
948
IEICE TRANS. COMMUN., VOL.E100–B, NO.6 JUNE 2017

POSITION PAPER
Design and Implementation of a Test Program for Benchmarking
DNS64 Servers

Gábor LENCSE†a), Member and Dániel BAKAI†b), Nonmember

SUMMARY A new Internet Draft on benchmarking methodologies for
IPv6 transition technologies including DNS64 was adopted by the Bench-
marking Working Group of IETF. The aim of our effort is to design and
implement a test program that complies with the draft and thus to create the
world’s first standard DNS64 benchmarking tool. In this paper, we disclose
our design considerations and high-level implementation decisions. The
precision of our special timing method is tested and found to be excellent.
Due to the prudent design, the performance of our test program is also
excellent: it can send more than 200,000 AAAA record requests using a
single core of a desktop computer with a 3.2 GHz Intel Core i5-4570 CPU.
Its operation comprises all the functionalities required by the draft includ-
ing checking the timeliness and validity of the answers of the tested DNS64
server. Our DNS64 benchmarking program, dns64perf++, is distributed
as free software under GNU GPL v2 license for the benefit of the research,
benchmarking and networking communities.
key words: benchmarking, DNS64, IPv6 transition technology, perfor-
mance analysis

1. Introduction

DNS64 [1] and NAT64 [2] IPv6 transition technologies will
play an important role in the following years by enabling
IPv6-only clients to communicate with IPv4-only servers.
There are several well-known DNS64 implementations, e.g.
BIND, TOTD, Unbound and PowerDNS, which we have al-
ready tested to determine their stability and performance [3]
and we have shown that their performances are significantly
different for various reasons, e.g. some of them can benefit
from a multi-core environment and some of them cannot. We
have also created a small test program, dns64perf, which is
suitable for examining the performances of DNS64 servers
[4]. This program is feasible for both testing the stability of
the DNS64 implementations (by themselves) and comparing
their performances. However, this program is not suitable
for benchmarking their performance. By “benchmarking”
we mean accurately measuring some standardized perfor-
mance characteristics and obtaining reasonable and compa-
rable results. To be more specific, e.g. the benchmarking
methodology for network interconnect devices described in
[5] includes a throughput test that requires the Tester to be
able to send packets (of given size) at a predefined rate

Manuscript received May 24, 2016.
Manuscript revised October 23, 2016.
Manuscript publicized December 16, 2016.
†The authors are with the Department of Networked Systems

and Services, Budapest University of Technology and Economics,
Magyar tudósok körútja 2, H-1117 Budapest, Hungary.

a) E-mail: lencse@hit.bme.hu
b) E-mail: bakaid@kszk.bme.hu

DOI: 10.1587/transcom.2016EBN0007

and decide if the DUT (Device Under Test) can forward the
packets at that rate or not. Unfortunately, dns64perf is not
suitable for this type of measurement because it waits for
the reply of its current query∗ before sending the next one.
Although its query rate may be somewhat tuned by the ap-
propriate setting of the number of threads, it is not able to
send queries at a predefined rate. Another problem is that the
speed of the Tester computer (used to execute dns64perf)
also influences the results. This is not a problem if our
aim is to compare multiple DNS64 implementations, but it
is unacceptable if one would like to benchmark (that is to
objectively quantify) a given DNS64 server.

As for the methodology of DNS64 server testing, a
later RFC was prepared for addressing IPv6 specificities [6],
but it explicitly states that IPv6 transition mechanisms are
outside of its scope. There is a new Internet Draft to cover
benchmarking methodology for IPv6 transition technologies
including DNS64 servers [7]. The aim of our current efforts
is to design and implement a test program which complies
with the draft and thus to create the world’s first standard
DNS64 benchmarking tool. In this paper, we disclose the
design considerations and implementation decisions of our
test program.

Our new test program, dns64perf++ is a free software
for the benefit of the research, benchmarking and networking
communities and it is available under the GNU GPL v2
license from GitHub [8].

The remainder of this paper is organized as follows.
Section 2 contains the basic operation requirements based
on the Internet Draft. Section 3 discloses our most impor-
tant design considerations. Section 4 presents our high-level
implementation decisions. Section 5 is a case study for the
justification of our timing algorithm. Section 6 mentions a
paper (in making) about our experience with dns64perf++
and highlights our plans for its further development. Sec-
tion 7 gives our conclusions.

2. Basic Operation Requirements

2.1 Test and Traffic Setup

The Internet Draft [7] adopted our basic operation step which
we used in our previous works (including [3] and [4]) namely
the test program should send queries for AAAA records of
∗The words query and request, as well as reply and answer are

used with the same meaning throughout the paper.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS
949

Fig. 1 Test setup for benchmarking DNS64 servers.

domain names which have actually no AAAA records but
only A records in the DNS system.

Section 9.1 of the Internet Draft [7] describes the test
and traffic setup. Although the draft follows the traditional
two devices setup containing the Tester and the DUT (Device
Under Test) only, now we use three devices for clarity: the
two sub-functions of the Tester are realized by two physical
devices, they are Tester/Measurer and Tester/AuthDNS, see
Fig. 1. Let us follow there what happens during one testing
step. First, the client sends a query for an AAAA record of
a particular domain name to the DNS64 server. The DNS64
server has to use the DNS system to find out if an AAAA
record for the given domain name exists. During the tests, the
DNS64 server acts as a forwarder (and not a DNS recursor),
thus it simply asks the authoritative DNS server (located on
the right side of the figure) by sending message 2. Third, the
authoritative DNS server sends and empty reply because no
AAAA record exists for the queried domain name. Fourth,
the DNS64 server asks the authoritative DNS server for an
A record for the same domain name. Fifth, the authoritative
DNS server sends a valid A record, which one is used by
the DNS64 server to synthesize an IPv4-embedded IPv6
address. Sixth, the DNS64 server returns the synthesized
AAAA record to the client.

2.2 Requirements for the Tester

Using the above detailed basic operation step, the draft re-
quires to measure the number of successfully processed
AAAA record requests per second by the DNS64 server.
For this purpose, the measurement program MUST† be able
to send the DNS queries at any predefined rate and decide if
the DNS64 server is able to reply them in time or not.

First, different domain names MUST be used. (Either
they are all different during the measurement, or at least they
MUST NOT be repeated until the cache of the DNS64 server
still contains them.) In addition to that, measurements MAY
be done with domain names, 20%, 40%, 60%, etc. of which
are cached. We note that if the information is cached, then
messages from 2 to 5 are omitted.

Similarly, first, measurements MUST be done with do-
main names, which have no AAAA records, and then mea-
surements MAY be done with domain names, 20%, 40%,
†The key words written “MUST”, “MUST NOT”, “RE-

QUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in [9].

60%, etc. of which have AAAA records. We note that if a
domain name has an AAAA record then message 3 is not
empty but contains a valid answer, messages 4 and 5 are
omitted and the native IPv6 address is returned in message
6.

The draft also mentions the timeout: if the test program
does not receive a reply from the DNS64 server within a
predefined time interval (default value is 1 second) then the
request is considered to be lost and it is interpreted that the
DNS64 server cannot serve the given rate of requests.

We note that Tester/Measurer, that is, dns64perf++
has no responsibility for messages other than number 1 and 6
during a DNS64 benchmarking measurement. Section 9.2.1
of the Internet Draft mentions some requirements for the
Tester and describes a preliminary self-test. To summarize
the self-test in a nutshell, a Tester (including both Measurer
and AuthDNS subsystems) can be certified for benchmarking
up to rate r with timeout t, if it is looped back (that is
Measurer is connected immediately to AuthDNS leaving out
the DUT) and the Tester can achieve 2 ∗ (r + δ) rate with
timeout t/4, where δ ≥ 0.1. (See the Internet Draft for
more details and explanation.) We note that this self-test
gives a guarantee for the sending ability of the Measurer,
the replying ability of AuthDNS, the receiving ability of
the Measurer as well as the speed of the interconnection.
These measurements may be performed using AAAA record
requests, thus no further requirements arise.

3. Design Considerations

3.1 Choice of the Namespace

The most important requirements concerning the namespace
were already defined in [10]. We need a namespace that:

• can be described systematically
• can be resolved to IPv4 only
• can be resolved without delay

Now, we add one more requirement: the test program should
be able to generate the AAAA record requests in a computa-
tionally efficient way. We consider that the namespace used
in [4] can be used with two modifications:

1. The numbers in it should always contain 3 digits.
2. Its potential size should be extended to 232.

Thus it will look as follows:

{000..255}-{000..255}-{000..255}-{000..255}.dns64perf.test.



950
IEICE TRANS. COMMUN., VOL.E100–B, NO.6 JUNE 2017

Or with a different notation:
k-l-m-n.dns64perf.test., where k, l,m, n ∈ [000, 255]

This is an independent namespace, which can be effi-
ciently resolved to IPv4 by a local authoritative DNS server.

Why do we need the two modifications above? Writing
the numbers always in three digits fixes the length of the first
label to 15 (4 times 3 digits and 3 dashes) thus it will not be
necessary to perform the special encoding (called message
compression) applied in DNS messages (see [11] for details)
for every single domain name.

The potential size of the namespace should be extended
because we know from Carsten Strotmann† that a good DNS
server executed by a modern hardware may resolve more
than one million queries per second. To be future proof,
we decided to allow potentially four billion different domain
names and made it possible for the user to specify the re-
quired part of the namespace (see more details in Sect. 4.1).

3.2 Timing of the AAAA Requests

Perfect timing is necessary to ensure the predefined rate of
AAAA record requests. In order to produce requests at
frequency f , the program must send a request at every T
interval, where T = 1/ f . If the preparation and sending of
a request last TR long time then the program should wait for
TW = T − TR time before preparing and sending the next
request. However, this approach would result in cumulative
timing error for multiple reasons:

• the execution of the calculations require non zero time
• the solution of the timed waiting is imprecise
• the time measurement itself is imprecise

To keep the cumulative error marginal, we use an improved
algorithm. Instead of calculating the waiting time indepen-
dently for each message, we always consider the remaining
time until the end of the testing. We calculate the wait-
ing time before starting to prepare the (n + 1)-th request as
follows:

TW (n + 1) =
NT − (tB (n) − tB (0))

N − n
− TR (n) (1)

where N is the total number of requests to be sent, tB (n) de-
notes the timestamp when the preparation of the n-th request
started and TR (n) denotes the time it took to prepare and
send the n-th request (n takes the values from 0 to N − 1).
This way, the timing is self-correcting.

We note that this method guarantees only the “global”
accuracy of timing. There may be “local” inaccuracies, and
they will surely occur if the request rate is high enough.
Modern computer hardware support the efficiency of pro-
gram execution by several solutions such as caching, branch

†He wrote us by e-mail: “For BIND 9, I currently see a peak
of around 500,000 queries/second on modern hardware (limited to
6-8 cores due to BIND 9 cache locking issues with more cores),
and Unbound up to 1,200,000 queries per second (using cores − 2
for Unbound, e.g. 34 cores on a 36 core machine).”

prediction or prefetching data/instructions. Some high re-
quest rates can only be achieved after these solutions provide
full benefits (program code and data are loaded into the
cache, the branch predictors have already learnt the behavior
of the program, etc.). Thus, a given number of requests may
be sent somewhat late in the beginning of the test.

3.3 Tracking the AAAA Requests

The program has to decide about every AAAA record re-
quest if it was answered within the timeout interval or not.
Therefore, it must store every request (not the whole DNS
message but enough information for the identification††) and
the sending timestamp. When a DNS reply message is re-
ceived then the program has to find the corresponding request
and check the difference between the sending and receiving
timestamps.

We note that our choice of the namespace makes it
possible to identify the requests by using only 32 bits. See
implementation details in Sect. 4.5.

3.4 Consideration of Having an AAAA Record – Trivial

This is not an issue for the test program. It can be easily
solved at the authoritative DNS server. When the zone file is
generated, first, it should contain A records only. After that
20% of the domain names should also have AAAA records
(in a uniform distribution) and the measurements should be
repeated. Later 40%, 60%, etc. of the domain names should
have AAAA records.

3.5 Consideration of Caching – Not Supported

We view the DUT (Device Under Test) as a black box. The
potential namespace is large enough to ensure that AAAA
record requests are not repeated at all.

To support the testing of the efficiency of caching, we
would need to repeat some of the requests. We considered
the trivial algorithm that for achieving 20%, 40%, 60%, etc.
cache hit rates, we might send the first of every 10 requests
three times, five times, seven times, etc. instead of send-
ing the consecutive request(s). However, when requests are
sent at a high enough rate, the DNS64 server does not yet
have the answer for a request when it receives the next one.
Therefore, the requests should be repeated not promptly but
rather a “certain” amount of time later. However, if this de-
lay is too high then the information may be deleted from the
cache of the DNS64 server. The appropriate choice would
require special knowledge of the tested DNS64 implementa-
tion. Using an inappropriate method would result in unfair
††It is possible theoretically that the program mistakenly accepts

a reply from an earlier experiment. If different domain names are
used in every execution of the program (to eliminate the effect
of caching) then this mistake may not happen; otherwise it is the
responsibility of the user to avoid it by using a long enough gap (or
restarting the DNS64 server) between the consecutive executions
of dns64perf++.



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS
951

testing.
As the testing of the effect of caching is OPTIONAL in

the draft, we do not include this feature in the first version of
the test program, but we plan to include it in a later version.

4. High-Level Implementation Decisions

4.1 Specifying the Actual Namespace

The required part of the potential namespace can be eas-
ily identified by the specification of the corresponding IPv4
address range (to which it is mapped by the authoritative
DNS server) using the CIDR notation. For example, the
10.0.0.0/12 range means the range with 220 number of ele-
ments which can be described also as:
010-{000..015}-{000..255}-{000..255}.dns64perf.test.

In addition to that, it is not necessary to use all the
elements of the given range, the user must specify the number
of requests to send, which must be less than or equal with
the size of the range.

4.2 Implementation of Timing

The test program is intended to be executed under Linux,
where the scheduling frequency of the timer interrupt is one
millisecond. If the calculated waiting time is significantly
higher than 1ms, than it may be worth using the sleep† func-
tion to spare CPU capacity. Though its precision is rough,
the timing error can be always be compensated at the next re-
quest. (For time measurement, nanosecond precision clocks
are used.) If the waiting time is less, then busy waiting is
used: the current time is tested in a loop.

Though this combined method produced good results,
later we completely abandoned using the sleep function to
achieve excellent precision timing, see Sect. 5 for details.

4.3 Threads and CPU Cores

The current implementation uses two threads. The main
thread is responsible for receiving the replies and a thread
is started for timely sending of the queries. Thus having at
least two CPU cores is a prerequisite for the execution of the
test program. It is planned that later versions will be able to
utilize all available CPU cores.

4.4 Adding Burst Mode

The exact timing requires additional work, and thus the high-
est AAAA record request sending rate of our test program is
less than it could be if the requests were sent without timing.
On the one hand, this is natural (this is the price of exact
timing), but on the other hand, sometimes it is desirable to
be able to send requests at a higher rate than our hardware is
able to do it with proper timing. (For example, if we want to
†Actually, the std::this_thread::sleep_for() function

is called if waiting time is higher than 5ms.

compare two very good DNS64 implementations and we do
not have a fast enough tester device compared to the DUT we
use.) To implement this feature, we added the “burst size”
parameter. Within a burst, the packets are sent as soon as
possible without timing.

The burst size of 1 results in the original algorithm
providing exact timing of all the requests. Higher burst sizes
enable higher average rate of requests but with less precise
timing. Of course, results produced in this way, are not to
be considered as trustworthy benchmarking results but they
can be useful as an estimation.

4.5 Storing Requests and Validating Answers

The sent AAAA record requests can be unambiguously iden-
tified by the prefix of the actual namespace and the number
of the given request. The latter one is identical with the bits
of the corresponding IPv4 address after the prefix. (That is
the last 20 bits in the example of Sect. 4.1.) Therefore, we do
not store this information at all, rather it is used for indexing
in an array which contains important information (including
the sending time) about each sent AAAA record requests.

When a reply is received, it contains the request in the
“Question” section (see [11]). The first label of the domain
name is read from it, the corresponding IPv4 address is
calculated and its appropriate part is used for indexing the
array. In the appropriate element of the array, the received
flag is set to true and the receiving time is stored. It is also
registered if the reply contained at least one answer.

The measurement ends when the specified timeout ex-
pires for the lastly send request. Then the program processes
the array containing information about the DNS requests and
replies. If a query was answered then the RTT (Round Trip
Time) is calculated by subtracting the sending time of the
query from the receiving time of the reply. If the reply con-
tained at least one answer then it is checked if the calculated
RTT is not more than the timeout value. If yes, then the
answer is qualified as valid.

4.6 Output of the Program

The output of the program contains the number of sent
queries, the number of received answered, the number of
valid answers as well as the average and standard devia-
tion of the RTT of the received answers. In addition to
that, all the results are dumped in CSV format (into the file
dns64perf.csv).

4.7 Usage of Command Line Positional Parameters

Our test program is designed for being executed by a script
several times with different parameters. (The script is likely
to perform a binary search to determine the highest AAAA
query rate at which a DNS64 implementation can answer.)
We considered the application of positional command line
arguments a natural and easy way of specifying the neces-
sary parameters. See the accompanying documentation for



952
IEICE TRANS. COMMUN., VOL.E100–B, NO.6 JUNE 2017

Table 1 Accuracy of the individual waiting time calculation method.
Required frequency (req/s) 10 100 1000 10000 100000
Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1001.04 1010.65 1000.11 1002.02 1022.72
standard deviation 0.07 0.23 0.01 0.18 2.66
minimum 1000.86 1010.02 1000.10 1001.73 1019.01
maximum 1001.10 1010.86 1000.12 1002.28 1027.12

Real frequency (req/s) 9.99 98.95 999.89 9979.81 97778.13

Table 2 Accuracy of the waiting time calculation method using remaining time.
Required frequency (req/s) 10 100 1000 10000 100000
Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1000.10 1000.11 1000.00 1000.00 1000.00
standard deviation 0.01 0.00 0.00 0.00 0.00
minimum 1000.08 1000.11 1000.00 1000.00 1000.00
maximum 1000.11 1000.11 1000.00 1000.00 1000.00

Real frequency (req/s) 10.00 99.99 1000.00 10000.00 99999.99

Table 3 Accuracy of the final waiting time calculation method.
Required frequency (req/s) 10 100 1000 10000 100000
Number of requests 10 100 1000 10000 100000

Sending time of the specified number of request (ms)

average 1000.00 1000.00 1000.00 1000.00 1000.00
standard deviation 0.00 0.00 0.00 0.00 0.00
minimum 1000.00 1000.00 1000.00 1000.00 1000.00
maximum 1000.00 1000.00 1000.00 1000.00 1000.00

Real frequency (req/s) 10.00 100.00 1000.00 10000.00 99999.99

details [8].

5. Investigation of the Precision of Timing Methods

In this section, first, we compare the precision of the two be-
fore mentioned timing methods: the one using independent
waiting time calculation and the one using remaining time
for waiting time calculation. Next, we modify the second
one to achieve even higher accuracy. Then, we provide and
initial performance estimation of dns64perf++. Finally, we
consider the limitations of our test program.

5.1 Testing Method and Test Environment

We requested the test program to send AAAA record requests
at different frequencies. The number of the requests was set
so that their sending last exactly 1 second and we measured
the actual time of their sending. All the experiments were
executed 11 times, average, standard deviation, minimum
and maximum values of the sending times were calculated.
The actual frequency of the requests was calculated from the
average time.

Unlike the old dns64perf, dns64perf++ sends
AAAA record requests independently from the responses.
Therefore, now we have to specify only the parameters of
the computer, which executed the dns64perf++ test pro-
gram: the rest of the test network is redundant.

A desktop computer was used with the following pa-
rameters: 3200 MHz Intel Core i5-4570 CPU (4 cores, 6 MB
L3 cache), 16 GB 1600 MHz DDR3 SDRAM, 250 GB SSD;
Debian GNU/Linux 8.2 operating system.

5.2 Results

The results produced by using individual waiting time cal-
culation are presented in Table 1. We can observe that the
inaccuracy is about 0.1% at 10 Hz, and it grows to about 1%
at 100 Hz. It happens because the sleep function of the oper-
ating system is used (please recall the 1 ms resolution of the
timer interrupt frequency). The inaccuracy is about 0.01%
and 0.2% at 1,000 Hz and 10,000 Hz, respectively. We con-
sider all these values acceptable. However, the inaccuracy
is about 2.2% at 100,000 Hz. As dns64perf++ is intended
to be a standard benchmarking program for producing trust-
worthy results, we can no way tolerate an inaccuracy over
1%. Therefore, we decided to replace the individual waiting
time calculation method by the one that uses the remain-
ing time for the calculation of the waiting time before the
generation of the next request. Table 2 shows the results
produced by our improved algorithm. The results are con-
vincing. The highest inaccuracy, which occurred ad 100 Hz,
was only 0.01%.

5.3 Removal of the Sleep Function

We have completely removed the usage of the sleep func-
tion from the program to achieve always the best possible
accuracy. Table 3 shows the results of the final version of
dns64perf++. They are unexceptionable.

Thus, we have shown that dns64perf++ is a precise
measurement tool for benchmarking DNS64 servers.



LENCSE and BAKAI: DESIGN AND IMPLEMENTATION OF A TEST PROGRAM FOR BENCHMARKING DNS64 SERVERS
953

Table 4 Performance limit estimation.
Required frequency (req/s) 200000 250000 300000
Number of requests 200000 250000 300000

Sending time of the specified number of request (ms)

average 1000.00 1000.56 1176.69
standard deviation 0.00 0.94 2.50
minimum 1000.00 1000.00 1172.25
maximum 1000.00 1002.97 1181.83

Real frequency (req/s) 199999.99 249860.07 254951.59

5.4 Performance Testing

Although the performance analysis of dns64perf++ is not
an aim of this paper, the approximate performance of the pro-
gram was checked. Table 4 shows that the accuracy of timing
starts degrading at 250,000 requests per second. As for the
performance ofdns64perf++, its more than 200,000 AAAA
requests per second performance is expected to be enough
for testing DNS64 implementations executed by commonly
used servers, as our experienced highest rate by which a
DNS64 server (executed by a quad-core Sun server) could
work was less than 8,000 requests/s [3].

5.5 Hardware Performance Warning

Please note that we tested only the sending performance of
dns64perf++. To be suitable for benchmarking up to a
given frequency, it is also necessary that the hardware used
for the execution of dns64perf++ be able to receive and
process all the packets. Otherwise, e.g. missed interrupts
may cause that the replies are lost and the queries are con-
sidered by dns64perf++ to be unanswered. The program
can no way find out why it did not receive a reply.

5.6 Considering the Jitter of the Queries

We have shown that the final timing algorithm provides high
accuracy concerning the average frequency calculated as the
overall number of queries per the overall testing time. How-
ever, there are certain unavoidable situations when timing
will not be precise locally. This is a consequence of the fact
that we designed a software-based generator executed by a
computer under a given operating system, namely Linux.
For example, it may happen that the CPU core executing the
sender thread receives an interrupt during the busy waiting
cycle of the timing algorithm and the processing of the inter-
rupt lasts too long and therefore the next request will be sent
too late. The timing algorithm is self-correcting in the sense
that the average frequency will be precise, but there will be
some jitter in the sequence of the queries. Another typical
situation can happen when the required frequency is so high
that the CPU can still cope with the sending task when the
code is already loaded into its cache memory but it will be
lagging behind the required timing in the beginning. Again,
the self-correcting nature of the timing algorithm will set
the average frequency precisely, but the inter-arrival time of
the first queries will be significantly higher than it should
be. (Similarly, the branch predictors of the CPU may make

some wrong decisions until they learn the behavior of the
program, etc.)

Although it is theoretically possible that the jitter of the
requests impairs the performance of the DNS64 servers, we
do not think that it can significantly influence the results,
because the DNS64 servers should be able to store the re-
quests to some extent to be able to serve the real life requests
with bursts. Moreover, the draft [7] requires at least 60 sec-
onds long test duration, which is long enough to iron out the
consequences of the local timing inaccuracies.

Although we cannot eliminate the jitter, we provide all
the jitter information to the user, as dns64perf++ stores the
nanosecond precision sending timestamps of the requests.
It also writes the timestamps (with other raw data) into
the dns64perf.csv file after finishing the measurements.
Thus, by processing this file, the user may calculate the jitter
values and decide if it is acceptable for his/her purposes or
not. (In the latter case, the measurement may be invalidated
and repeated.)

6. Experience and Future Plans

We are using dns64perf++ in an ongoing project for a
case study and demonstration of the DNS64 benchmarking
method described in [7]. Our experiences and results will
be published in [12].

As of our current implementation, dns64perf++ uses
two threads: one for sending the requests and one for receiv-
ing the replies. Thus, it can utilize two cores of a computer.
Therefore it leaves several cores free if it is executed by
a modern multi-core computer having four or more cores,
which may be used to execute the authoritative DNS server
if the test setup of the draft [7] is followed, which contains
only two devices: the Tester and the DUT.

For testing very high performance DNS64 servers, it
may be necessary to use three devices instead, by dedicat-
ing two high performance computers for Tester: one for
the execution of the authoritative DNS server and one for
executing dns64perf++. We plan to make dns64perf++
multi-threaded to be able to utilize all the cores of a modern
multi-core server.

We also plan to make the second version of
dns64perf++ capable of testing the effect of caching. How-
ever, currently we cannot see a suitable method yet. (We
note that it is a general DNS server benchmarking issue, not
DNS64 specific.) We welcome any experiences or sugges-
tions concerning the benchmarking method for DNS caching
from the research community.



954
IEICE TRANS. COMMUN., VOL.E100–B, NO.6 JUNE 2017

We consider that our design principles may be used
for the design of other benchmarking tools e.g. for testing
NAT64 [2] implementations, too. Being dns64perf++ a
free software, our C++11 source code [8] may also be reused.

7. Conclusions

We conclude that our efforts were successful in creat-
ing the world’s first standard DNS64 benchmarking tool,
dns64perf++. Tests proved that it offers both high preci-
sion and high performance (concerning sending queries for
different AAAA records).

Our further plans include: testing its limits for bench-
marking (being executed by some particular hardware),
adding the capability of utilizing the computing power of
arbitrary number of CPU cores, and extending it for to test
the effect of caching.

References

[1] M. Bagnulo, A Sullivan, P. Matthews, and I. Beijnum, “DNS64:
DNS extensions for network address translation from IPv6 clients to
IPv4 servers,” RFC 6147, April 2011.

[2] M. Bagnulo, P. Matthews, and I. Beijnum, “Stateful NAT64: Network
address and protocol translation from IPv6 clients to IPv4 servers,”
RFC 6146, April 2011.

[3] G. Lencse and S. Répás, “Performance analysis and comparison
of four DNS64 implementations under different free operating sys-
tems,” Telecommun. Syst., vol.63, no.4, pp.557–577, 2016. DOI:
10.1007/s11235-016-0142-x

[4] G. Lencse, “Test program for the performance analysis of DNS64
Servers,” Internat. J. Advances in Telecommunications, Electrotech-
nics, Signals and Systems, vol.4, no.3, pp.60–65, Sept. 2015. DOI:
10.11601/ijates.v4i3.121

[5] S. Bradner and J. McQuaid, “Benchmarking methodology for net-
work interconnect devices,” RFC 2544, March 1999.

[6] C. Popoviciu, A. Hamza, G. Van de Velde, and D. Dugatkin, “IPv6
benchmarking methodology for network interconnect devices,” RFC
5180, May 2008.

[7] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking methodol-
ogy for IPv6 transition technologies,” IETF Benchmarking Working
Group, Internet Draft, https://tools.ietf.org/html/draft-ietf-bmwg-
ipv6-tran-tech-benchmarking-03

[8] D. Bakai, “A C++11 DNS64 performance tester,” source code,
https://github.com/bakaid/dns64perfpp/

[9] S. Bradner, “Key words for use in RFCs to indicate requirement
levels,” RFC 2119, March 1997.

[10] G. Lencse and G. Takács, “Performance analysis of DNS64 and
NAT64 solutions,” Infocommunications J., vol.4, no.2, pp.29–36,
June 2012.

[11] P. Mockapetris, “Domain names – implementation and specifica-
tion,” RFC 1035, Nov. 1987.

[12] G. Lencse, M. Georgescu, and Y. Kadobayashi, “Benchmarking
methodology for DNS64 servers,” unpublished, review version will
be available: http://www.hit.bme.hu/people/lencse/publications

Gábor Lencse received his M.Sc. and Ph.D.
degrees in computer science from the Budapest
University of Technology and Economics, Bu-
dapest, Hungary in 1994 and 2001, respectively.
He works for the Department of Telecommuni-
cations, Széchenyi István University, Győr, Hun-
gary Since 1997. Now, he is an associate pro-
fessor. He is also a part time senior research
fellow at the Department of Networked Systems
and Services, Budapest University of Technol-
ogy and Economics since 2005. His research

interests include the performance analysis of communication systems, par-
allel discrete event simulation methodology and IPv6 transition methods.

Dániel Bakai is a BSc student studying
computer science at the Budapest University of
Technology and Economics, Budapest, Hungary.
He does project work for the Department of Net-
worked Systems and Services, Budapest Univer-
sity of Technology and Economics since Febru-
ary 2015. He is also the author of the mtd64-ng
DNS64 implementation, a successor of MTD64.

http://dx.doi.org/10.17487/rfc6147
http://dx.doi.org/10.17487/rfc6147
http://dx.doi.org/10.17487/rfc6147
http://dx.doi.org/10.17487/rfc6146
http://dx.doi.org/10.17487/rfc6146
http://dx.doi.org/10.17487/rfc6146
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.1007/s11235-016-0142-x
http://dx.doi.org/10.11601/ijates.v4i3.121
http://dx.doi.org/10.11601/ijates.v4i3.121
http://dx.doi.org/10.11601/ijates.v4i3.121
http://dx.doi.org/10.11601/ijates.v4i3.121
http://dx.doi.org/10.17487/rfc2544
http://dx.doi.org/10.17487/rfc2544
http://dx.doi.org/10.17487/rfc5180
http://dx.doi.org/10.17487/rfc5180
http://dx.doi.org/10.17487/rfc5180
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-03
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-03
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-03
https://tools.ietf.org/html/draft-ietf-bmwg-ipv6-tran-tech-benchmarking-03
https://github.com/bakaid/dns64perfpp/
https://github.com/bakaid/dns64perfpp/
http://dx.doi.org/10.17487/rfc2119
http://dx.doi.org/10.17487/rfc2119
http://www.infocommunications.hu/documents/169298/404123/InfocomJ_2012_2_Lencse.pdf
http://www.infocommunications.hu/documents/169298/404123/InfocomJ_2012_2_Lencse.pdf
http://www.infocommunications.hu/documents/169298/404123/InfocomJ_2012_2_Lencse.pdf
http://dx.doi.org/10.17487/rfc1035
http://dx.doi.org/10.17487/rfc1035
http://www.hit.bme.hu/people/lencse/publications
http://www.hit.bme.hu/people/lencse/publications
http://www.hit.bme.hu/people/lencse/publications

