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Abstract: Sequential Compressive Sensing, which may be widely
used in sensing devices, is a popular topic of recent research. This
paper proposes an online recovery algorithm for sparse approximation
of sequential compressive sensing. Several techniques including warm
start, fast iteration, and variable step size are adopted in the proposed
algorithm to improve its online performance. Finally, numerical simu-
lations demonstrate its better performance than the relative art.
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1 Introduction

Compressive sensing (CS) [1, 2] is a recently proposed concept that enables
sampling below Nyquist rate, without (or with little) sacrificing reconstruc-
tion quality. Based on exploiting the signal sparsity in typical domains, CS
methods can be used in the sensing devices, such as MR imaging [3] and AD
conversion [4], where the devices have a high cost of acquiring each additional
sample or a high requirement on time. Therefore, as the sparsity level is often
not known a priori, it can be very challenging to use CS in practical sensing
hardware.

Sequential compressive sensing [5] can effectively deal with the above
problems. Sequential CS considers a scenario where the observations can
be obtained in sequence, and computations with observations are performed
to decide whether these samples are enough. Consequently, it is allowed to
recover the signal either exactly or to a given tolerance from the smallest pos-
sible number of observations. There have been several recovery algorithms for
sequential CS. Asif [6] solved the problem by homotopy method. Garrigues
[7] discussed the Lasso problem with sequential observations.

This work extends a recent proposed zero-point attracting projection
(ZAP) algorithm [8] to the scenario of sequential CS. ZAP employs an ap-
proximate l0 norm as the sparsity constraint and updates in the solution
space. Comparing with the existing algorithms, it needs fewer measurements
and lower computation complexity. Therefore the new algorithm can pro-
vide a much more appropriate solution for practical sensing devices, which is
validated by numerical simulations.

2 Background

2.1 Compressive sensing
Suppose x is an unknown sparse signal, which is N -length but has only K

nonzero entries, where K � N . In their ice-breaking contributions, Can-
des et al suggested to measure x with under-determined observations, i.e.
y = Ax, where A consists of random entries and has much fewer rows than
columns. They also proved that l0 norm or l1 norm constraint optimization
can successfully recover the unknown signal with overwhelming probability,

x̂ = arg min
x

‖x‖0 or 1, subject to y = Ax. (1)

There are many methods proposed to solve (1), of which concerned in this
work is ZAP.

2.2 Zero-point attracting projection
ZAP iteratively searches the sparsest result in solution space. The recursion
starts from the least square optimal solution, x(0) = A†y, where A† =
AT(AAT)−1 denotes the Pseudo-inverse matrix of A. In the nth iteration,
the solution is first updated along the negative gradient direction of a sparse
penalty,

x̃(n + 1) = x(n) − κ · ∇g(x(n)), (2)
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where g(·) denotes a sparse constraint function and κ denotes the step size.
In the reference, an approximate l0 norm is employed and the corresponding
ith entry of ∇g(·) is

{∇g}i(x) =

{
α · sgn(xi) − α2xi |xi| ≤ 1

α ;
0 elsewhere,

(3)

where α is a controlling parameter and it is readily recognized that the
penalty tends to l0 norm as α approaches to infinity. Then x̃(n + 1) is
projected back to the solution space to satisfy the observation constraint,

x(n + 1) = Px̃(n + 1) + Q, (4)

where P = I − A†A is defined as projection matrix and Q = A†y. Equa-
tion (2) appears that an attractor locates at the zero-point is pulling the
iterative solution to be sparser, as explains the first part of the algorithm’s
name. The last part comes from (4), which means that x̃(n + 1) is projected
back to the solution space.

2.3 Sequential compressive sensing
Imagining a scenario that the samples are measured in realtime. At time m,
an m-length measurement vector ym = Amx is collected and utilized to solve
the sparsest solution by (1). If the available measurements are not enough to
recover the original sparse signal, a new sample ym+1 = aT

m+1x is generated
at time m + 1, where am+1 denotes the sampling weight vector. Thus the
problem becomes solving ym+1 = Am+1x, where

ym+1 =
[

ym

ym+1

]
, Am+1 =

[
Am

aT
m+1

]
.

Obviously, it is a waste of resources if the recovery algorithm is re-initialized
without the utilization of earlier estimate, i.e. the available result at time m.
Consequently, the basic aim of sequential compressive signal reconstruction
is to find an effective method of refining x̂m+1 based on the information of
x̂m.

3 Online ZAP for sequential compressive sensing

For conciseness, the detailed iteration procedure of online ZAP is provided
in Table I. It can be seen that online ZAP has two recursions. The inner
iteration is to update the solution by ZAP with the given measurements. The
outer iteration is for sequential input. In order to improve the performance,
several techniques are used in online ZAP and they are discussed in the
following subsections.

3.1 Warm start
ZAP works in an iterative way to produce a sparse solution via recursion
in the solution space. In the online scenario, the previous estimate can be
used to initialize the incoming iteration, i.e. xm+1(0) = xm(nm), where nm

denotes the maximum iteration number at time m.
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Table I. The Procedure of Online ZAP.
Input: α, κ0, η1, η2, T,Q;
Initialize online ZAP: x0(0) = 0,m = 0, n0 = 0.
Repeat: (for time instant m);

for the new am+1 and ym+1, calculate Γm+1 by (5)
and then produce Pm+1 and Qm+1;

decrease step size by κm+1 = η1κm;
m = m + 1;
Initialize ZAP: n = 0,xm(0) = xm−1(nm−1), κ = κm;
Repeat: (for the nth iteration of ZAP);

Update x̃m(n + 1) with the zero attraction by (2) and (3);
Project xm(n + 1) back to the solution space by (4);
if ‖xm(n + 1)‖1 > ‖xm(n)‖1 and κ > κm/Q,

decrease the step size by κ = η2κ;
n = n + 1;

Until: n > T or κ < κm/Q.
nm = n − 1;

Until: online ZAP stop criterion is satisfied.

3.2 Fast iteration
The Pseudo-inverse matrix A† plays an important role in the recursion of (4).
Considering the high computational cost of matrix inverse operation, A† is
generally prepared before iterations. However, in the online scenario, Am

becomes time-dependent and A†
m = AT

m

(
AmAT

m

)−1 need to be recalculated
in each time instant. In order to reduce the complexity, the Pseudo-inverse
matrix is updated iteratively.

Define Γm =
(
AmAT

m

)−1, which is already available after time m. Con-
sequently, as the new sample is arriving, using basic algebra one has the
recursion

Γm+1 =
[[

Am

aT
m+1

] [
AT

m am+1

]]−1

=

[
Γ−1

m αm

αT
m βm

]−1

=

[
Γm + θmΓmαmαT

mΓm −θmΓmαm

−θmαT
mΓm θm

]
, (5)

where

αm = Amam+1, βm = aT
m+1am+1, θm =

1
βm − αT

mΓmαm
.

3.3 Variable step size
As the step size in gradient descent iterations, the parameter κ controls a
tradeoff between the speed of convergence and the accuracy of the solution.
In order to improve the performances of the proposed algorithm, the idea of
variable step size is taken into consideration. The control scheme is rather
direct: κ is initialized to be a large value after new sample arrived, and
reduced by a factor as long as the iteration is convergent. The reduction is
repeated several times until κ is sufficiently small. Since the algorithm has
two recursions, we employ η1 and η2 to denote the decreasing speed of outer
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Fig. 1. The reconstruction MSD versus the number of
measurements M .

and inner iteration, respectively. In addition, κ is no longer decreased when
the step size is rather small.

3.4 Stop rules
There are two kinds of recursions requiring stop rules in the online ZAP
algorithm. Firstly, after the mth sample arrived, xm(n) iterates with n to
produce the best estimate based on the m measurements. The inner itera-
tion should stop after the algorithm reaches steady state, which means the
sparsity penalty starts increasing. Consequently, the inner recursion stops
(a) when the number of reductions of κ reaches one-Qth of its initial value
or (b) when the number of iterations reaches the bound T .

Secondly, as soon as the sparse signal is successfully reconstructed, the
following samples are no longer necessary and the sensing procedure stops.
Therefore, the outer recursion stops when the estimate error is below a par-
ticular value ε.

4 Experiment and discussion

Computer simulation is presented in this section to verify the performance
of the proposed algorithm compared with typical sequential CS reconstruc-
tion algorithm for solving BPDN problem [6], whose MATLAB code can be
downloaded from the website [9]. In the following experiment, the entries of
each row of A are independently generated from normal distribution. The lo-
cations of K nonzero coefficients of sparse signal x are randomly chosen with
uniform distribution [1, N ]. The corresponding nonzero coefficients are Gaus-
sian with mean zero and unit variance. The system parameters are N = 256
and K = 20. The number of measurements M increases form 1 to 120. The
parameters for BPDN are set as the recommended values by the author. The
parameters for online ZAP are α = 1, κ0 = 0.02, η1 = 0.99, η2 = 0.8, T = 50,
Q = 2000. The simulation is repeated ten times, then Mean Square Deriva-
tion (MSD) between the original signal and reconstruction signal as well as
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Fig. 2. The CPU running time versus the number of mea-
surements M .

the average running time is calculated.
Figure 1 shows MSD curve according to M . As can be seen, the per-

formance of ZAP is better than that of BPDN. When the sparse signal is
recovered successfully, the number of measurements BPDN needs is larger
than 80, while the number ZAP algorithm needs is less than 80. Figure 2
demonstrates the CPU running time as M increases. Again, ZAP has the
better performance. The CPU time of BPDN is twice than that of ZAP for
successful recovery (according to Fig. 1, here M is chosen as 80 for compari-
son).

5 Conclusion

We have introduced in this paper a new online signal reconstruction algo-
rithm for sequential compressive sensing. The proposed algorithm extends
ZAP to sequential scenario. And in order to improve the performance, some
methods, including the warm start and variable step size, are adopted. The
final experiment indicates that the proposed algorithm needs less measure-
ments and less CPU time than the reference algorithm.
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