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PAPER
An Efficient Backoff Algorithm Based on the Theory of Confidence
Interval Estimation

Chunyang LEI†a), Student Member, Hongxia BIE†, Gengfa FANG††, Markus MUECK†††,
and Xuekun ZHANG†, Nonmembers

SUMMARY Channel state estimation-based backoff algorithms for
channel access are being widely studied to solve wireless channel access-
ing and sharing problem especially in super dense wireless networks. In
such algorithms, the precision of the channel state estimation determines
the performance. How to make the estimation accurate in an efficient way
to meet the system requirements is essential in designing the new channel
access algorithms. In this paper, we first study the distribution and prop-
erties of inaccurate estimations using a novel biased estimation analysis
model. We then propose an efficient backoff algorithm based on the theory
of confidence interval estimation (BA-CIE), in which the minimum sam-
ple size is deduced to improve the contention window tuning efficiency,
while a fault-tolerance interval structure is applied to reduce the inaccu-
rate estimations so as to improve the contention window tuning accuracy.
Our simulation results show that the throughput of our proposed BA-CIE
algorithm can achieve 99% the theoretical maximum throughput of IEEE
802.11 networks, thanks to the improved contention window tuning perfor-
mance.
key words: backoff algorithm, MAC protocol, wireless sensor network

1. Introduction

Distributed wireless sensor networks (WSNs) have been
widely used in surveillance systems to monitor and sense
wide-range of environmental parameters. Due to the di-
verse applications they can be applied to, supporting the dis-
tributed wireless sensor networks becomes an essential part
of 5G networks where Internet of thing (IoT) and vehicle to
vehicle (V2V), machine to machine (M2M) networks are the
enabling technologies. The future distributed wireless sen-
sor networks may become extremely dense so that how to
access and share the channel access among extremely large
number of contending nodes becomes a new challenge.

In WSNs, contention based carrier sense multiple ac-
cess with collision avoidance (CSMA/CA) protocol is ap-
plied to enable the channel sharing by multiple nodes in a
distributed way. According to CSMA/CA, WSN nodes gen-
erate a random backoff time based on the predefined con-
tention window before accessing the channel. The authors
in [1], [2] found that a right contention window size that fits
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the channel contention state can efficiently solve the channel
accessing problem. However, as the number of contending
nodes becomes larger and more dynamic, precisely estimat-
ing channel contention state becomes very difficult. In this
paper, we firstly focus on modeling and evaluating the chan-
nel contention, and then propose a new channel accessing
algorithm which can tune the contention window size effi-
ciently.

So far, the binary exponential backoff (BEB) based
channel access algorithms [3] have been widely used
in CSMA/CA based protocols, such as WiFi (IEEE
802.11b/g/n/ac), Zigbee (IEEE 802.15.4), etc. In these al-
gorithms, the level of channel contention is estimated based
on whether the previous packet has been transmitted suc-
cessfully or not. Authors in [4] indicated that BEB based
algorithms become unstable in highly dense and busy net-
works because of their over-estimation of the level of the
channel contention. Thus, new backoff algorithms such as
EIED [5] and MILD [6] are proposed in which contention
window is tuned exponentially or linearly after each failure
of channel access attempt. However, the estimation accu-
racy of channel contention in these algorithms has not been
substantially improved.

Recently some backoff algorithms based on channel
contention estimation have been proposed. On top of its own
sending and receiving results, authors in [7]–[11] proposed
ideas where nodes should monitor different kinds of channel
state parameters to have a better understanding of the level
of channel contention. For example, ABTMAC [7], EBA [8]
and MLBA [9] algorithms estimate the channel contention
level by computing the idle probability of the channel, while
PCB [10] use the information on the number of interrup-
tions during the backoff period, and ABE [11] is based on
the number of consecutive idle slots of the channel. Based
on the estimation results, PCB and ABE tune the contention
window either exponentially or linearly, while MLBA ap-
plies a fast tuning scheme, and ABTMAC and EBA set the
contention window by heuristic calculation. The above al-
gorithms can make better decisions on channel sharing by
sufficiently utilizing the precise channel state information.
However, the above algorithms become very sensitive to the
accuracy of the proposed channel contention estimation al-
gorithms. In such algorithms, the estimation is done be-
tween two channel access attempts. The interval between
two accessing attempts is a random variable, and the ob-
tained sample size become very dynamic depending on the
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interval. Small number of samples can decrease the accu-
racy of the channel estimation, while high number of sam-
ples increases the complexity of channel estimation. As a
result, how to make the channel estimation accurate and ef-
ficient becomes a critical issue for estimation based channel
access algorithms.

In this paper, we solve the above problem by propos-
ing a new backoff algorithm based on the theory of confi-
dence interval estimation (BA-CIE). We analyze the charac-
teristics of inaccurate estimations of wireless channel with
different contention levels and analytically derive the distri-
bution of the biased estimations. According to the theory of
confidence interval estimation, we introduce the parameter
of fault tolerant interval which presents the biased estima-
tions while deducing the minimum sample size. By con-
structing the contention window tuning strategy, the nega-
tive impact from incorrect estimations can be effectively re-
duced. Mathematical analysis and simulation results show
that higher tuning accuracy of our proposed algorithm is
achieved by filtering large number of inaccurate estimations,
while the tuning efficiency can be improved by adapting the
contention window according to the predetermined number
of samples.

The rest of this paper is organized as follows. We an-
alyze the characteristics of inaccurate estimations in Sect. 2
and propose BA-CIE algorithm in Sect. 3. Simulation re-
sults are presented in Sect. 4 followed by the conclusions in
Sect. 5.

2. Biased Channel Contention Estimation Analysis
Model

2.1 Channel Throughput Optimization

Channel contention estimation is a key component in the de-
sign of estimation-based backoff algorithms since the chan-
nel contention level is very dynamic depending on the chan-
nel state and lots of other factors in the network. In this
work we deal with the case where the wireless channel is
shared by N nodes according to 802.11 DCF channel access
method together with RTS/CTS scheme. As the data traffic
pattens at application layer may be quite different across the
nodes, we assume there are n out of the N nodes have data
to transmit and thus try to access the wireless channel. We
define these n nodes as contending nodes. The relationship
between N and n can be fully derived given a data traffic
model [12], [13].

We define τ as the probability that a contending node
attempts to transmit in a given slot. As the work in [14] indi-
cated, τ is only determined by its current contention window
size (cw). Thus, we present τ as a function of cw:

τ(cw) =
2

cw + 1
(1)

The shared channel can be represented as a discrete
time stochastic process consisting of three states: idle state,
successful packet transmission state including processes of

RTS/CTS/DATA/ACK and collision state which is indicated
by a failed RTS. We denote TI , TS , TC as the average dura-
tions of the three states accordingly and PI , PS , PC as the
probabilities of a node staying in the above three states ac-
cordingly.

Since the idle state appears only when no data arrives
at any node, PI can be expressed as a function of the data ar-
rival rate τ and the number of contending nodes n, as shown
in (2):

PI(n, cw) = [1 − τ(cw)]n (2)

The successful packet transmission in a given slot oc-
curs when there is only one node transmitting. For the sit-
uation with n nodes contending the channel, PS can be ex-
pressed as a function of n and cw as (3):

PS (n, cw) = nτ(cw)[1 − τ(cw)]n−1 (3)

The probability of the collision can be calculated based
on PI and PS as follows:

PC(n, cw) = 1 − PS (n, cw) − PI(n, cw) (4)

From (1), (2), (3), (4), the system throughput can be ex-
pressed as (5). In this expression, the average transmission
duration TS , and the average collision duration TC can be
calculated at the Physical layer and MAC layer, and the slot
duration TI normally is defined by the standards such as the
IEEE 802.11x [15], [16]. Ldata is the average data frame size
which can be easily estimated based on the previous frames
transmitted.

T H(n, cw) =
PS (n, cw) · Ldata

PS (n, cw) · TS + PC(n, cw) · TC + PI(n, cw) · TI

(5)

The relationship between cw and n for the optimal sys-
tem throughput can be derived by making the first order
derivative of (5) 0. We denote Popt

I as the probability of an
idle state when the channel throughput is maximized. Work
in [17] proved that Popt

I approximately equals to a constant.
Thus, the channel contention process can be repre-

sented by the probability of idle state. In order to achieve
high channel utilization with different contention levels, we
can just keep on estimating the probability of idle state of the
channel, and try to make it reach Popt

I as much as possible
by correctly tuning the contention window size.

2.2 Biased Estimation Analysis

Although high channel utilization can be achieved by simply
estimating the probability of idle state of the channel, inac-
curate estimations are inevitable because the channel con-
tention level changes very fast and there is a limited number
of samples in practice. Next, we will focus on analyzing the
channel estimation process considering the possible errors.

We denote PI(n, cw) as the right probability of idle state
of a channel and P̂I as the estimated one. In practice, P̂I can
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be calculated by monitoring the channel state of the previous
m slots. We use Xk, k ∈ [1,m] to denote the channel state in
the kth slot. Xk = 1 if the channel is in idle state during the
slot, otherwise Xk = 0. P̂I can be expressed as bellow:

P̂I =
1
m

m∑
k=1

Xk (6)

Let’s define P(Xk) as the probability of Xk, and we can
conclude that the distributions of P(Xk), k ∈ [1,m] are in-
dependent 0 − 1 of the successful probability of PI(n, cw).
According to the properties of 0 − 1 distribution, we calcu-
late the expectation of Xk in (7) and the variance of Xk in (8)
as follows:

µI = PI(n, cw) (7)
σ2

I = PI(n, cw) · [1 − PI(n, cw)] (8)

According to the law of large numbers, P̂I converges
according to (9).

lim
m→∞

P̂I = µI (9)

The Central Limit Theorem (CLT) depicts the relation-
ship between the sample size m and the distributional form
of P̂I around the deterministic number µI during this conver-
gence. According to CLT, the distribution of P̂I approaches
the normal distribution with the mean of µI and the variance
of σ2/m while m increases.

We verified the distribution process of P̂I with 8−nodes
contending to access the channel where the optimal con-
tention window size based on [17] is assigned to each node.
The distributions of P̂I with different sample size m = 20,
m = 50 and m = 100 are shown in Fig. 1. From the figure,
we can see that the distribution of P̂I gradually approaches
normal distribution when the sample size increases. At the
same time, a larger sample size has a smaller variance of
normal distribution which can make the estimation results
closer to the optimal value Popt

I .
Figure 1 also shows the variance of the throughput as a

Fig. 1 Left coordinate: the distribution of P̂I when m = 20, 50, 100 in 8-
nodes contention channel. Right coordinate: the throughput performance
of channels with different PI (n, cw).

function of PI(n, cw) according to (5). We can see that the
throughput remains relatively constant even when PI(n, cw)
deviates from Popt

I slightly. The throughput decreases dra-
matically when PI(n, cw) is below a certain value. If we
denote T L(p) as the throughput difference for PI(n, cw) = p
and PI(n, cw) = Popt

I , we can see that T L(p) increases mono-
tonically for p over [0, Popt

I ] and decreases monotonically
over [Popt

I , 1].

3. Backoff Algorithm Based on Theory of Confidence
Interval Estimation

3.1 Fault-Tolerant Interval

Based on the analysis above, we can conclude that although
precise probability of idle state can hardly be estimated
based on the limited number of samples, we still can make
sure the biased estimations are within a certain range. For
the central point of Popt

I , we can define an interval with ra-
dius R. We call this interval as fault-tolerant interval in this
paper. We make the interval contain the biased estimations
as much as possible by applying the theory of confidence
interval estimation.

According to central limit theorem, biased estimation is
a normal distribution with expectation of Popt

I and variance
of Popt

I · (1 − Popt
I )/m. Based on the properties of normal

distribution, the distribution of P̂I can be transformed into
the standard form as shown in (10):

U =
P̂I − Popt

I√
Popt

I · (1 − Popt
I )/m

∼ N(0, 1) (10)

According to the theory of confidence interval estima-
tion, we can express the confidence interval of U with con-
fidence level of 1 − α as below:

P{−u ≤ U ≤ u} = 1 − α (11)

As u is a cumulative normal distribution, we have:

Φ(u) = P(U ≤ u) = 1 − α
2

(12)

u = Φ−1(Φ(u)) = Φ−1(1 − α
2

) (13)

By substituting (10) to (11), we can have

P{−u ≤
P̂I − Popt

I√
Popt

I · (1 − Popt
I )/m

≤ u} = 1 − α (14)

and we can have

R = u ·
√

Popt
I · (1 − Popt

I )/m (15)

we can see that when PI(n, cw) = Popt
I , (1 − α) · 100% sam-

pled P̂I will be within the range of [Popt
I − R, Popt

I + R]. In
other words, if 1 − α is large enough, almost all biased esti-
mations will be in the range of [Popt

I −R, Popt
I +R]. Obviously,
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the length of fault-tolerant interval R is negative depending
on the sample size m for certain confidence levels.

3.2 Backoff Algorithm Construction

As mentioned in the previous section, P̂I can be estimated
at the end of each m sample. The introduction of the fault-
tolerant interval leads to three cases of P̂I as below:

Case 1: P̂I ∈ [Popt
I − R, Popt

I + R]. When P̂I deviates
away from Popt

I and still locates within the fault-tolerant in-
terval, it is hard to tell if the deviation is caused by the
wrong estimation or by the change of channel contention
level. Thus in this case, our BA-CIE algorithm will simply
ignore the estimation result if it is within the fault-tolerant
interval.

Case 2: P̂I ∈ [0, Popt
I − R). As analyzed above, when

P̂I is smaller than Popt
I − R, we believe that the channel con-

tention has become more intense. As a result, the contention
window needs to be increased to make PI become closer to
Popt

I . In this case, we denote ri as the new contention win-
dow size cwnew corresponding to the old contention window
size cwold. In our BA-CIE algorithm, ri is calculated accord-
ing to (16) below:

ri =
log (Popt

I − R)

log Popt
I

(16)

Case 3: P̂I ∈ (Popt
I + R, 1]. In this case, P̂I is larger

than Popt
I + R which means the channel contention is less

intense, so that the contention window should be decreased.
We denote rd as the ratio between the old contention window
size cwold and the new contention window size cwnew and is
calculated based on (17) below:

rd =
log Popt

I

log (Popt
I + R)

(17)

There are four parameters, i.e., R, m, ri and rd, involved
in our BA-CIE algorithm. R and m are correlated according
to (15), while ri and rd can be derived from (16) and (17).
As an example, we show some of the values and relations of
the four parameters in Table 1.

We now present the detailed procedure of our BA-
CIE algorithm in Alg. 1. In the BA-CIE algorithm, sam-
ples are acquired during backoff period. BO_timer is the
value set for the backoff timer, while BO_start is the time
when the backoff timer is triggered. slot_cnt is the total
number of slots between two consecutive events that the
backoff timer is triggered. idle_slot_cnt is the number of
idle slots within the slot_cnt number of consecutive slots.

Table 1 Parameters configuration for BA-CIE (α = 0.99).

R ri rd m

0.0380 1.20 1.24 ≥ 789
0.0915 1.50 1.80 ≥ 136
0.1164 1.80 3.00 ≥ 58
0.1723 2.00 4.98 ≥ 39

idle_slot_cnt/slot_cnt is the probability of being in idle
state for the channel in each slot above.

In the BA-CIE algorithm, the above four parameters
can be preset according to Table 1 as system parameters,
and the other information for the backoff timer can be cal-
culated by the Physical layer based on the previous com-
munication results. The contention window tuning pro-
cess will be updated according to the relationship between
idle_slot_cnt/slot_cnt and the other two thresholds. Over-
all, our proposed backoff algorithm can be easily imple-
mented in practice.

Algorithm 1 The procedure of BA-CIE
Require:

Preset Parameters in Table 1
R, ri, rd , m;
Parameter Initial
BO_timer, BO_start,
slot_cnt = 0, idle_slot_cnt = 0.

1: while monitored the backoff period do
2: if the backoff timer is suspended or complete then
3: slot_cnt+ = BO_timer − BO_start + 1;
4: idle_slot_cnt+ = BO_timer − BO_start;
5: BO_start = BO_timer;
6: if slot_cnt >= m then
7: if idle_slot_cnt/slot_cnt < Popt

I − R then
8: cw = cw ∗ ri;
9: end if

10: if idle_slot_cnt/slot_cnt > Popt
I + R then

11: cw = cw/rd;
12: end if
13: slot_cnt = 0, idle_slot_cnt = 0;
14: end if
15: end if
16: end while

3.3 Backoff Algorithm Evaluation

Estimation results can be evaluated before they are applied
by our BA-CIE algorithm. However, mismatches of con-
tention window in the algorithm may not correctly represent
the actual channel contention level. Next we will analyze
the performance of our BA-CIE algorithm in details.

We denote the inverse function of (2) as:

N(p) =
log p

log (1 − cw) − log (1 + cw)
(18)

We define nopt = N(Popt
I ) as the optimal number of con-

tending nodes based on the current contention window size.
By substituting (16) and (17) to (18), nU = N(Popt

I − R) =
N(Popt

I ) · ri and nL = N(Popt
I + R) = N(Popt

I )/rd respectively
represent the number of contending nodes which will make
the actual probability of idle state in channel deviates to the
upper and lower boundaries of fault-tolerant interval. Ac-
cording to the conclusions in [8], [10], when the contention
window size divided by the number of contending nodes in
channel approximately reaches a constant, the probability
of idle state in channel approaches Popt

I . Here, we denote
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this certain constant as β. Therefore, we can easily calcu-
late (19):

cw · ri

nU
=

cw/rd

nL
=

cw
nopt
= β (19)

Thus, we can conclude that in our BA-CIE algorithm,
nodes ensure the changes of contending nodes by judging
the location of P̂I , while if they obtain a P̂I out of the fault-
tolerant interval, they will immediately tune their contention
window size to fit the new situation where n = nU or n = nL,
otherwise, the contention window is kept to fit the situation
where n = nopt.

We discuss the performance of the proposed algorithm
by considering the next three cases:

Case 1: n ∈ (nL, nopt)
∪

(nopt, nU). In this case, no mat-
ter if the contention window is increased, decreased or just
kept the same, the probability of idle state of the channel will
never reach Popt

I . As a result, the throughput will decrease
for sure. According to the definition of T L(p) in Sect. 2.2,
we can easily get the upper bound of such throughput de-
creasing in (20):

T LU = max{T L(Popt
I + R),T L(Popt

I − R)} (20)

Case 2: n = nL or n = nU . According to the distri-
bution of biased estimations, such changes can be detected
with the probability of 50% from a single P̂I . The maximal
throughput decreasing from the mismatches can be calcu-
lated by (20). When the the changes are successfully de-
tected, the throughput will reach its optimal.

Case 3: n ∈ (−∞, nL)
∪

n ∈ (nU ,+∞). Because of
the change of n, the throughput will decrease evidently.
However, the probability of detecting the changes expo-
nentially grows. Especially, when n ≥ N(Popt

I − 2R) (or
n ≤ N(Popt

I +2R)) the changes can be 100% detected. Tuning
the contention window after each m samples, the throughput
performance can be quickly back to the optimal.

Based on the analysis above, we can see that the
throughput of BA-CIE algorithm is very close to the opti-
mal one by adopting a pair of well maintained m and R.

4. Simulation Results and Discussions

In this section, we use the OMNET++ simulator [18] to
study the performance of the proposed backoff algorithm.
The basic PHY layer and MAC layer are based on standard
IEEE 802.11 protocol. The related parameters used in our
simulations are shown in Table 2. The realization of our
proposed BA-CIE algorithm has extremely low complexity,
so that it can be easily implemented on top of the standard
IEEE 802.11 module without any change to the protocol or
the hardware. The channel state statistics in the BA-CIE
algorithm can be directly obtained from the carrier sense
module which is used to accomplish the backoff counting
in standard 802.11 module. Besides, several statistical pa-
rameters are calculated to implement all the functions of the
BA-CIE algorithm. Next, we evaluate the performance of

Table 2 PHY AND MAC layer parameters in simulation.

Parameters Value Parameters Value
Bit Rate 11 Mbps Payload Length 1 KB
Slot Time 20 µ sec MAC Header 224 bit
SIFS 10 µ sec RTS 160 bit
DIFS 50 µ sec CTS 112 bit
PHY Header 192 µ sec ACK 112 bit

Fig. 2 Throughput performance of BA-CIE for different number of con-
tending nodes varying from 4 to 400 with different parameters listed in
Table 1.

the BA-CIE algorithm from two aspects: the accuracy and
the efficiency of contention window tuning.

4.1 Tuning Accuracy of BA-CIE

Firstly, we study the tuning accuracy by fixing the number
of contending nodes in channel during the whole simula-
tion. In this case, the tuning accuracy can be represented
by the system throughput. If the system throughput is very
close to the theoretically optimal one, we can claim that we
achieved a high tuning accuracy. Figure 2 shows the sim-
ulation results of system throughput of the BA-CIE algo-
rithm with different settings listed in Table 1. In our sim-
ulation, the number of contending nodes varies from 5 to
400. All simulation results are sampled during the time in-
terval [20s,320s] when the network is stable. In the figure,
the curve of optimal throughput is based on the theoretically
optimal values calculated using (5). From the figure, we
can see that our proposed BA-CIE algorithm can achieve
more stable and higher system throughput not only in set-
tings with low contention level but also in settings with ex-
tremely high contention level. The system throughput oscil-
lates around a certain value and this is reasonable because
when PI(n, cw) deviates slightly from the Popt

I , contention
window tuning process is not triggered. When the deviation
reaches a pre-defined threshold, the contention window size
is updated according to the proposed algorithm. The system
throughput of the case with ri = 1.2, rd = 1.24 is very close
to the optimal value on average. On the other hand, if we ap-
ply larger ri and rd, the contention window tuning becomes
slightly more rough. Simulation results show that even in
the case with ri = 2.0, rd = 4.98, the BA-CIE algorithm can
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Table 3 Contention window tuning efficiency of BA-CIE with different
parameters.

{ri, rd} α m T L(Kbps) Time(s)
0.99 789 9.063 8.91

{1.20,1.24} 0.70 130 12.490 1.63
0.50 54 15.896 0.77
0.99 136 12.593 0.77

{1.50,1.80} 0.90 57 16.350 0.36
0.70 23 21.720 0.2

0.9999 132 16.400 0.52
{1.80,3.00} 0.99 58 19.398 0.27

0.9 24 28.422 0.14
0.9999 89 26.425 0.41

{2.00,4.98} 0.99 38 24.810 0.16
0.9 16 37.585 0.08

effectively achieve over 99% of the optimal throughput.

4.2 Tuning Efficiency of BA-CIE

From Table 1 we can see that smaller ri and rd can achieve
higher throughput while requiring larger sample size to keep
high confidence level. However when channel contention
level changes, a lot of time will be spent on sampling during
which the wrong contention window size is applied which
will result in the decreasing of the system throughput. We
can just study the contention window tuning efficiency in the
scenarios where the number of contending nodes changes.

We start the simulation with 4 contending nodes, and
increase the number of nodes to 100 after 20 seconds.
We calculate the system throughput of the BA-CIE algo-
rithm with different system parameters every 0.01 s until
the throughput becomes close to the optimal value. Table 3
shows the contention window tuning efficiency of the BA-
CIE algorithm with different system parameters where T L
represents the maximum throughput gap away from the the-
oretical optimal values, and the parameter Time is the total
tuning time spent. In the table, we bold the the cases with
α = 0.99 which have been studied in Fig. 2. From these re-
sults, we can see that {ri, rd} = {1.20, 1.24} with α = 0.99
can be hardly applied in dynamic networks because of the
long tuning time of 8.51s. Instead, {ri, rd} = {2.00, 4.98}
with α = 0.99 can achieve the most efficient tuning effi-
ciency with less than 0.2s because of its larger tuning ampli-
tude and smaller sample size, while its system throughput
does not perform as good as others. In conclusion, either
smaller {ri, rd} or larger α should be applied in static net-
works, otherwise either larger {ri, rd} or smaller α can be ap-
plied for dynamic situations where channel contention level
changes frequently.

4.3 Performance Comparison

In this subsection, we compare the performance of our pro-
posed BA-CIE algorithm with that of other classic back-
off algorithms including the BEB algorithm in IEEE 802.11
DCF [15], [16], and EIED [19], as well as the well-known
feedback-based Idle Sense algorithm [7].

In the simulation, two cases with parameters of ri =

Fig. 3 Throughput performance of BA-CIE, BEB, EIED, and Idle Sense
and for different number of contending nodes varying from 4 to 400.

1.50, rd = 1.82,m = 136 and ri = 2.0, rd = 4.98,m = 38 for
our proposed BA-CIE algorithm are conducted. They repre-
sent the typical system throughput and contention window
tuning efficiency that the BA-CIE algorithm can achieve.
We run the situations with a different number of contend-
ing nodes ranging from 4 to 400 nodes, and focus on the
performance of throughput in both dynamic and static set-
tings.

Figure 3 shows the system throughput of our proposed
BA-CIE algorithm in comparison with these of other algo-
rithms. From the figure, we can see that the throughput of
BEB and EIED decrease rapidly while the number of con-
tending nodes increases because of the rough contention
window tuning scheme applied. Idle Sense algorithm can
achieve high and stable throughput performance in high
contention settings, but its throughput decreases when chan-
nel contention level is low. This is because low channel
contention leads to shorter backoff time during which fewer
samples about the channel contention level can be obtained.
Channel state information based on insufficient samples de-
creases the system throughput dramatically. In our BA-CIE
algorithm, the insufficient samples problem is well solved
by changing the sample size to better suite the situation. At
the same time, the contention level prediction in high con-
gestion situations is also improved by choosing better con-
fidence intervals. Because of the above new features, our
proposed algorithm provides much more stable and higher
throughput than those of the other algorithms in different
network settings.

Figure 4 shows the contention window tuning effi-
ciency of different algorithms as a function of the number
of contending nodes according to the sequence of 4, 50, 4,
100, 4, 200, 4, 300, 4, 400, 4. In the simulation, each num-
ber of contending node runs for 5 seconds. From the fig-
ure, we can see that more time is spent on contention win-
dow tuning when the channel contention changes more dra-
matically. Our proposed BA-CIE algorithm achieves fastest
tuning speed compared to other backoff algorithms. This
is because the change of channel contention level can be
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Fig. 4 Contention window tuning efficiency of BA-CIE, BEB, EIED, and idle sense for ever-changing
networks.

quickly identified by the BA-CIE algorithm and the con-
tention window can be tuned substantially towards its op-
timal value. For example, for the case with parameters of
ri = 1.5, rd = 1.82,m = 136, our BA-CIE algorithm’s total
adaptation time is less than 0.5s even when the number of
contention nodes suddenly changes from 4 to 400.

5. Conclusion

In the IEEE 802.11 based wireless networks, optimizing the
contention window tuning process through estimating the
channel contention level can improve the system through-
put. However, it is very hard to precisely estimate the chan-
nel condition on-the-fly. As a result, biased channel con-
tention level estimation methods are more practical. Previ-
ous work does not specifically address this problem intro-
duced by the biased channel contention level estimation. In
this paper, we analyzed the probability distribution of these
results at different contention levels, and proposed an effi-
cient backoff algorithm based on the theory of confidence
interval to filter incorrect and useless estimations so as to
improve the accuracy and efficiency of contention window
tuning in dynamic settings. To evaluate the performance
of the proposed algorithm, we performed comprehensive
simulations to compare with BEB, EIED and Idle Sense
backoff algorithms. Simulation results show that the sys-
tem throughput of our proposed algorithm is much higher
and is very close to the theoretical throughput limit of the
IEEE 802.11 DCF access scheme with different network set-
tings. Besides, by selecting appropriate system parameters,
the contention window tuning efficiency of our proposed al-
gorithm is also improved remarkably.
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