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Abstract: In this paper, we analyzed the guiding problem for dielec-
tric waveguide introduced as defect layers composed of dielectric cir-
cular cylinders with rhombic dielectric structure along a middle layer,
and investigate the distribution of energy flow of dielectric waveguides
for both TM 0 and TE 0 modes by using the propagation constants
at the guided area. From numerical results, we can be obtained the
confinement efficiency by loaded with rhombic dielectric structure com-
pared with dielectric triangular cylinders for TM 0 mode. In the case
of TE 0 mode, it is shown obviously that we can be obtained the con-
finement efficiency loaded with dielectric circular cylinders compared
with rhombic dielectric structure.
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1 Introduction

Light propagation in periodic structure waveguide such as photonic crys-
tal waveguides is both theoretical and practical interest in many areas of
physics and engineering. Applications include integrated optical circuit, op-
tical resonator, and other optical devices [1, 2]. Consequently, in the design
of photonic crystal structures with periodic constants identical to the optical
wavelength, it is important to investigate the stop band region or photonic
band-gaps. However, though it is not analyzed the propagation constants in
detailed in Bragg region, many numerical results are shown only the distri-
bution of the electromagnetic fields by using the FDTD method or another
numerical techniques [3, 4, 5].

In previous paper [6], we analyzed the propagation characteristics of di-
electric waveguide composed of dielectric circular cylinders array loaded with
dielectric circular cylinders or dielectric triangular cylinders along a middle
layer. In addition, we also investigated the distribution of energy flow at the
guided area for the case of dielectric circular cylinders and dielectric trian-
gular cylinders along a middle layer for both TE0 and TM0 modes. As these
results, we denoted that it can be concentrated the energy by loaded with
dielectric circular cylinders along a middle layer for TE0 mode, and loaded
with dielectric triangular cylinders along a middle layer for TM0 mode.

However, the distribution of energy flow in the case of asymmetric struc-
ture such as triangular cylinders cannot be obtained sufficient results rather
than that of symmetric structure with dielectric circular cylinders for TM 0

mode. On the other hand, the confinement effects in the defect area cannot
be obtained compared with dielectric circular cylinders for TE 0 mode.

Consequently, we considered that the energy is carried outside by the
influence of asymmetric structure [6].

In this paper, we have analyzed the distribution of energy flow for di-
electric waveguide introduced as defect layers composed of dielectric circular
cylinders loaded with symmetric structure such as rhombic dielectric struc-
ture along a middle layer for both TM 0 and TE 0 modes by using the prop-
agation constants of the guided area, and investigated the effect of rhombic
dielectric structure compared with dielectric circular cylinders for TE 0 mode
and dielectric triangular cylinders for TM 0 mode [7, 8], respectively. As
numerical results, it is shown that we can be obtained the effectiveness of
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proposed analytical model for TM 0 mode.

2 Method of analysis

We consider the dielectric waveguide with rhombic dielectric structure along
a middle layer as shown in Fig. 1 (a). The structure (D = Ld) shown in the
figure is periodic with a period p along the z direction and uniform in the
y-direction. The upper region S1 and lower region S3 are defined by the di-
electric constants ε0. The configuration shown (L = 5) has dielectric circular
cylinders with radius a and d1/2 in the x- and z-directions, respectively. The
thickness of each layer is defined by d. The circular cylinder array in the
periodic length is assumed to be dielectric constants εa, εb, and ε3. The mid-
dle layer region has only rhombic dielectric structure with parameters b and
c in the x- and z-directions and dielectric constants ε

(m)
3 . The permeability

is assumed to be μ0 in all regions. The time factor exp(−iωt) in the field
expression will be omitted.

In the formulation, the TM mode (the magnetic field has only the y-
component) is discussed, and TE mode (the electric field has only the y-

Fig. 1. Structure of dielectric waveguide with rhombic di-
electric structure along a middle layer
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component) only numerical results are presented. The magnetic fields in the
regions S1(x ≥ 0) and S3(x ≤ −D) are expressed as

H(1)
y = eiγz

N∑
n=−N

rn exp(ik(n)x + i2nπz/p), (1)

H(3)
y = eiγz

N∑
n=−N

tn exp{−ik(n)(x + D) + i2nπz/p}, (2)

k(n) �
√

k2
0 − (γ + 2nπ/p)2, k0 � 2π/λ, (3)

where γ(� β + iα) and k(n) are the propagation constants in the z-direction
and x-direction, respectively. The attenuation constants α is positive, λ is
the wavelength in free space, and k0 is the wave number. rn and tn are
unknown coefficients to be determined from boundary conditions. The sign
of k(n) are given by the radiation condition in guiding problem [6]. In the
region S2(−D < x < 0), the first layer (−d < x < 0) is divided into M

thin layers and the profile in each layer (dΔ � d/M) is approximated by step
index profile ε(z) as shown in Fig. 1 (b). By using the eigenvalue h

(l)
ν and

eigenvector u
(l)
ν,n founded from eigenvalue equation [7, 8], the electromagnetic

fields can be expanded as finite Fourier series.

H(2,l)
y =

2N+1∑
ν=1

[A(l)
ν e−ih

(l)
ν {x+(l−1)dΔ} + B(l)

ν eih
(l)
ν (x+ldΔ)]f (l)

ν (z), (4)

f (l)
ν (z) � eiγz

N∑
n=−N

u(l)
ν,ne

i 2nπz
p , 1 ≤ l ≤ M, (5)

E(2,l)
x � 1

iωε(z)
∂H

(2,l)
y

∂z
, E(2,l)

z � −1
iωε(z)

∂H
(2,l)
y

∂x
, (6)

where A
(l)
ν , B

(l)
ν are unknown coefficients to be determined from boundary

conditions. Using the boundary conditions at x = −ldΔ(l = 1 ∼ M − 1), we
can be obtained the matrix relation between A(1), B(1) and A(M), B(M) [6].(

A(1)

B(1)

)
=

(
S(1)

1 S(1)
2

S(1)
3 S(1)

4

)(
S(2)

1 S(2)
2

S(2)
3 S(2)

4

)
· · ·
(

S(M)
1 S(M)

2

S(M)
3 S(M)

4

)(
A(M)

B(M)

)
,

=

(
S1 S2

S3 S4

)(
A(M)

B(M)

)
, (7)

where matrix elements S1 ∼ S4 are given by following elements [6]:

S(l)
k � [(l)s(k)

ν,n]; k = 1 ∼ 4, 1 ≤ l ≤ M.

For the first layers to the middle layer, we can get the matrix relation between
A(1), B(1) and A(3M), B(3M) as following equation [6]:(

A(1)

B(1)

)
=

(
S(U)

1 S(U)
2

S(U)
3 S(U)

4

)(
A(3M)

B(3M)

)
. (8)
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Similarly, in the lower two layers (−D < x < −3d), we can be obtained the
matrix relation as following equation [6]:(

A(5M)

B(5M)

)
=

(
S(L)

1 S(L)
2

S(L)
3 S(L)

4

)(
A(3M)

B(3M)

)
. (9)

Rearranging the unknown coefficients with respect to A(3M) in the middle
layer, substituting Eqs. (8) and (9) into the boundary conditions at x = 0
and x = −D, we can be obtained the following equation [6]:

W · A(3M) = 0, (10)

where matrix element W is coefficients matrix [6].
For a nontrivial solution to exist in Eq. (10), we have the following char-

acteristics equation [6]:
det(W) = 0. (11)

The propagation constants γ can be found by utilizing the Muller’s method [6]
to calculate in Eq. (11).

To analyze the distribution of energy flow by using the propagation con-
stant γ founded from in Eq. (11), the Poynting vector is defined by following
equation:

S � axSx + azSz, (12)

where ax and az are the unit vector in the x and z-direction.
In the electromagnetic fields of the middle layer, the unknown coefficients

are given by the ratio of A
(l)
ν �=1/A

(l)
ν=1 from Eq. (10). Therefore, we normalized

coefficients A
(l=(M+1)/2)
ν=1 = 1 as following equation:

{
H

(2,l)
y

E
(2,l)
y

}
=

2N+1∑
ν=1

[A(l)
ν e−ih

(l)
ν {x+(l−1)dΔ} + B(l)

ν eih
(l)
ν (x+ldΔ)]f (l)

ν (z);

l =
M + 1

2
. (13)

Then, A
(l �=(M+1)/2)
ν �=1 and B

(l �=(M+1)/2)
ν of the unknown coefficient for the elec-

tromagnetic fields can be founded by solving the simultaneous equation at
the center layer of the middle layer. In the case of another layer for the mid-
dle layer, unknown coefficients of the electromagnetic fields can be obtained
by using the boundary conditions. Similarly, in the case of upper region
(−2d < x < 0), it is obtained from Eqs. (7) and (8). In the case of lower
region (−D < x < −3d), electromagnetic fields can be used to those of the
upper region from the symmetric structure. To obtain the distribution of
energy flow, the electric fields founded from Eq. (6) are given by

E(2,l)
x =

eiγz

ωε(z)

2N+1∑
ν=1

[A(l)
ν e−ih

(l)
ν {x+(l−1)dΔ}

+B(l)
ν eih

(l)
ν {x+ldΔ}]

N∑
n=−N

u(l)
ν,n(γ + 2nπ/p)ei 2nπz

p , (14)c© IEICE 2012
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E(2,l)
z =

eiγz

ωε(z)

2N+1∑
ν=1

h(l)
ν [A(l)

ν e−ih
(l)
ν {x+(l−1)dΔ}

−B(l)
ν eih

(l)
ν {x+ldΔ}]

N∑
n=−N

u(l)
ν,ne

i 2nπz
p . (15)

Therefore, using the Eqs. (14) and (15), x-component and z-component of
Poynting vector are given by following equations for both TM and TE modes:

S(TM)
x � Re[E(2,l)

z ×(H(2,l)
y )∗]/2, S(TM)

z � Re[E(2,l)
x ×(H(2,l)

y )∗]/2, (16)

S(TE)
x � Re[E(2,l)

y ×(H(2,l)
z )∗]/2, S(TE)

z � Re[E(2,l)
y ×(H(2,l)

x )∗]/2. (17)

Here, the superscripts (TM) and (TE) indicate the TM and TE modes cases,
respectively. The distribution of energy flow in the numerical analysis are
given by

P (TM,TE) �
√

{S(TM,TE)
x }2 + {S(TM,TE)

z }2. (18)

Fig. 2. Distribution of energy flow P (TM) at the guided
area for TM 0 mode

3 Numerical results

We consider the lowest guided TM 0 and TE 0 modes (0 < p/λ < 0.5), and
the structure based on the circular cylinders (c/p = b/p = 1/6) as rhombic
dielectric structure in the middle layer. The values of parameters chosen are
εa/ε0 = 3, εb/ε0 = 3, ε3/ε0 = 3, d1/d = 1, D/p = 5/6, 2a/d1 = 1, c/p = 1/6,
b/p = 1/6. The numerical computation in this paper is performed using the
parameter N = 10 or N = 9 for TE and TM modes and M = 40 which make
the relative error to the extrapolated true values less than about 1% [6]. We
use the excited normalized frequency p/λ at the guided area of ε

(m)
3 /ε0 = 3

with the stop band region of ε
(m)
3 /ε0 = 1 [6].

Figures 2 (a) and 2 (b) show the distribution of the energy flow P (TM) at
the guided area for the case of loaded with dielectric triangular cylinder as
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excited normalized frequency p/λ = 0.455 and rhombic dielectric structure as
excited normalized frequency p/λ = 0.454 in the middle layer as a condition
of ε

(m)
3 /ε0 = 3 for TM 0 mode, respectively.
From Figs. 2 (a) and 2 (b), we can see the following features:

(1) The energy of defect area for rhombic dielectric structure is stronger than
that of dielectric triangular cylinder.
(2) The middle layer region loaded with the rhombic dielectric structure
instead of dielectric triangular cylinder can be obtained distribution of sym-
metry.

Fig. 3. Distribution of energy flow P (TE) at the guided
area for TE 0 mode

Figures 3 (a) and 3 (b) show the distribution of energy flow P (TE) at the
guided area for the case of loaded with dielectric circular cylinders as excited
normalized frequency p/λ = 0.405 [6] and rhombic dielectric structure as
p/λ = 0.407 in the middle layer as same condition of Fig. 2 for TE 0 mode,
respectively. From Figs. 3 (a) and 3 (b), we can see the following features:
(1) The energy of defect area for dielectric circular cylinder is strong com-
pared with rhombic dielectric structure.
(2) In the outside region of the defect area, the distribution of energy flow is
similar to the case of dielectric circular cylinder.

4 Conclusions

In this paper, we analyzed the guiding problem for dielectric waveguide in-
troduced as defect layers composed of dielectric circular cylinders array with
symmetric structure such as rhombic dielectric structure along a middle layer,
and investigated the distribution of energy flow of dielectric waveguides for
both TM 0 and TE 0 modes by using the propagation constants at the guided
area.

Numerical results are given for the influence of the middle layer loaded
with rhombic dielectric structure in terms of the distribution of energy flow.
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As numerical results, we can be obtained the confinement efficiency loaded
with rhombic dielectric structure compared with dielectric triangular cylinder
for TM 0 mode. In the case of TE 0 mode, it is shown obviously that we can
be obtained the confinement efficiency loaded with dielectric circular cylinder
compared with rhombic dielectric structure.

In the future, we will be investigated the influence of convergence for large
periodic length and optimum shape in the middle layer.

c© IEICE 2012
DOI: 10.1587/elex.9.698
Received March 02, 2012
Accepted March 15, 2012
Published April 11, 2012

705


