
IEICE Electronics Express, Vol.9, No.6, 509–514

An enhanced touch event
processing on Android

Y.K. Lim1,3, C.G. Kim2a), and S.D. Kim1

1 Department of Computer Science, Yonsei University

134 Shinchon-dong, Seodaemoon-ku, Seoul, Korea
2 Department of Computer Science, Namseoul University

21 MaejuRi, SeongwhanEub, CheonAn, ChoongNam, Korea
3 LG Electronics

327–23 Gasan-dong, Geumcheon-gu, Seoul 153–802, Korea

a) cgkim@nsu.ac.kr

Abstract: The evolution of Android smartphone has increased the
importance of touchscreen capabilities as user interaction as well as
user input method. However, due to the limitation of Android archi-
tecture, every touch event may not create its corresponding display
update all the times. To overcome this limitation, this paper proposes
a novel technique of Touch Event Handling Block (TEHB) with capa-
bility of virtual touch event generation and low pass filters. TEHB is
implemented on Android 2.2 and its performance simulations show that
TEHB can achieve more performance gain than conventional triggering
method.
Keywords: Android, touchscreen, touch event, low pass filter
Classification: Wireless communication hardware

References

[1] D. Ehringer, The dalvik virtual machine architecture, March 2010 [Online]
http://davidehringer.com

[2] N. FitzRoy-Dale, I. Kuz, and G. Heiser, “Architecture Optimisation with
Currawong,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 1, pp. 115–119, Jan. 2011.

[3] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of An-
droid Application Security,” Proc. 20th USENIX Conference on Security
(SEC’11), Aug. 2011.

[4] [Online] http://developer.android.com/sdk/android-2.2.html.
[5] R. Isermann, Mechatronic Systems : fundamentals, 2nd Edition, Springer-

Verlag, London, 2005.
[6] R. Schaumann and M.E. Van Valkenburg, Design of Analog Filters, 2nd

Edition, Oxford University Press, 2001.
[7] C. Pozrikidis, Numerical Computation in Science and Engineering, Second

Edition, Oxford University Press, 2008.
[8] [Online] http://www.optofidelity.com/en/test-automation/

touch-screen-tester

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

509



IEICE Electronics Express, Vol.9, No.6, 509–514

1 Introduction

One important change being lead by Smartphone evolution is touchscreen
based user interaction. Touchscreens allow Smartphone to have more func-
tionality and enhance users’ interaction by placing buttons of any shape
anywhere on the screen. In Android, a customized embedded Linux system
for Smartphone, applications are written in Java and executed within Dalvik
Virtual Machine (DVM) [1]. They are reliant on a system framework for
services, some of which run in a separate process. They communicate across
processes using a custom IPC mechanism. Moreover, the complex layout of
Android application programs gives rise to complications such as long view
system processing time, in which the next scene cannot be displayed quickly
enough [2, 3]. For example, a touch event is processed by multiple layers of
Android, in which events are exchanged between many threads and processes,
having many factors that slow down the process. Therefore, this is closely
related with the reason why a certain touch event is lost and provides poor
quality support for touch-based user interfaces. This paper proposes Touch
Event Handling Block (TEHB) to compensate touch event losses and deliver
touch event to display block seamlessly.

The conventional View System in Android might have problems with
processing rushing touch events like dragging because of the following reasons.
First, a screen update is being triggered by a touch event so that consecutive
touch events could be piled up especially when touch events happen too
many times to be handled by a system. Second, each touch event might
have different arriving time to the relevant View; therefore, there might be a
touch event that does not create display update in case of successive events.
Finally, the case that touch event occurrence cycle and display refresh cycle
might be different may cause the situation that a touch event cannot create
display update.

2 Touch Event Handling Block (TEHB)

The proposed TEHB, a novel function block shown in Fig. 1, is not syn-
chronized to touch event inputs but creates a new display thread internally
by generating new coordinates upon every display update independent from
the actual touch coordinates. It compensates touch event delivery losses by
generating virtual touch events and also calibrates irregularity of touch event
delivery time using combination of low pass filters.

The algorithm to generate new coordinates for the proposed method con-
sists of four steps: Noise Filtering, Up-sampling, Low-pass Filtering, and
Delay Compensation. For the performance evaluation, this method is imple-
mented on Listview, the mostly used application framework component in
Android.

2.1 Noise filtering
In touchscreen, touch noises can be defined as touch coordinates value re-
gardless of actual touch events made by users. In order to mathematically

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

510



IEICE Electronics Express, Vol.9, No.6, 509–514

Fig. 1. Conventional vs. proposed method

model the noise reduction, Spring-damper system [5] with 1 degree of free-
dom is created, shown in Fig. 2 (a). Mass-spring-damper model [5] is widely
used as a basic vibration modeling. Spring-damper model is a slight variation
from Mass-spring-damper model in which the mass value is set to zero. In
a physical vibration model, Spring-damper model may be inapplicable since
mass can never be zero. However, it is applicable for its use in eliminating
the fast vibration of Listview.

When touch coordinates are defined as y(tn) = y[n] and the equation
of motion is assigned with discrete digits via limited differentiation, Noise
Filtering equation can be derived as follows:

y[n] =
2k

2k + 3c
x[n] +

4c

2k + 3c
y[n − 1] − c

2k + 3c
y[n − 2] (1)

Since constant k and c are located in the numerator and denominator, re-
spectively, k is set as 1 and c is adjusted to find the most adequate solution
for the device.

2.2 Up-sampling and low-pass filtering
Up-sampling is realized by padding the touch coordinates used recently. Sup-
pose there are 30 touch coordinates per second and the display refresh rate
is 60 samples per second, recent touch coordinates begin to be padded. If
touch coordinates, at this point, are upsampled just as they are, the screen
dragging does not become seamless. For seamless connection, upsampled
touch coordinate stream should be passed through low-pass filter function.
When input signals are applied to touch coordinates at 60 Hz sampling rate,
they can be expressed as x[n] because touch coordinates are defined as x[0],
x[1], . . . , x[n − 1], x[n], and so on. At this time, they are defined every
16.7 ms and the time instances tn are equal to the time period T (tn = nT ).
Low-pass filter can be made from FIR and IIR; however, for better band-
width limitation performance in the identical degree, biquad IIR filter [6] is
used to construct low-pass filter. The 2nd order biquad filter [6] is shown in
Fig. 2 (b). Here, the block Z−1 signifies the delay factor, ⊕ means addition,

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

511



IEICE Electronics Express, Vol.9, No.6, 509–514

and other variables written on the top of the signal route arrow indicate mul-
tiplication. The specifications of the filter used in this paper are as follows:
Sampling frequency is 60 Hz, cut-off frequency and damping constants are
decided as 10 Hz and

√
2/2 (approximately 0.707), respectively, through our

experiments. Each variable, {a0, a1, a2, b0, b1, b2}, is matched to the results,
{1, −1.60826447, 0.73724435, 0.03224497, 0.06448994, 0.03224497}, respec-
tively.

Fig. 2. Filtering methods

2.3 Delay compensation
Although missing frame correction and consistent movement can be achieved
through Low-pass Filtering, movement delay and bounce problems still re-
main. Therefore, we have to reduce the delay and bounce by minimiz-
ing the input and output difference via Proportional-Integral control. The
Proportional-Integral control algorithm can be expressed as Eq. (2).

MV (t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ (2)

where MV (t) is the control value; Kp is ratio coefficient; e(t) is error.
Proportional-Integral control algorithm for cellular devices is altered as fol-
lows:

x = {x[0], x[1], . . . , x[n]} : up-sampled touch coordinate,

y = {y[0], y[1], . . . , y[n]} : low-pass filtered touch coordinate,

z = {z[0], z[1], . . . , z[n]} : touch coordinate with delay and bounce cor-
rection,

e(t) ≈ e[n] = y[n] − x[n] : error definition, and

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

512



IEICE Electronics Express, Vol.9, No.6, 509–514

∫ t

0
e(τ)dτ ≈ 1

3
(e[n] + 4e[n − 1] + e[n − 2]) : Simpson’s 1/3rd rule [7].

Suitable Kp and Ki values also need to be set through a test because each
device has different touch performance. From the experiment, Kp of 0.1 and
Ki of 0.2 were selected for having the least amount of delay.

3 Experimental results

For the experiment, we implemented the proposed system on a real phone
with Android 2.2 on ARM Cortex A8 with 1 GHz clock and constructed
Touch UI measurement device with high-speed camera for more accurate and
quantitative measurement of touch performance at UI. The device, shown in
Fig. 3, is equipped with measuring JIG and sensor to emulate users’ touch
pattern and analyze uniform touch performance with a graphical analysis
software tool on PC. This device can provide more accurate and useful
measuring items than commercial one [8]. We evaluated the performance
by measuring TRT (Touch Response Time), FPS (Frame per Second), and
FMU (Frame Movement Uniformity) using this device.

Fig. 3. Touch UI performance measurement device

3.1 TRT and FPS
TRT in Touch UI can be defined as the time required for responding to
dragging. Dragging can be either moving an object such as icon from point
A to B or a screen display from List/Idle point A to B. We take the average
of ten TRT measurements without/with TEHB and the results are 255 ms
and 258 ms, respectively. The proposed method does not have any delay even
tough having additional processing block and shows similar measured values
within the margin of error.

FPS is the frequency of frame updates in screen display. LCD is able to
display 60 pages per second; therefore, screen display update can be smoother
as FPS becomes closer to this frequency. However, when there are heavy
loads of work for CPU to process such as touch dragging, the actual FPS
may decrease. FPS measurement results without/with TEHB are 50.46 and
59.26 frame/sec. FPS with TEHB is closer to LCD display update frequency.

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

513



IEICE Electronics Express, Vol.9, No.6, 509–514

3.2 Uniformity evaluation
Also, we examine the distance between frame movements on dragging. If
each frame moves at regular distance interval, then we can say that the frame
movement is uniform and screens may be updated regularly. We define such
measured values as FMU and expressed as the below equation.

FMU =

√∑
(V 1

i −μ1)2

N

−1

where V
1
i =

NV i∑
Vi

Here, N is the total number of frames required for dragging; Vn is the dis-
tance between two consecutive frames when a start frame is called n = 0 and
the last frame is called n = N − 1. FMU becomes the reverse value of a
standard deviation after normalizing the average speed of frame movement
as 1 while dragging. The large value means that frame movement unifor-
mity is good. Results without/with TEHB are 2.63 and 5.01, respectively.
The proposed method gains larger FMU than the conventional one. As for
iPhone, it is 4.35. This means that when TEHB is applied, the screen will be
updated within regular interval and this makes users feel smooth even with
high frame rates on Touch UI.

4 Conclusion

This paper proposes a novel touch event processing mechanism to overcome
the defect of processing touch event caused by the architectural limit of An-
droid. For this purpose, the proposed method works on the basis of display
thread with enhanced filtering feature. The new method is implemented on
the Android 2.2 for performance evaluation using our test environment. Ex-
perimental results show that the proposed method achieves more performance
gain than conventional triggering methods.

Acknowledgments

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology (KRF 2011-0027264).

c© IEICE 2012
DOI: 10.1587/elex.9.509
Received January 19, 2012
Accepted February 13, 2012
Published March 25, 2012

514


