
IEICE Electronics Express, Vol.9, No.17, 1391–1396

Comparison between 2D
cellular automata based
pseudorandom number
generators

Cesar Torres-Huitzil1a), Marco Delgadillo-Escobar1,
and Marco Nuno-Maganda2

1 CINVESTAV-IPN, Parque Cientifico y Tecnologico TECNOTAM

Km. 5.5 carretera Cd. Victoria-Soto La Marina, C.P. 87130, Mexico
2 Universidad Politecnica de Victoria, Parque TECNOTAM

Km. 5.5 carretera Cd. Victoria-Soto La Marina, C.P. 87130, Mexico

a) ctorres@tamps.cinvestav.mx

Abstract: Pseudorandom number generators (PRNGs) should sat-
isfy two main criteria, high randomness quality and fast computation
of a sequence of numbers. In this paper, a comparative study of two-
dimensional Cellular Automata (CA) based PRNGs is performed to
evaluate the randomness quality and the hardware constraints involved
in terms of configuration parameters such as, transition rules, neigh-
borhoods and bit extraction schemes. Experimental results show that
CA-based PRNGs present good randomness quality using standard test
suites, and they are well suited for parallel implementations in Field
Programmable Gate Array (FPGA) technology taking advantage of the
on-chip fine-grain and distributed computational resources.
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1 Introduction

PRNGs play an important role in several fields such as large-scale biological
simulations, artificial evolutionary computation, cryptography and hardware
testing as substitutes of truly random number generators [1]. Each applica-
tion imposes different statistical and performance requirements to PRNGs
but most implementations trade the randomness quality and the associated
computational complexity to produce them. Several studies have shown that
CA are an alternative technique for PRNG, being one of the main motivations
the good randomness and their hardware-friendly nature: CAs are simple,
regular, locally interconnected, and modular structures [2]. In this paper, the
analysis of two CA-based PRNGs (two-dimensional CA, transition functions,
and the number of neighbors) is presented and used to propose a new CA
configuration with improved randomness quality. Additionaly, an FPGA-
based configurable architecture is used to evaluate performance-quality-cost
trade offs for massive parallel implementations of PRNGs.

2 Two-dimensional CA-based PRNG

Two-dimensional (2D) CA-based PRNG consists of an array of locally in-
terconnected cells. Each cell holds a binary cell state which corresponds to
a particular bit in the random number. The number of cells used in the
grid is adjusted depending on the required wordlength for random numbers.
The connectivity among interconnected cells is defined locally in the cell. An
m-input boolean transition function is defined for each cell, where m is the
number of neighbors used for the cell. Each time a new random number is
generated, every cell updates its own state by computing this function at
a given time. After all cells update their states, a new random number is
obtained by collecting the bits scattered among the cells.

For the purpose of evaluating the quality-performance implementation
tradeoff, two CA configurations were used as reference. An homogeneous
assymetric connections CA proposed in [2], conceptually shown on the left in
Figure 1, presents good randomness quality based on a 2D grid of 8x8 cells
with periodic toroid boundary conditions. The connectivity rules for a given
cell is as follows {2n2w, c, n2e, 2se}. Authors used the compass directions n

(north), s (south), w (west), and e (east) to indicate unit displacement along
columns and rows relative to a center cell c. Several steps in a given direction
are indicated by a factor that preced the direction. The 2D CA proposed
in [1], shown on the right in Figure 1, is another PRNG that produces high
quality sequences of random numbers. Figure 1 shows the so called rules map,
indicating different transition rules for cells; missing cells on the boudary are
considered to be null. Let S be the state of the cell at position (i, j), at time
t, its state at the next time step, is then computed as:

Si,j(t + 1) = x ⊕ (c · Si,j(t)) ⊕ (n · Si−1,j(t)) ⊕
(w · Si,j−1(t)) ⊕ (s · Si+1,j(t)) ⊕ (e · Si,j+1(t)) (1)

where ⊕ and · are the xor and and logical operators, respectively, and c, n, s,
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Fig. 1. Two-dimensional CA-based PRNGs: an homoge-
neous (left) and no-homogeneus (rigth), see [2]
and [1], respectively, for details.

e, and w are binary variables, indicating whether the respective neighboring
cell state is taken into account. The rule of a cell is then given by the 6-bit
string xcnwse and just four different transition rules were used.

Since stochastic heuristic search techniques were used to design the above
cited PRNGs, there is no guarantee that the reported results are optimal
and hence better 2D CAs cannot be constructed by modifying some param-
eters [1, 2]. Under this observation, in this paper, we evaluate the nature of
4-neighbor neighborship as a mean to improve the randomness quality. A 2D
CA configuration that keeps most of the parameters proposed in [2] was used,
except that different assymetric 4-neighbor neighborhoods were explored [3].
The four neighbors were restricted to be located in a 5 × 5 area around a
center cell in order to reduce the searching space. After an exhaustive search,
the neighborhood that provides the best results according to standard sta-
tistical tests, is given by {2sw, 2s2w, ne, 2e}. Unlike the CA-based PRNG
proposed in [2], the center cell c, is not used in the neighborhood. According
the the experimental results, section 3, the randomness quality of the found
CA-based PRNG, denoted as NPCA hereafter, is better than the reported in
[1, 2]. Other neighborhoods were also found that provide randomness quality
at least as good as those reported in the literature. Several good quality CA
configurations have applications in the efficient implementation of parallel
PRNGs in order to reduce correlation among numbers and autocorrelation.

3 Results and experimental evaluation

The performance of a PRNG is measured by various statistical tests, being
one of the most commonly used the Diehard battery which consists of 18
different and independently tests. Most tests return p−values, which should
be uniform distributed over (0, 1) for truly independent random bits. Data
streams, 3 million 64-bit words, were collected from the 2D CAs which were
first initalized to a high-entropy state by clocking for 64 cycles from an initial
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Table I. Diehard test results for three different CA-based
and the Mersenne-Twister PRNGs.

Approach p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17
Sha. 0.9 1 1 0.92 0.05 0.95 0.57 0.96 1 0.84 1 1 1 1 0.90 0.75 1
Tom. 1 1 1 1 0.95 0.78 0.92 0.93 1 0.92 1 1 0.95 1 1 1 1
NPCA 1 1 1 1 1 0.95 1 0.96 1 0.96 1 1 1 1 0.91 1 1
MT 1 1 1 0.96 0.9 0.95 0.92 0.96 1 0.92 0.90 1 1 1 0.90 1 1

state of a single 1 in cell (0, 0) [2]. Results of randomness tests for different
PRNGs, Shackleford (Sha.), Tomassini (Tom.), a new proposed CA-based
(NPCA), and Mersenne-Twister (MT), are shown in Table I and Figure 2.

3.1 Randomness quality
The models were tested with a 95% of confidence level. Thus, when p −
value < 0.025 (lower threshold) and p − value > 0.975 (upper threshold)
means the PRNG fails the test, i.e, some p−values are outside of the feasible
area as shown in Figure 2. In Table I, pi stands for the ratio of the p−values

that pass the test to the total number of p−values in the i−th test (Birthday
Spacing, Overlapping 5-Permutation, Binary Rank 31×31 and 32×32, Binary
Rank 6× 8, Bitstream, OPSO, OQSO, DNA, Count-The-1’s 01, Count-The-
1’s 02, Parking Lot, Minimum Distance, 3DS Spheres, Squeeze, Overlapping
Sums, Runs, Craps). Thus, for instance, p5 = 0.05 means that Shackleford
CA PRNG almost fails the Bitstream test since the p− values are outside of
the confidence region. When pi = 1 (pi = 0) means that all the p − values

fully pass (fail) the i − th test.
Figure 2 shows graphs for p − value distributions and linear regressions

for different PRNGs. The experiments show that in general the CA-based
PRNGs perform well on the Diehard test suite. We analyzed the distribution
of all p−values, which in the ideal case must fit to a rect line. The Mersenne-
Twister PRNG was included in the evaluation for reference purposes as it
produces among the highest-quality sequences of random bits.

From the experiments and results, it can be derived that good random-
number sequences can be produced by 2D CA, however, it should be pointed
out that most of them are sensitive to architectural parameters of the CA. For
instance, it can be observed that if the method to extract random numbers
from a given 2D CA is changed, the results migth be likely different. On the
other hand, Mersenne-Twister PRNG shows to be more robust to different
methods to extract and create a sequence of random numbers as tested by
Diehard. Experiments on other parameter variations are carried out and for
space considerations are not presented here.

3.2 Hardware requirements
The 2D CA PRNGs were modeled using the Very High Speed Integrated
Circuits Hardware Description Language (VHDL) targeted to Xilinx FPGA
devices. A top-down approach was employed and the use of packages and
generics were promoted in order to have a highly configurable VHDL model.
The FPGA hardware resources utilization is summarized in Table II. A 3-6
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Fig. 2. p-value distributions (left column) and linear re-
gressions (right column) for different PRNGs.

input transition rule maps entirely into a single Virtex-6 LUT without any
influence of the function complexity. Thus, the total number of LUTs/flip-
flops is equal to the size of the grid used for the CA-based PRNG. The
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Table II. Hardware resource utilization of CA-based
PRNGs and Mersenne-Twister in a Virtex 6
XC6VLX240T device.

PRNG LUTs Slice Flip-Flops Slices Block RAM

CA-based 64 64 18 0
Mersenne-Twister 127 41 49 64 × 32

Xilinx place and route tools produce fairly the same results for each 2D CA-
based PRNG than can be clocked at frequencies over 500 MHz. With this
frequency, 500-million pseudorandom numbers per second can be generated
on-chip. However, if the numbers are used off-chip, the input/output over-
head must be considered and the throughput should be lower. Theoretically,
it could be possible to implement around 2000 2D CA-based PRNGs on-
chip that yields massive parallel pseudorandom numbers per second in the
Virtex 6 device (37,680 slices). In practice, the PRNG density should be
less since to capture and extract the whole bitstreams concurrently would
require unrealistic databus widths. The potential massive parallel PRNGs
into a single FPGA could outperform the results reported in [4], where a
Graphical Processing Unit (GPU)-based was used, and in [5] where PRNGs
were targeted to on-chip multiple cores. The randomness quality of CA-based
PRNGs compares well with the Mersenne-Twister PRNG.

4 Conclusions

Through experiments with 2D CA, efficient means of producing PRNGs that
perform well compared to well-known PRNGs have been identified. After
presenting performance on standard statistical tests for randomness, we dis-
cussed tradeoffs between required hardware FPGA resource and PRNG per-
formance. Generally, there are four aspects affecting the randomness of 2D
CA-based PRNGs: boundary condition, transition rule, length of CA, and
initial seed. 2D CA-based PRNGs produce good quality random numbers for
potential embedded applications or for massive parallel implementations un-
der real-time constraints due to its performance and affordable cost in silicon
area. FPGAs provide a suitable substrate for CA-based PRNGs implemen-
tation due to their granularity and the underlying architectural organization
match well 2D CA structures.
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