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Abstract: The speed of reverse converters in Residue Number Sys-
tem is one the most important and effective factors which is strictly
dependent on the selected moduli set. In this paper, the four-moduli
set {2n+k, 22n−1 − 1, 2n/2 + 1, 2n/2 − 1} is introduced with flexible dy-
namic range 4n to 5n where n is even and k < n. Then a high-speed
two-level architecture reverse converter is designed for it based on mix-
radix conversion (MRC) algorithm. A comparison to the similar re-
cently introduced moduli sets {2n/2 − 1, 2n/2 + 1, 2n + 1, 22n+1 − 1}
and {22n, 22n+1 − 1, 2n/2 +1, 2n/2 − 1} shows that the proposed reverse
converter has more conversion speed.
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1 Introduction

Residue Number System (RNS) offers high- speed arithmetic because there
is no carry propagation between modulus. Hence, this numeric system can
be used in applications require high performance arithmetic such as Digital
Signal processing [1]. One of the most important factors that determine the
performance of an RNS system is the delay of its reverse converter because
the more conversion delay may counteract the speed of arithmetic unit [2].
The speed of the reverse converter as well as the speed and complexity of the
arithmetic unit are strictly dependent upon the selected moduli set. Many
moduli sets have been introduced until now. Among them, the recently
introduced four-moduli sets {2n/2 − 1, 2n/2 + 1, 2n + 1, 22n+1 − 1} [3] and
{22n, 22n+1 − 1, 2n/2 + 1, 2n/2 − 1} [4] with dynamic range 4n and 5n propose
high-performance reverse converters in addition to increasing parallelism. It
should be noted that, modulo 2n + 1 in moduli set {2n/2 − 1, 2n/2 + 1, 2n + 1,

22n+1 − 1} increases the execution delay in RNS arithmetic unit.
In this paper, the four-moduli set {2n+k, 22n−1 − 1, 2n/2 +1, 2n/2 − 1} has

been introduced and a high-speed two-level architecture reverse converter
has been designed for it based on mix-radix conversion (MRC) algorithm.
This moduli set provides a dynamic range between 4n to 5n and has a high-
performance arithmetic unit due to its proper moduli. The proposed reverse
converter has more speed in comparison to the similar moduli sets {2n/2 − 1,

2n/2 + 1, 2n + 1, 22n+1 − 1} and {22n, 22n+1 − 1, 2n/2 + 1, 2n/2 − 1}.

2 Background

The RNS [1] is determined by a moduli set such as {m1, m2, . . . , mn} in which
all modulus are positive integers and pair wise relatively prime that make a
dynamic range (DR) available in [0, M) where M is calculated by:

M =
n∏

i=1

mi. (1)

Each integer X where 0 ≤ X < M , is a unique number in RNS that is
represented by (x1, x2, . . . , xn) such that:

xi = X mod mi = |X|mi
(2)

Mixed-radix conversion: for the 2-moduli set {m1, m2} the number X can be
converted from its residue representation (x1, x2) by MRC [1] as follows:

X = am1 + x1 (3)

Where
a =

∣∣∣∣(x2 − x1)
∣∣∣m−1

1

∣∣∣
m2

∣∣∣∣
m2

(4)

The
∣∣∣m−1

1

∣∣∣
m2

denotes the multiplicative inverse of m1 modulo m2.
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3 Designing the proposed reverse converter

To design an efficient reverse converter for flexible moduli set {2n+k, 22n−1−1,

2n/2 + 1, 2n/2 − 1}, two-level architecture and MRC algorithm are used with
respect to the corresponding residues (x1, x2, x3, x4). In the first level, two
reverse converters for sub-sets {2n+k, 22n−1 − 1} and {2n/2 + 1, 2n/2 − 1}
are designed by considering their corresponding residues to obtain Z and Y

respectively. Then, in the second level a reverse converter for moduli set
{2n+k(22n−1−1), 2n−1} is designed according to the results of the first level
(Y, Z) to obtain the weighed number X.

3.1 Designing a reverse converter for moduli set {2n+k, 22n−1−
1}

With respect to the two-moduli set {m1, m2} = {2n+k, 22n−1 − 1} where
k < n, the binary number Z can be obtained from its corresponding residues
(x1, x2) by MRC as follow:

Z = 2n+ka1 + x1 (5)

where
a1 = |(x2 − x1)k1|22n−1−1 (6)

The multiplicative inverse of 2n+k modulo 22n−1 − 1 can be calculated as
bellow: ∣∣∣k1 × 2n+k

∣∣∣
22n−1−1

= 1 → k1 = 2n−k−1 (7)

By substituting k1 = 2n−k−1 into (6) we have:

a1 =
∣∣∣2n−k−1(x2 − x1)

∣∣∣
22n−1−1

(8)

Eq. (8) can be simplified as follows:

a1 = |v2 + v1|22n−1−1 (9)

v1 =
∣∣∣−2n−k−1x1

∣∣∣
22n+1−1

=

∣∣∣∣∣∣∣−2n−k−1(0 . . . 00︸ ︷︷ ︸
n−k−1

x1,n+k−1 . . . x1,1x1,0︸ ︷︷ ︸
n+k

)

∣∣∣∣∣∣∣
22n−1−1

= x̄1,n+k−1 . . . x̄1,1x̄1,0︸ ︷︷ ︸
n+k

1 . . . 11︸ ︷︷ ︸
n−k−1

(10)

v2 =
∣∣∣2n−k−1x2

∣∣∣
22n−1−1

=

∣∣∣∣∣∣∣2n−k−1(x2,2n−2 . . . x2,1x2,0︸ ︷︷ ︸
2n−1

)

∣∣∣∣∣∣∣
22n−1−1

= x2,n+k−1 . . . x2,1x2,0︸ ︷︷ ︸
n+k

x2,2n−2 . . . x2,n+k︸ ︷︷ ︸
n−k−1

(11)

3.2 Designing a reverse converter for moduli set {2n/2 + 1,

2n/2 − 1}
Initially, the multiplication inverse for two-moduli set {2n/2 + 1, 2n/2 − 1} is
determined as follow:∣∣∣k2 × (2n/2 + 1)

∣∣∣
2n/2−1

= 1 → k2 = 2(n/2)−1 (12)
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Next, with respect to the two-moduli set {2n/2+1, 2n/2−1} the binary number
Y , can be obtained from its corresponding residues (x3, x4) by substituting
m3 = 2n/2 + 1, m4 = 2n/2 − 1 and the value of multiplicative inverse into
(3)-(4) as below

Y = (2n/2 + 1)a2 + x3 (13)

a2 =
∣∣∣2(n/2)−1(x4 − x3)

∣∣∣
2n/2−1

(14)

The Eq. (14) can be simplified as follow

a2 = |v4 + v3|2n/2−1 (15)

Where

v3 =
∣∣∣2(n/2)−1x4

∣∣∣
2n/2−1

=
∣∣∣2(n/2)−1(x4,(n/2)−1 . . . x4,1x4,0)

∣∣∣
2n/2−1

= x4,0 x4,(n/2)−1 . . . x4,2x4,1︸ ︷︷ ︸
(n/2)−1

(16)

v4 =
∣∣∣−2(n/2)−1x3

∣∣∣
2n/2−1

=

∣∣∣∣∣∣∣∣−2(n/2)−1(x3,n/2 . . . x3,1x3,0︸ ︷︷ ︸
(n/2)+1

)

∣∣∣∣∣∣∣∣
2n/2−1

=

∣∣∣∣∣∣∣∣−2(n/2)−1(x3,n/2 × 2n/2 + x3,(n/2)−1 . . . x3,1x3,0︸ ︷︷ ︸
n/2

)

∣∣∣∣∣∣∣∣
2n/2−1

(17)

Since the value of x3 is in 0 ≤ x3 < 2n/2 + 1 span, therefore this span can be
divided as below {

0 ≤ x3 < 2n/2 if x3,n/2 = 0
x3 = 2n/2 if x3,n/2 = 1

(18)

According to (18), Eq. (17) can be calculated as follow
If x3,n/2 = 0, we have

v41 =

∣∣∣∣∣∣∣∣−2(n/2)−1(x3,(n/2)−1 . . . x3,1x3,0︸ ︷︷ ︸
n/2

)

∣∣∣∣∣∣∣∣
2n/2−1

= x̄3,0 x̄3,(n/2)−1 . . . x̄3,2x̄3,1︸ ︷︷ ︸
(n/2)−1

(19)
Else, if x3,n/2 = 1, we have

v42 =

∣∣∣∣∣∣∣−2(n/2)−1 × 2n/2(0 . . . 00︸ ︷︷ ︸
(n/2)−1

x3,n)

∣∣∣∣∣∣∣
2n/2−1

= 0 1 . . . 11︸ ︷︷ ︸
(n/2)−1

(20)

Therefore, v4 is evaluated as

v4 =

{
v41 if x3,n/2 = 0
v42 if x3,n/2 = 1

(21)

3.3 Designing a reverse converter for moduli set {2n+k(22n−1−
1), 2n − 1}

The multiplicative inverse for moduli set {2n+k(22n−1−1), 2n−1} is calculated
as below: ∣∣∣k3 × 2n+k(22n−1 − 1)

∣∣∣
2n−1

= 1 → k3 = 2n−k−1 (22)
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For the moduli set {2n+k(22n−1 − 1), 2n − 1} where k < n, the final binary
number X can be computed from its corresponding residues (Z, Y ) by

X = Z + 2n+k(22n−1 − 1)a3 (23)

where
a3 =

∣∣∣2n−k−1(Y − Z)
∣∣∣
2n−1

(24)

By substituting (5) and (13) in (24), we have

a3 =
∣∣∣2n−k−1((2n/2 + 1)a2 + x3 − 2n+ka1 − x1)

∣∣∣
2n−1

(25)

The above equation can be simplified as follow:

a3 = |v5 + v6 + v71 + v72 + v81 + v82|2n−1 (26)

where

v5 =
∣∣∣2n−k−1 × (2n/2 + 1)a2

∣∣∣
2n−1

=

∣∣∣∣∣∣∣∣2
n−k−1 × (2n/2 + 1)(0 . . . 00︸ ︷︷ ︸

n/2

a2,(n/2)−1 . . . a2,1a2,0︸ ︷︷ ︸
n/2

)

∣∣∣∣∣∣∣∣
2n−1

(27)

=

∣∣∣∣∣∣∣∣2
n−k−1(a2,(n/2)−1 . . . a2,1a2,0︸ ︷︷ ︸

n/2

a2,(n/2)−1 . . . a2,1a2,0︸ ︷︷ ︸
n/2

)

∣∣∣∣∣∣∣∣
2n−1

v6 =
∣∣∣2n−k−1x3

∣∣∣
2n−1

=

∣∣∣∣∣∣∣∣2
n−k−1(0 . . . 00︸ ︷︷ ︸

(n/2)−1

x3,n/2 . . . x3,1x3,0︸ ︷︷ ︸
(n/2)+1

)

∣∣∣∣∣∣∣∣
2n−1

(28)

The equations (27) and (28) can be determined by n− k− 1 bits circular left
shift according to the value of k.

Since |2n|n2−1 = 1 so we have

v7 =
∣∣∣2n−k−1 ×−2n+ka1

∣∣∣
2n−1

=
∣∣∣−2n−1 × 2na1

∣∣∣
2n−1

=

∣∣∣∣∣∣∣−2n−1(a1,2n−2 . . . a1,1a1,0︸ ︷︷ ︸
2n−1

)

∣∣∣∣∣∣∣
2n−1

(29)

=

∣∣∣∣∣∣∣−2n−1(a1,2n−2 . . . a1,n︸ ︷︷ ︸
n−1

×2n + a1,n−1 . . . a1,1a1,0︸ ︷︷ ︸
n

)

∣∣∣∣∣∣∣
2n−1

Eq. (31) can be separated into two parts as

v71 =

∣∣∣∣∣∣∣−2n−1(a1,n−1 . . . a1,1a1,0︸ ︷︷ ︸
n

)

∣∣∣∣∣∣∣
2n−1

= ā1,0 ā1,n−1 . . . ā1,2ā1,1︸ ︷︷ ︸
n−1

(30)

v72 =

∣∣∣∣∣∣∣−2n−1 × 2n(0 a1,2n−2 . . . a1,n+1a1,n︸ ︷︷ ︸
n−1

)

∣∣∣∣∣∣∣
2n−1

= ā1,n 1ā1,2n−2 . . . ā1,n+1︸ ︷︷ ︸
n−1

(31)
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v8 =
∣∣∣−2n−k−1x1

∣∣∣
2n−1

=

∣∣∣∣∣∣∣−2n−k−1(x1,n+k−1 . . . x1,1x1,0︸ ︷︷ ︸
n+k

)

∣∣∣∣∣∣∣
2n−1

=

∣∣∣∣∣∣∣−2n−k−1(x1,n+k−1 . . . x1,n︸ ︷︷ ︸
k

×2n + x1,n−1 . . . x1,1x1,0︸ ︷︷ ︸
n

)

∣∣∣∣∣∣∣
2n−1

(32)

The above equation can be divided in two parts as below

v81 =

∣∣∣∣∣∣∣−2n−k−1(x1,n−1 . . . x1,1x1,0︸ ︷︷ ︸
n

)

∣∣∣∣∣∣∣
2n−1

= x̄1,k . . . x̄1,1x̄1,0︸ ︷︷ ︸
k+1

x̄1,n−1 . . . x̄k+1︸ ︷︷ ︸
n−k−1

(33)

v82 =

∣∣∣∣∣∣∣−2n−k−1 × 2n(0 . . . 00︸ ︷︷ ︸
n−k

x1,n+k−1 . . . x1,n+1x1,n︸ ︷︷ ︸
k

)

∣∣∣∣∣∣∣
2n−1

= 1x̄1,n+k−1 . . . x̄1,n+1x̄1,n︸ ︷︷ ︸
k+1

1 . . . 11︸ ︷︷ ︸
n−k−1

(34)

Now, by letting the value of Z in (23) we have

X = x1 + 2n+k(a1 + (22n−1 − 1)a3) (35)

The Eq. (35) can be simplified as follow

X = x1 + 2n+kW (36)

where
W = T − H (37)

T = 22n−1a3 + a1 = a3,n−1 . . . a3,1a3,0︸ ︷︷ ︸
n

a1,2n−2 . . . a1,1a1,0︸ ︷︷ ︸
2n−1

(38)

H = a3 = a3,n−1 . . . a3,1a3,0︸ ︷︷ ︸
n

(39)

Finally, subtraction (37) can be rewritten as follow addition operation:

T : a3,n−1...a3,1a3,0a1,2n−2...a1,n a1,n−1...a1,1a1,0

+H̄ : 11....................................11 ā3,n−1...ā3,1ā3,0

+ 00..........................................................0 1
W : w3n−2......................wn−1wn wn−1......w1 w0

(40)

4 Hardware implementation

The required hardware to implement the proposed reverse converter is based
on the equations (9), (15), (26) and (40). In this paper, to calculate (9)
and (15), (2n − 1)-bits CPA with EAC and (n/2) bits CPA with EAC are
used respectively. Also, a six-operand modulo (2n − 1) adder [5] is used to
implement (26) that consists of four n-bit CSA with EAC followed by a n-
bit CPA with EAC. According to (40), for calculating the n less significant
bits of W , n NOT gates and an n-bit regular CPA (CPA4) with carry-in
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digit ‘1’ is required. The remained (2n − 1) more significant bits of W are
determined with respect to the carry-out bit of CPA4 such that if Cout = 1,
these (2n − 1) bits are equal to the (2n − 1) more significant bits of T and
if Cout = 0, the (2n − 1) more significant bits of W can be obtained by a

Fig. 1. The proposed converter for moduli set {2n+k,

22n−1 − 1, 2n/2 + 1, 2n/2 − 1}c© IEICE 2012
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(2n− 1)-bit regular CPA (CPA5). Since all the (2n− 1) more significant bits
of H̄ are equal to the constant value ‘1’, therefore all full adders in CPA4 can
be reduced to the pair of XNOR/OR gates. Finally, equations (36) and (38)
are obtained by a simple concatenation and no more hardware is required.
Fig. 1 shows the hardware architecture of the proposed reverse converter.

5 Performance evaluation

Since the four-moduli set {2n+k, 22n−1 − 1, 2n/2 + 1, 2n/2 − 1} provides a
flexible dynamic range between 4n to 5n bit, in this section we just compare
it with the similar recently introduced four-moduli sets {2n/2 − 1, 2n/2 + 1,

2n+1, 22n+1−1} and {22n, 22n+1−1, 2n/2+1, 2n/2−1} which offers 4n-bit and
5n-bit dynamic range respectively. In Table I, the proposed reverse converter
has been compared with the introduced converters in [3] and [4] in terms
of delay and hardware cost. To calculate the overall delay of the proposed
converter, it should be considered that CPA1 and CPA2 as well as CPA4 and
CPA5 operate in parallel. The delay of CPA1 and CPA2 is equal to (4n−2)tFA

and ntFA (tFA refers to the delay of one full adder) respectively and hence, for
calculating the overall delay, the delay of CPA1 has been considered. Also,
the delay of CPA4 and CPA5 is equal to ntFA and (2n−1)tXNOR respectively.
To have a fair comparison between CPA4 and CPA5 delays, the unit gate
model [6] is used. In this model, a FA and a XNOR gate have the delay
of four and two unit gates. According to this, CPA4 and CPA5 have the
delay of 4n and 4n − 2 unit gates respectively. Therefore, in calculating the
overall delay, the delay of CPA4 has been considered. As it can be observed
in Table I, the proposed converter has more performance in comparison to
the introduced converters in [3] and [4].

Table I. Performance Comparison

6 Conclusion

In this paper, a high-speed two-level converter for flexible four-moduli set
{2n+k, 22n−1 − 1, 2n/2 + 1, 2n/2 − 1} has been designed. The architecture
of the proposed converter is just based on carry save adder and modular
adder and hence, can be simply implemented by VLSI circuits. Comparison
to the similar four-moduli sets {2n/2 − 1, 2n/2 + 1, 2n + 1, 22n+1 − 1} and
{22n, 22n+1 − 1, 2n/2 + 1, 2n/2 − 1} shows that the proposed converter has
more efficiency.c© IEICE 2012
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