 745–748, Jan. 2003.

[3] N. Viswanathan and C. C.-N. Chu, “FastPlace: Efficient analytical
placement using cell shifting, iterative local refinement, and a hybrid
net model,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 24, no. 5, pp. 722–733, 2005.

[4] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” Proc. Int. Symp. Field Programmable Gate Arrays, Monterey,
USA, pp. 203–213, Feb. 2000.

[5] A. B. Kahng and Q. Wang, “Implementation and extensibility of an ana-
lytic placer,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 24, no. 5, pp. 734–747, 2005.

[6] W. Swartz and C. Sechen, “Timing driven placement for large standard
cell circuits,” Proc. Conf. Design Automatic, San Francisco, USA, pp. 211–
215, June 1995.

c© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1310



IEICE Electronics Express, Vol.9, No.16, 1310–1315

[7] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-cell
Placement Tool for Large Industry Circuits,” Proc. Int. Conf. Computer-
Aided Design, San Jose, USA, pp. 260–264, Nov. 2000.

1 Introduction

Modern physical design methodology often needs design iterations for per-
formance/power issues. Especially at top-level design in planning stage, fast
evaluation and initial optimization iterations are very important for design-
ers to make decisions about the entire product performance and design cost.
Hence, crucial requirements on critical path timing convergence in iterative
performance driven VLSI physical designs have emerged many great works
in both academia and industry. Since the dominant interconnect delay can
be handled in placement by the interconnect wire length optimization, much
work can be done at placement stage. So far, timing-driven placement algo-
rithms have been studied extensively, and they can be roughly categorized
into two classes, i.e. the net-based [1] and the path-based [2]. The net-based
usually transforms timing information into the net weights or net constraints,
while the path-based algorithm direct works on the specific paths by handling
the nets/cells on the paths. However, it is hard for the net-based algorithms
to determine the exact net constraints and there may exist over-constraints
since the delay budgeting is usually done in the structure domains of circuit.
In order to quickly determine the convergence of the design in the design
planning stage, developing a fast placement algorithm, especially the tim-
ing driven fast placement algorithm is extremely urgent. Fastplace [3] is a
well-known fast placement algorithm. However, the timing driven placement
based on Fastplace has not yet been developed. Our work focuses on solving
the problems faced in the fast timing-driven global placement stage. In the
subsequent design stage, the detailed placement algorithms with heavy tim-
ing strategy still need to be used to further optimize timing behavior, such
as Dragon2000 [7], Aplace [5] etc. In this paper, specially designed for fast
performance evaluation and convergence in higher planning levels of physical
design, a critical-path based timing driven placement algorithm, TimFast-
Place, is proposed.

2 FastPlace

FastPlace uses a classic quadratic programming based placement model which
is formulated as Eq. (1) shows.

minφ (x, y) = 1/2XT CX + dxX + 1/2Y T CY + dyY (1)

where X and Y are the coordinates of cells, dx and dy are generated by the
connection between the cells and pads, the connection matrix C represents
the relationship between cells. Since the programming in (1) is convex, ana-
lytic placement such as FastPlace just needs to solve a linear system in each

c© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1311



IEICE Electronics Express, Vol.9, No.16, 1310–1315

iteration as Eq. (2) shows.
CX + dx = 0 (2)

FastPlace also employs a cell shifting method to spread the cells after each
time of equation solution. For further wire length improvement it also uses
a heuristic local refinement procedure.

3 TimFastPlace: Critical-path based timing driven FastPlace

3.1 The slack of a path
Given a circuit, the register/latch output ports and the circuit Primary Input
(PI) ports would be the combinational logic path starting points, and the
register/latch input ports and the Primary Output (PO) ports would be the
path ending points. Generally the criticality of a path is justified according
to the slack which is defined to be the maximum amount of delay that can
be added to the path before it becomes critical. Thus a path’s slack can be
computed as:

slack(π) = T − delay(π) (3)

where T is the longest path delay, delay (π) is the delay of path π. According
to the slacks, the setup/hold violations due to late or early signal skews can
be found, on which the optimization methods can work.

3.2 The critical path based timing model
In this section, a Critical Path Based Timing Model (CTM) is proposed.
Path-based algorithms handle critical nets by assigning them different
weights/constraints. We consider two aspects for assigning net weights. One
is the criticality counting, which means that an edge having more critical
paths passing should get a higher weight. CTM is based on the net weight-
ing scheme as Eq. (4) shows.

w(e) =
∑
e∈π

D(slack(π), T ) (4)

where, D is a given weighting function; slack(π) is the slack of the path π,
and T is the longest path delay. The weighting function D is normally given
as a monotonically decreasing function which means to put bigger weights
on smaller-slack paths (minus slacks). The other aspect we considered is to
determine the exact weight on a given net as to one path, i.e. to determine
the function D in Eq. (4). We use the Eq. (5) to determine the function D.

D(slack(π), T ) =

{
(1 − slack(π)/T )δ , s < 0
1 , s ≥ 0

(5)

Furthermore, the wire model for FastPlace is the hybrid model, which uses
the clique model for 2/3-pin nets, and the star model for nets with four or
more pins [3]. During timing-driven placement, we need to assign different
net weight according to different net type. Therefore, we introduce a weight

c© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1312



IEICE Electronics Express, Vol.9, No.16, 1310–1315

control parameter γ for the CTM, as shown in Eq. (6).

w(e) =

⎧⎪⎨
⎪⎩

f(D(slack(π), T )) × k × γ k > 3, s < 0
f(D(slack(π), T )) × γ 2 ≤ k ≤ 3, s < 0
1 s ≥ 0

(6)

where

f(D(slack(π), T )) = 1 +

(∑
e∈π

(D(slack(π), T ) − 1)

)

k is the number of pins of the net, δ is the criticality exponent, T = (1 −
μ)maxπ{delay(π)}, μ is the percentage of expected improvement of the
longest path delay after several timing-driven iterations [5].

In general, the critical path delay on path π can be formulated as the
sum of all the critical net delays on the path. The method for computing the
delay on a critical path is given in [6] as Eq. (7) shows.

delay(π) =
∑
∀e∈π

Rn [CLxSx(e) + CLxSy(e)] +
∑
∀e∈π

[Tn + RnCGn ] (7)

where Tn is the intrinsic gate delay, CGn is the gate input capacitance, Rn is
the equivalent driver resistance, CLx and CLy are the capacitance per length
in the x and y directions respectively, and Sx(e) and Sy(e) are the horizontal
and vertical spans, respectively, of the bounding box of net e.

3.3 TimFastPlace: Design and implementation
The proposed timing driven model is applied in the design planning step in
physical design, in which the critical paths are normally extracted by the
standalone Static Timing Analysis (STA) tools for fast design convergence
in both industry and academia. In this paper, we use Synopsys Astro to
extract the critical paths; our algorithm handles those critical paths in a fast
manner which can greatly help the design planning convergent. We compute
the weight of each critical net according to the Eq. (6) for each critical path.
Hence, the time complexity of the proposed method is O(n), where n is the
number of critical nets. Analytical timing-driven process often requires a few
iterations, and the weight assigned to the net on the critical path should be
accumulated during iterations. We dynamically update the critical path set
according to the results of the STA and adjust net weights based on timing
criticality of each net during iterations. TimFastPlace uses the proposed
CTM to optimize the critical path delay at the equation solving stage as
following steps.
Step 1: Analyze a critical path subset to find out cells which the critical path
passed, and then compute delay (π) according to Eq. (7).
Step 2: Establish matrix to be solved by inputting circuit information, divide
placement region into equal-sized bins, and solve equation to obtain initial
coordinates of each cell.
Step 3: Update matrix: compute for each net, compute w(e) for each net e

based Eq. (6), then use the weight w(e) to modify matrix C and vector d in
Eq. (2) to optimize the timing behavior.

c© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1313



IEICE Electronics Express, Vol.9, No.16, 1310–1315

Step 4: Perform cell shifting to evens out the placement by distributing the
cells over the placement region.
Step 5: Solve equation to obtain the coordinates after cells moving.
Step 6: Repeat 3-5, until Bin Utilization is less than α.
The value of δ in Eq. (5) is specified every time between 1 and 20 in each
iteration, the weight of each critical path will be successively calculated, by
which the connection matrix C and vector d in Eq. (2) will be modified
and the linear system is then solved. The placement will exit until Bin
Utilization [2] is less than α, which is set to 1.0 in our experiment. Finally,
LEF/DEF is input to STA to verify timing behavior of cases.

4 Experimental results

FastPlace and TimFastPlace are implemented in C++ and tested on the Intel
Xeon E5620 server with 8 GB memory. The test circuits used include four
industry cases and three ISCAS89 cases which are remapped to the SMIC
180 nm technology for real industrial STA evaluation. Worst Negative Slack
(WNS) and Total Negative Slack (TNS) are two timing closure metric to
measure the effectiveness of timing driven placement algorithms.

For a direct review of the effectiveness of the proposed path based timing-
driven FastPlace, Fig. 1 is the trend graph after the global placement for
s5378 of ISCAS89 benchmark. The abscissa in Fig. 1 represents the number
of iterations and the vertical axis is the approximate delay of the longest
critical path (denoted by approx delay). We can see from this graph that de-
lay of the critical path increases with the number of iterations first increased
and then decreased. At first, the iteration of all the cells from the middle
of placement region begin to spread out, and this moment the length of the
longest critical path increases, so the delay also increases; After the cells
even basically, our algorithm makes the length of the longest critical path
decrease, and thus delay of the longest critical path begins to decline. As
seen from Fig. 1, TimFastPlace can make delay of the longest critical path
greatly reduced. It shows the timing driven strategy works well on this case

Fig. 1. Optimization trend in comparison with FastPlacec© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1314



IEICE Electronics Express, Vol.9, No.16, 1310–1315

in comparison with FastPlace.
Table I gives the detailed results in comparison with the original Fast-

Place. The critical path driven FastPlace of this paper can achieve up to
30.83% (23.42% on average) WNS improvement and up to 25.07 (18.87%
on average) TNS by STA. The Total Wire Length (TWL) is increased by
2.54% on average and the run time (in seconds) is kept in the same level as
FastPlace.

Table I. Comparison of experimental results with Fast-
Place and TimFastPlace

5 Conclusion

A critical-path based timing driven FastPlace, named TimFastPlace, has
been described. It uses an iterative critical path based net weighting model to
optimize the critical path delay at the equation solving stage. Experimental
results show that TimFastPlace can effectively optimize the timing behavior.

Acknowledgments

This work was supported by the State Key Development Program for Basic
Research of China under Grant No 2011CB302902.

c© IEICE 2012
DOI: 10.1587/elex.9.1310
Received July 22, 2012
Accepted July 30, 2012
Published August 17, 2012

1315


