IEICE Electronics Express, Vol.9, No.9, 849-854

Efficient ray sorting for the
tracing of incoherent rays

Jae-Ho Nah'®, Yun-Hye Jung'”, Woo-Chan Park>,
and Tack-Don Han'?

Y Department of Computer Science, Yonsei University

134 Shinchon-dong, Seodeaman-gu, Seoul 120-749, Korea

2 Department of Computer Engineering, Sejong University

98 Gunja-dong, Gwangjin-gu, Seoul, Korea

a) jhnah@msl.yonsei.ac.kr

b) yhjung @msl.yonsei.ac.kr

¢) pwchan@sejong.ac.kr

d) hantack@msl.yonsei.ac.kr

Abstract: High-quality rendering via ray tracing requires the tracing
of many incoherent secondary rays. In order to accelerate the tracing
of incoherent rays, we propose a simple sorting method to increase ray
coherence. In this method, we use ray origin buckets and ray direction
grids to reorder rays quickly. We implemented our approach on the
Manta interactive ray tracer and achieved up to a 1.48x speedup.
Keywords: ray tracing, path tracing, ray sorting, ray reordering
Classification: Electron devices, circuits, and systems

References

[1] 1. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive rendering
with coherent ray tracing,” Computer Graphics Forum, vol. 20, no. 3,
pp. 153-164, Sept. 2001.

[2] T. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchies,” ACM Transactions on Graphics,
vol. 26, no. 1, Jan. 2007.

[3] S. Boulos, I. Wald, and C. Benthin, “Adaptive ray packet reordering,”
Proc. 2008 IEEE/EG Symp. Interactive Ray Tracing, pp. 131-138, Aug.
2008.

[4] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel interactive
ray tracing systems,” Proc. 2006 IEEE/EG Symp. Interactive Ray Trac-
ing, pp. 187-196, Sept. 2006.

[5] E. Mansson, J. Munkberg, and T. Akenine-Moller, “Deep coherent ray
tracing,” Proc. 2007 IEEE/EG Symp. Interactive Ray Tracing, pp. 79—
85, Sept. 2007.

[6] B. Moon, Y. Byun, T.-J. Kim, P. Claudio, H. Kim, Y. Ban, S. W. Nam,
and S.-E. Yoon, “Cache-oblivious ray reordering,” ACM Transactions on
Graphics, vol. 29, no. 3, pp. 28:1-28:10, July 2010.

[7] R. Overbeck, R. Ramamoorthi, and W. R. Mark, “Large ray packets for
real-time Whitted ray tracing,” Proc. 2008 IEEE/EG Symp. Interactive
Ray Tracing, pp. 41-48, Aug. 2008.

849

IEICE Electronics Express, Vol.9, No.9, 849-854

1 Introduction

Ray tracing has been widely used for high-quality rendering. Ray tracing
algorithms trace the path of light to simulate global illumination effects such
as reflection, refraction, and shadows. However, while doing this, ray trac-
ing incurs considerable computational cost because dozens of traversal and
intersection operations per ray are performed to find the hit point.

In recent years, many studies of real-time ray tracing have tried to accel-
erate ray tracing by means of packet tracing. Packet tracing [1] reorganizes
each of the rays into packets of rays in order to amortize the cost across sets
of rays and to exploit the CPU’s SIMD (single instruction, multiple data)
units. This algorithm was extended to a packet-frustum traversal scheme on
dynamic bounding volume hierarchies [2]. This scheme achieved an order-
of-magnitude speed-up in terms of primary visibility because it substitutes
per-ray-packet operations for expensive per-ray operations. However, the
global illumination effects caused by ray tracing necessitate many incoherent
secondary rays. Because packet-based approaches exploit ray coherence, the
gains made by packet tracing dwindle when incoherent rays are traced [3].

In this paper, we introduce an acceleration technique for incoherent rays.
Our method sorts the rays using their origins and directions with linear time
complexity. We use bucket sorting to achieve this time complexity. Comple-
tion of this sorting yields rays that are now more coherent. Existing coherent
ray tracing algorithms, such as packet tracing [1, 2], can now be more effec-
tive, even in the case of incoherent rays. This is possible because higher ray
coherence increases both the SIMD efficiency [1, 2] and the odds of passing
the early hit/miss test in [2]. Experimental results show that our method
increases the performance of path tracing with a packet-based ray tracer [4].

2 Related work

Considerable effort has been directed toward accelerating incoherent ray trac-
ing. In order to exploit ray coherence, a few studies aimed to reorder rays
before ray traversal. Masson et al. [5] grouped coherent rays together to
increase coherence, but they failed to increase the overall rendering perfor-
mance due to the high cost of sorting. Cache-oblivious ray reordering [6] is a
ray reordering technique using a hit point heuristic, which uses an approxi-
mate hit point between the rays and a simplified representation of the original
models. This approach effectively reduces I/O thrashing during out-of-core
ray tracing. However, the advantages of this approach in packet tracing have
not been presented.

On-the-fly ray reordering and novel traversal methods have also been
studied. Partition traversal [7] filters active SIMD rays for each traversal step.
This method is more robust with incoherent rays and large packets compared
to the masked traversal [1] and ranged traversal [2] methods. Adaptive ray
packet reordering [3] reorders rays when the packet utilization rate drops
below a certain threshold. As described in [6], however, these on-the-fly
approaches complicate the traversal stage and have low modularity.

850

IEICE Electronics Express, Vol.9, No.9, 849-854

3 Proposed algorithm

The main goal of our approach is to increase ray coherence for packet tracing
before traversal. For higher ray coherence, we reorder rays in a ray packet
using their origin and direction. Fig. 1 depicts this process. First, we generate
a large ray packet (e.g., 1024 rays per packet). Large ray packets are selected
because the ray packets generated after ray reordering are much smaller than
the original ray packet. Next, we classify rays using 24 ray direction buckets.
The criteria of this classification are the octants and major axes of each
ray’s direction. Afterwards, we construct a local origin grid and classify rays
onto the grid. The criterion of this classification is the position of each ray’s
origin. Finally, we trace a sub-packet of coherent rays through an acceleration
structure such as a bounding volume hierarchy (BVH).

(©)

=
”

Fig. 1. The process of the proposed method: (a) incoher-
ent rays, (b) ray classification sorting using 24 ray
buckets, (c) ray classification using a local origin
grid, and (d) traversal of the coherent ray packet

The details of our approach are described below. The first stage is ray
classification using the rays’ direction in the ray packet. Because there are
eight octants and three major axes, we can assign 24 buckets. When we
classify rays, we do not copy all of the data of the rays because doing so would
be very expensive relative to the structure of arrays (SoA) for packet tracing.
In other words, if we try to access all of the data for a single ray, a non-
sequential data access method would be necessary. Hardware scatter/gather
support can solve this problem, but current SIMD operations (e.g., Intel SSE)
do not support scatter/gather routines. Therefore, we only store the rays’
index in direction buckets and postpone the execution of ray reordering. Also,
we read the rays’ origin values and calculate their min/max values in each
direction bucket. These min/max values represent the axis-aligned bounding
boxes (AABBs) of the rays in each direction bucket.

With the completion of the direction-based ray classification procedure,
we visit each ray direction bucket and construct a local origin grid. The size

851

IEICE Electronics Express, Vol.9, No.9, 849-854

of an origin grid can range from one to eight. In order to set this size, we
compare the root node’s AABB and the bucket’s AABB on three axes. In
order to prevent grid cells that are too small, we divide the grid cell for each
axis only if the axis range of the bucket’s AABB is greater than a quarter of
that of the root node’s AABB. If all three axes are divided, the size of the
origin grid is eight. If none of the axes are divided, the size of the origin grid
is one. After the grid size is set, we put ray indices onto the proper grid cells.
We then make a coherent sub-packet in a SIMD-friendly manner for low
sorting overhead and efficient packet traversal. First, we exploit SIMD store
instructions when we copy the origin and direction from the original ray
packet data to the new reordered ray packet data. This process is performed
using the indices in the grid cells. When we read the original ray, we initially
put this ray into a temporary ray packet until four (= SIMD width) rays are
stored. Temporary ray packets include only the rays’ origins and direction
member variables. The sign of the direction vector, the inverse direction
vector, and the initial t distance are computed on the fly. T distance means
distance to the nearest object pierced by the ray. The initial t distance is
set to the maximum number representable in type float. When four rays are
stored or when the final ray in a ray packet is fetched, we copy this data by
means of SIMD operations. Because this process requires a sequential mem-
ory access, the sorting overhead of a SOA form can be decreased. Second, we
maintain 16-byte alignment for SIMD traversal when we create a sub-packet.
This alignment can increase SIMD efficiency during the traversal step.
Upon the completion of ray reordering, we perform a ray traversal proce-
dure with this new sub-packet. Because the proposed method is performed
during the ray generation stage, there are no restrictions on the types of ac-
celeration structures and traversal algorithms. After traversal, we copy the
hit results from the new ray packet data to the original ray packet data.
Our ray reordering method has no disadvantages in terms of the quality of
the output images. Because a ray packet consists of rays which are created at
the same depth, the rays do not have dependencies between them. Therefore,
our reordering method does not change the shading result of the ray packet.

4 Experimental results

In order to evaluate our approach, we used the Manta [4] interactive ray
tracer. For incoherent ray tracing, we set the renderer to the path tracer.
Because diffuse inter-reflection rays are created on the reflective surfaces, we
used Lambertian surfaces for all benchmarks. We made 64 samples per pixel
by means of jittered sampling. The ray recursion depth was two. We did not
shoot shadow rays for a simple experiment. Rays were traversed using both
ranged [2] and partition [7] traversals. For these experiments, an Intel Core
i7 980X (3.3 GHz six-core processor) with 6 GB of memory was used.

We chose the Conference (282K triangles), Fairy (174K triangles), and
Sibenik (80 K triangles) scenes for experiments. All images were rendered at
a resolution of 1024 x 1024 (Fig. 2). For each scene, we compared the traversal

852

IEICE Electronics Express, Vol.9, No.9, 849-854

results with and without the proposed ray sorting method. We compared the
traversal results for ranged traversal without ray sorting, partition traversal
without ray sorting, and ranged traversal with ray sorting. We did not include
the results of partition traversal with ray sorting because the performance
advantages from ray sorting were lower than the sorting overhead in this
case. In other words, partition traversal did not efficiently use the advantage
of increased coherence. With our sorting method disabled, we used 8 x 8 (the
default in Manta) and 32 x 32 ray packets for ranged traversal and partition
traversal, respectively. With the proposed sorting method enabled, we used
32 x 32 ray packets to obtain sufficient input rays for sorting.

Fig. 2 and Table I depict the experimental results. The graph in Fig. 2
shows the performance of each case. This graph illustrates measurements of
the total rendering time for one picture. Per-frame statistics are also shown
in Table I. According to the results, our approach was 1.18-1.46 times faster
than the original BVH packet traversal (ranged traversal) method without
ray sorting. As described in [3], a “speculative” first hit and a “conservative”
interval arithmetic test in ranged traversal would be ineffectual when tracing
incoherent rays. This was avoided by applying our reordering scheme such
that the number of interval arithmetic (IA) tests and ray-triangle intersection
tests decreased.

In addition, our approach achieved higher rendering performance than
partition traversal by an average of 15 percent. Partition traversal always
uses SIMD ray packets, but ranged traversal adaptively selects either scalar
processing or SIMD processing according to SIMD efficiency. Of course,
scalar processing for a single ray is simpler than SIMD processing for four
SIMD rays. Due to this feature, our approach is faster than partition traver-
sal [7], although the total numbers of Np and Ny for partition traversal [7]
and that of ranged traversal with sorting (our method) in Table I are similar.

The performance improvement of our approach is proportional to the
number of ray-triangle intersection tests for each scene. This is because

(seconds ® Ranged w/o sorting [2]

per frame) i Partition w/o sorting [7]
12 11.3

0 " Ranged w/ sorting (ours)

6.5 64 72

S N B~ O ®

Conference Fairy Sibenik

=

Fig. 2. Benchmark results (1): Seconds per frame (a
lower value is better)

853

IEICE Electronics Express, Vol.9, No.9, 849-854

Table I. Benchmark results (2): Average per-frame statis-
tics. Notations: Nj4, Np, and N7 are the number
of interval arithmetic tests per ray, ray-box inter-
section tests per ray, and ray-triangle intersection
tests per ray, respectively. A lower value is better.

Scene Ttem Ranged w/o | Partition w/o | Ranged w/
sorting [2] sorting [7] sorting (ours)
Conference | Ny 3.53 2.88 2.04
Scalar Npg 3.50 0.00 2.98
SIMD Np 3.57 6.93 4.24
Scalar Np 13.99 0.00 12.82
SIMD N 28.55 22.35 10.68
Fairy Nra 5.09 4.84 2.39
Scalar Np 3.77 0.00 3.07
SIMD Np 3.00 7.08 4.79
Scalar Np 19.74 0.00 14.85
SIMD N 35.35 30.01 16.58
Sibenik Nra 7.72 5.96 3.63
Scalar Npg 3.48 0.00 2.69
SIMD Np 2.22 6.95 3.60
Scalar N 30.28 0.00 23.60
SIMD N 60.75 38.04 20.22

the main effect of our approach is a reduction in unnecessary ray-triangle
intersection tests. As a result, our approach showed the highest performance
improvement in the Sibenik Scene.

5 Conclusions and future work

In this study, we presented a simple sorting method to increase ray coher-
ence for packet tracing. Because the performance advantage of packet trac-
ing [2] depends on ray coherence, the weak point of packet tracing is the
associated degradation in the performance of the incoherent rays [3]. Our
approach compensates for the weak points of the packet tracing of incoher-
ent rays. According to experimental results in Manta, the use of our ray
sorting method led to an increase in speed by 1.18-1.46 times compared to
the ranged traversal method in dynamic bounding volume hierarchies [2].
In future studies, we would like to extend our approach to GPU-based
ray tracers. We hold that bucket sorting can be performed quickly on current
GPUs. In addition, we would like to apply our approach to other acceleration
structures and traversal algorithms, such as kd-tree packet traversal [1].

Acknowledgments

We would like to thank Xin Sun and Xin Tong for fruitful discussions and
feedback. This research was supported by the MKE (The Ministry of Knowl-
edge Economy), Korea and Microsoft Research, under IT/SW Creative re-
search program supervised by the NIPA (National IT Industry Promotion
Agency). The Conference and Sibenik scenes are courtesy of Greg Ward.
The Fairy scene is courtesy of Utah 3D animation repository.

854

