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Abstract: In soft-decision fusion- (SDF-) based cooperative spec-
trum sensing, weighting the coefficients vector is the main factor af-
fecting the detection performance of cognitive radio networks. In this
paper, the use of particle swarm optimization (PSO) algorithm as a
prominent technique is proposed to optimize the weighting coefficients
vector. The proposed PSO-based scheme opts for the best weighting
coefficients vector, leading to improved detection performance of the
system. The performance of the proposed method is analyzed and
compared with genetic algorithm- (GA-) based technique as well as
other conventional SDF schemes through computer simulations. Sim-
ulation results validate the robustness of the proposed method over all
other SDF techniques.
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1 Introduction

The electromagnetic radio spectrum is a rare natural resource, the efficient
use of which is of extreme importance. To prevent significant interference be-
tween different systems, usually, the spectrum bands are statically allocated
to specific services. Consequently, only portions of the spectrum are heavily
utilized. Cognitive radios (CRs) determine the frequency bands unutilized
by licensed system, or primary user (PU), and intelligently exploit it based
on spectrum observations [1]. Cooperative spectrum sensing can be classified
into two main categories of hard-decision fusion (HDF) [2] and soft-decision
fusion (SDF) [3, 4, 5]. In [3], equal gain combination (EGC) and maximal
ratio combination (MRC) schemes have been investigated as a solution for
weighting the coefficients vector of all CRs in a linear SDF-based system.
However, these methods are not optimal since allocated weights to different
users are all equal in the EGC method or are merely based on users’ received
signal-to-noise ratio (SNR) in the MRC technique. In [4, 5], the idea of
maximizing the normal deflection coefficient (NDC) and modified deflection
coefficient (MDC) to optimize the weighting coefficients vector, was proposed.
Nevertheless, the mentioned methods lead to sub-optimal results, imposing
some performance deteriorations. In [6], the SDF-based cooperative sensing
using genetic algorithm (GA) was proposed. Although the GA-based method
provides a good solution for weighting the coefficients, it suffers from slow
convergence and sub-optimality due to its reliance on binary encoding of a
naturally-continuous domain. In this paper, the use of particle swarm opti-
mization (PSO) algorithm is proposed for SDF-based cooperative spectrum
sensing to optimize the detection performance of the system. Unlike GA,
PSO algorithm deals with continuous variables and does not require binary-
decimal encoding/decoding. In addition, there is lesser number of adjusting
parameters for the PSO algorithm than those of the GA.

2 System model

Fig. 1 demonstrates the block diagram of SDF-based cooperative spectrum
sensing in which a fusion center (FC) receives statistical measurements from
M secondary users (SUs) in the CR network. SUs operate as relays because
they simply amplify and forward the PU signal to FC. The final decision
on the presence of PU is made by the FC as it conducts SDF-based linear
weighted calculations on the received SUs signals.

At each SU, the sensing job can be expressed as the binary hypothesisc© IEICE 2012
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Fig. 1. Block diagram of the cooperative spectrum sens-
ing

test,
Absence → H0: Xi[n] = Wi[n]

Presence → H1: Xi[n] = giS[n] + Wi[n]
(1)

where Xi[n] is the received sampled signal at ith SU receiver and i = 1, 2, . . . ,

M , n = 1, 2, . . . , K, K = 2BTs is the total number of samples of the received
signal in which B is the signal bandwidth and Ts is the sensing time, gi is the
gain of the channel between PU and ith SU, S[n] is the transmitted signal
from PU which is considered as an independent and identically distributed
(i.i.d.) Gaussian random process with zero mean and variance σ2

S i.e. S[n] ∼
N (0, σ2

S), and Wi[n] is additive white Gaussian noise (AWGN) of ith sensing
channel (PU-SU) with zero mean and variance σ2

Wi
i.e. Wi[n] ∼ N (0, σ2

Wi
).

The final test statistic Z calculated by FC before decision making block can
be represented by Z =

∑M
i=1 ωiZi where Zi =

∑K
n=1 |Ui[n]|2 is the energy

collected by FC from the ith SU signal and Ui[n] =
√

PR,ihiXi[n] + Ni[n] is
the corresponding received signal at FC in which PR,i is the transmit power
of ith SU and hi is the channel gain between ith SU and FC. It is assumed
that the reporting channel (SU-FC) noise Ni[n] is AWGN with zero mean
and variance δ2

i i.e. Ni[n] ∼ N (0, δ2
i ). Finally, ωi is the weighting coefficient

of the ith path. Since all random variables {Zi} are normally distributed,
the resultant test statistic Z has also normal distribution with parameters as
follows [4]:

E(Z|H0) =
∑M

i=1
ωiKσ2

0,i (2)

E(Z|H1) =
∑M

i=1
ωiKσ2

1,i (3)

var(Z|H0) =
∑M

i=1
2ω2

i K(σ2
0,i + δ2

i )
2 = �ωT ΦH0 �ω (4)

var(Z|H1) =
∑M

i=1
2ω2

i K(σ2
1,i + σ2

0,i)
2 = �ωT ΦH1 �ω (5)

where σ2
0,i = PR,i|hi|2σ2

Wi
+ δ2

i and σ2
1,i = PR,i|gi|2|hi|2σ2

s + σ2
0,i are variances

of Ui[n] under hypotheses H0 and H1, respectively. �ω = [ω1, ω2, . . . , ωM ]T de-
notes the weighting coefficients vector which is to be optimized and the super-
script T represents the transpose of the vector. The covariance matrices un-

der H0 and H1 are ΦH0 = diag(2Kσ4
0,i) and ΦH1 = diag

(
2K
(
PR,i|gi|2|hi|2σ2

s+
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σ2
0,i

)2
)

, respectively where diag(.) is square diagonal matrix whose diagonal

elements are the elements of a given vector. Assuming the energy threshold
at FC is β then, Z ≷H1

H0
β demonstrates the likelihood ratio. Therefore, the

final probability of detection Pd and probability of false alarm Pf can be
expressed as

Pf = P (Z > β|H0) = Q

(
β − E(Z|H0)√

var(Z|H0)

)
(6)

Pd = P (Z > β|H1) = Q

(
β − E(Z|H1)√

var(Z|H1)

)
(7)

Substituting (2) to (5) into (6) and (7) and computing Pd in terms of Pf , we
can conclude:

Pd(�ω) = Q

⎛
⎝Q−1(Pf )

√
�ωT ΦH0 �ω − �ωT�θ√
�ωT ΦH1 �ω

⎞
⎠ (8)

where Q(x) =
∫+∞
x

1√
2π

e−t2/2dt, �θ = [θ1, θ2, . . . , θM ]T , θi =KPR,i|gi|2|hi|2σ2
s .

Equation (8) provides a reliable measure of detection performance in SDF-
based cooperative sensing for a fixed set of false alarm probabilities. It is
observable that the detection performance is highly dependent on �ω. There-
fore, the optimal solution is the weighting vector which maximizes Pd in (8).
However, since any real multiple of the optimal weighting vector can also
be considered as the optimal solution, the �ω used in this work satisfies the
conditions 0 < ωi < 1 and

√∑M
i=1 ω2

i = 1 to reduce the search space of the
PSO.

3 Particle swarm optimization-based weighting method

PSO algorithm [7] is abstracted from social behavior of swarm of fishes and
birds. The behavior of these social organizations is emulated by PSO algo-
rithm. Each particle in PSO algorithm functions based on its own knowledge
as well as the group knowledge and has two main features: position and
velocity. In each iteration, the information about the best position is cooper-
atively exchanged among the particles. After adequate number of iterations,
the algorithm converges to the optimal solution of the objective function.

In this work, the problem is to maximize the objective function Pd(�ω) in
(8). The steps involved in the PSO algorithm are as follows:

Step 1: Considering the number of particles are N , initialize the al-
gorithm by randomly generating N numbers of �ωs = [ω1, ω2, . . . , ωM ]T :
(s = 1, . . . , N) in the range of 0 and 1. For simplicity, the position and
velocity of particle s at iteration j are represented by �ω(j)

s and �v(j)
s , re-

spectively. Particle velocities are initially set to zero.
Step 2: Evaluate the values of the objective function corresponding to
initial particle positions as Pd

(
�ω

(0)
1

)
, Pd

(
�ω

(0)
2

)
, . . . , Pd

(
�ω

(0)
N

)
.

Step 3: Find the maximum value of the objective function in the step
2 and set its equivalent particle position as the Pbest,0. Set the iteration
number j = 1.
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Step 4: At the jth iteration, find the velocity of the sth particle as follows:

�v(j)
s = �v(j−1)

s + c1r1

[
P best ,j − �ω(j−1)

s

]
+ c2r2

[
Gbest − �ω(j−1)

s

]
(9)

where c1 and c2 are the learning acceleration coefficients, r1 and r2 ∼
U(0, 1) are uniformly distributed random numbers which present stochastic
components to the algorithm. P best ,j is the best value of experienced
position of the particles at the jth iteration. Global best position (Gbest)
is the best value of experienced position among all iterations.
Step 5: Update the sth particle position at the jth iteration using:

�ω(j)
s = �ω(j−1)

s + �v(j)
s (10)

Evaluate the values of objective function corresponding to new particle
positions as Pd

(
�ω

(j)
1

)
, Pd

(
�ω

(j)
2

)
, . . . , Pd

(
�ω

(j)
N

)
.

Step 6: Find the maximum value of the objective function in the step 5
and set its equivalent particle position as the P best ,j . If P best ,j ≥ Gbest ,
replace Gbest with P best ,j .
Step 7: If the algorithm is converged to a stable value, stop the process.
Otherwise, set the iteration number as j = j + 1 and repeat from step 4.

4 Simulation results

In this work, the proposed PSO-based SDF technique has been implemented
in MATLAB and evaluated and compared with GA-based and conventional
NDC-, MDC-, MRC- and EGC-based SDF methods. Following the work
in [4], we randomly generate the channel gains {gi, hi} and noises {σ2

Wi
, δ2

i }
which eventually affect the system performance. Table I demonstrates the
overall simulation parameters used in this paper. The channel noises and
gains pertaining to every CR user are chosen to realize low SNR condition
(SNR < −10 dB) at FC to confirm the effectiveness of the proposed algo-
rithm. Since the channel is considered to be a slow fading channel, {gi}
and {hi} are assumed to be constant over every sensing time interval. The

Table I. Simulation parameters
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Fig. 2. (a) Comparison of probability of detection over
100 iterations for PSO and GA, (b) Compari-
son of probability of detection versus probability
of false alarm for PSO-assisted, GA-assisted and
other SDF-based schemes

convergence comparison between PSO- and GA-based schemes for a given
Pf = 0.25 are shown in Fig. 2 (a). As it can be seen, the PSO-based method
converges after 30 iterations while the convergence for GA-based technique
is attained after 44 iterations. This implies the fast convergence of the pro-
posed PSO algorithm. An approximate improvement of 32% in convergence
speed of PSO-based method is obvious which confirms the suitability of the
algorithm for real time applications.

The optimal weights obtained by PSO and GA algorithms in Fig. 2 (a)
are used to plot the receiver operating characteristics (ROC) curve shown
in Fig. 2 (b) which illustrates the probability of detection of PSO-based,
GA-based and all other conventional schemes for different given probabili-c© IEICE 2012
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ties of false alarm. It is observable that PSO-based method outperforms all
other methods with a large difference which validates the robustness of our
proposed technique. For instance, for the fixed probability of false alarm
Pf = 0.1, the probability of detection achieved by PSO is 97% which is the
highest among all.

5 Conclusion

A main challenge facing cooperative spectrum sensing schemes in CR net-
works is the proper selection of the weighting coefficient of each SU and
consequently, techniques to optimize these coefficients are vital to the overall
detection performance of the system. In this paper, an improved SDF co-
operative sensing method based on PSO algorithm has been proposed. The
proposed method has been extensively compared with all other conventional
techniques such as GA-, NDC- and MRC-based methods. Simulation results
indicate that the proposed scheme outperforms all other SDF-based schemes
with stationary convergence speed.
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