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Improving Performance of Heuristic Algorithms by Lebesgue
Spectrum Filter
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SUMMARY The previous researches on the chaotic CDMA have theo-
retically derived the chaotic sequences having the minimum asynchronous
cross-correlation. To minimize the asynchronous cross-correlation, auto-
correlation of each sequence have to be C (τ) ≈ C × rτ , r = −2 +

√
3,

dumped oscillation with increase of the lag τ. There are several methods to
generate such sequences, using a chaotic map, using the Lebesgue spectrum
filter (LSF) and so on. In this paper, such lowest cross-correlation found
in the chaotic CDMA researches is applied to solution search algorithms
for combinatorial optimization problems. In combinatorial optimization,
effectiveness of the chaotic search has already been clarified. First, an
importance of chaos and autocorrelation with dumped oscillation for com-
binatorial optimization is shown. Next, in order to realize ideal solution
search, the LSF is applied to the Hopfield-Tank neural network, the 2-opt
method and the 2-exchange method. Effectiveness of the LSF is clarified
even for the large problems for the traveling salesman problems and the
quadratic assignment problems.
key words: chaos, combinatorial optimization, lebesgue spectrum filter,
CDMA, traveling salesman problema, quadratic assignment problems

1. Introduction

In the previous researches applying chaotic sequences to
the code division multiple access (CDMA), effectiveness of
chaos has been clarified [1]–[3]. For realizing high perfor-
mance in the CDMA, cross-correlation among the spreading
sequences should be small. In Ref. [1], by analyzing chip-
asynchronous CDMA, the Markov chain for realizing the
lowest cross-correlation has been derived, and chaotic maps
to generate such sequences with lowest cross-correlation
have been proposed. A FIR filter for generating such optimal
chaotic CDMA sequences has also been proposed, and the
advantage of the sequences has been experimentally shown
[3].

The theory of such sequences having lowest cross-
correlation can be applied to various field. Minimization
of the cross-correlation is important not only in wireless
communications. As one of the applications of such a the-
ory, solution search algorithms for combinatorial optimiza-
tion problem can also be improved by low cross-correlation.
In NP-hard combinatorial optimization problems, it is very
important to develop effective heuristic solution search al-
gorithms to find good near-optimum solutions, because it
is impossible to get exact optimum solution in large-scale
problems. In such solution search algorithms for large-scale
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problems, the search space is quite high dimensional and
there exist a lot of local optima. Therefore, if we apply
a neighboring solution search algorithm which only moves
to better state, it easily stops at a local optimum. In order
to improve the solution search performance, meta-heuristic
algorithms have been applied to such solution search algo-
rithms, such as the simulated annealing based on stochastic
dynamics, the tabu search based on deterministic avoidance
of searching same part of the solution space, and so on.

In a solution search in a high dimensional space, di-
rections of the state change should be fully randomized in
order to enable search of wide area of the solution space.
Such a wide movement of the searching state can be re-
alized by minimizing cross-correlation among the axes of
moving directions. Furthermore, most of the heuristic solu-
tion search algorithms are asynchronous. Therefore, in order
to improve the solution search dynamics, the theory of the
chaotic CDMA, which minimizes the asynchronous cross-
correlation, can be applied to the heuristic search algorithms
to realize theoretically best meta-heuristics.

Effectiveness of the chaotic dynamics for combinato-
rial optimization has been also shown in a lot of previous
researches [4]–[12]. In the earliest research on the chaotic
optimization, chaotic dynamics could only be applied to very
small toy problems. The latest chaotic approach that com-
bines heuristic algorithms to chaotic dynamics has much
higher performance [7] and is more effective than the tabu
search in benchmark NP-hard problems [8], [9]. Theoretical
analyses of effectiveness of chaotic search have also been
conducted. One of important features of the effectiveness of
chaos is that a specific autocorrelation of the chaotic dynam-
ics has a positive effect on finding better solutions [12].

In this paper, we apply the theory of chaotic CDMA
to combinatorial optimization algorithms. Ideal low cross-
correlation to search wide area of the solution space is added
to the algorithms. As typical NP-hard benchmark problems,
traveling salesman problem (TSP), and quadratic assignment
problem (QAP) are introduced. The performance of the pro-
posal is analyzed by applying the ideal low cross-correlation
to the Hopfield-Tank neural networks, the 2-opt method and
2-exchange method, In order to give lowest cross-correlation
to these algorithms, we use the Lebesgue spectrum filter
(LSF), which has been proposed in Ref. [3]. The perfor-
mance of the proposed meta-heuristic algorithms are eval-
uated on the benchmark problems and the effectiveness of
the lowest asynchronous cross-correlation derived for the
chaotic CDMA is clarified also in combinatorial optimiza-
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tion.

2. Chaotic Sequences Having Lowest Asynchronous
Cross-Correlation

In Ref. [1], the lowest cross-correlation for chip-
asynchronous DS/CDMA has been analyzed in detail. In
discrete time systems, white noise sequences, whose auto-
correlation is zero, have the lowest cross-correlation among
the sequences. However, in continuous time asynchronous
systems, the lowest cross-correlation among the sequences
is achieved by those with negative autocorrelation. The
asynchronous cross-correlation among the negative autocor-
relation sequences becomes smaller than that of the white
noise sequences. In this section, the autocorrelation of the
sequences which have lowest asynchronous cross-correlation
is derived, and a chaotic map to generate such sequences is
shown [1].

2.1 Lowest Chip-Asynchronous Cross-Correlation

The chip-asynchronous cross-correlation is defined in Fig. 1.
Two sequences, X and Y, have two states, 1 or −1. Timing
of changing the state is not synchronized. As defined in the
analysis on the chip-asynchronous DS/CDMA [1], a chip is
an the integer part of timing difference, which is expressed
by l. The decimal part of timing difference is expressed by
ϵ , which is a positive number smaller than 1 (0 < ϵ < 1).

The chip-asynchronous cross-correlation between X
and Y can be formulated as the following equation,

I = (1 − ϵ )RE/O
N (l; X,Y) + ϵRE/O

N (l + 1; X,Y), (1)

where, RE/O
N is even and odd cross-correlation functions,

which can be expressed as follows,

RE
N (l; X,Y) =

N−l−1∑
n=0

XnYn+l +
l−1∑
n=0

Xn+N−lYn, (2)

RO
N (l; X,Y) =

N−l−1∑
n=0

XnYn+l −
l−1∑
n=0

Xn+N−lYn. (3)

Xn is the value of nth chip of X and N is the length of the
sequences.

As the amplitude of the chip-asynchronous cross-
correlation I, the expected value of I2/N is calculated in
the followings. Since ϵ and RE/O

N (l; X,Y) are independent
on each other, E[I2/N] can be expressed as follows,

E
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N

]
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1
N

E
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Fig. 1 Chip-asynchronous cross-correlation.

Fig. 2 The Markov chain of two value sequences.

· E
[
RE/O
N (l; X,Y)RE/O

N (l + 1; X,Y)
]

(4)

X and Y are assumed to be generated by the Markov chain
shown in Fig. 2. Based on this assumption, E [XnXn+l] =
λl can be obtained. Because the values of ϵ has uniform
distribution, E [ϵ] = 1

2 and E
[
ϵ2
]
= 1

3 .
When N is large enough, the first term of Eq. (4)

becomes as follows with the assumption that XmXn and
Ym−lYn−l are independent on each other,

lim
N→∞

1
N

E
[
(1 − ϵ )2

]
E
[{

RE/O
N (l; X,Y)

}2]
=

1
3

(
1 + λ2

1 − λ2

)
. (5)

The second term of Eq. (4) can be also calculated as follows,

lim
N→∞

1
N

E
[
(1 − ϵ )2

]
E
[{

RE/O
N (l + 1; X,Y)

}2]
=

1
3

(
1 + λ2

1 − λ2

)
. (6)

The third term becomes as follows,

lim
N→∞

1
N

E [2ϵ (1 − ϵ )]

·E
[
RE/O
N (l; X,Y)RE/O

N (l + 1; X,Y)
]

=
1
3

(
2λ

1 − λ2

)
. (7)

When N is large enough, the amplitude of chip-
asynchronous cross-correlation between X and Y in Eq. (4)
can be obtained as follows by Eqs. (5), (6) and (7),

E
[
I2/N

]
=

2
(
1 + λ + λ2

)
3
(
1 − λ2) (8)

This equation clarifies that the theoretically smallest chip-
asynchronous cross-correlation can be generated by using
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Fig. 3 The amplitude of chip-asynchronous cross-correlation.

Fig. 4 The Kalman map to generate the Markov sequence.

λ = −2 +
√

3. Figure 3 shows the dependency of E
[
I2/N

]
on λ. E

[
I2/N

]
becomes smallest when λ = −2 +

√
3.

Therefore, it is clarified that the lowest asynchronous cross-
correlation can be realized using the sequences whose auto-
correlation is C(τ) ≈ C × rτ , r = −2 +

√
3.

2.2 Generating the Lowest Cross-Correlated Sequences

In order to generate the chaotic code following the Markov
chain in Fig. 2, the Kalman map can be used [1]. We can
generate the sequence by the following equations,

x(t + 1) =



2x−λ+1
λ+1 (−1 < x < λ−1

2 ),
2x−λ+1
λ−1 ( λ−1

2 ≤ x < 0),
2x+λ−1
λ−1 (0 ≤ x < λ−l

2 ),
2x+λ−1
λ+1 ( λ−1

2 ≤ x < 1),

(9)

which is shown in Fig. 4.
In Ref. [3], the LSF has been applied to generate lowest

cross-correlation, by giving negative autocorrelation to each
sequence. The LSF is simple FIR filter,

f̂ (t) =
M∑
u=0

ru f (t − u). (10)

By setting r = −2+
√

3, we can give the autocorrelation min-
imizing chip-asynchronous cross-correlation to the sequence
f (t). The LSF has already applied to the spreading codes
and have been shown effective to improve the performance
of the DS/CDMA [3]. In this paper, the LSF will be applied
to solution search algorithms to improve their performances.

3. Chaos Applied to Combinatorial Optimization

Effectiveness of the chaotic dynamics for combinatorial op-
timization has been shown by many researchers [4]–[12].
The first methods applying chaos to combinatorial optimiza-
tion [4]–[6] was for the Hopfield-Tank neural networks [14].
Reference [4] transformed each neuron in the Hopfield-Tank
neural networks to the form having chaotic dynamics, and
showed the effectiveness of the chaotic dynamics for solution
search. Reference [5] applied the chaotic neural network
[15], [16] to Hopfield-Tank neural networks. The chaotic
simulated annealing has also been proposed in Ref. [6]. The
methods to use additive chaotic sequence to each neuron
in the Hopfield-Tank neural networks have also been shown
more effective than adding stochastic noise [11].

In order to apply such effective chaotic dynamics to
large-scale problems, meta-heuristic algorithm using chaotic
dynamics was proposed in Ref. [7]. Furthremore, very high
performance chaotic meta-heuristic search [8], [9] was also
proposed by realizing tabu search using the chaotic neu-
ral networks [15], [16]. This chaotic algorithm was imple-
mented on circuits in order to run it in very high-speed [13].

4. Improving Hopfield-Tank Neural Network by Nega-
tive Autocorrelation

As benchmark combinatorial optimization problems to eval-
uate the performance of the algorithms, this paper introduces
the TSPs and the QAPs. In this section, the Hopfield-Tank
neural network [14] is used as a basic algorithm of the solu-
tion search. Because a search by the original Hopfield-Tank
neural network stops at a local minimum and because its
performance is poor, chaotic sequences are added to each
neuron to avoid trapping at such undesirable states and much
higher performance has been achieved.

The energy function of the basic neural network for the
TSPs can be formulated as follows,

ET = A[{
N∑
i=1

(
N∑
k=1

xik (t) − 1)2}+{
N∑
k=1

(
N∑
i=1

xik (t)−1)2}]

+B
N∑
i=1

N∑
j=1

N∑
k=1

di j xik (t){x jk+1(t)+x jk−1(t)},

(11)

where N is the number of cities, di j is the distance between
the cities i and j, xi j (t) is the output of the (i, j)th neuron
at time t. When xi j (t) = 1, the city i is visited in the jth
order. A and B are the weight for the constraint (formation
of a closed tour) and the objective (minimization of total
tour length). From Eq. (11), the connection weights between
(i, j)th and (k, l)th neuronswi jkl and the threshold of neurons
θi j can be obtained as follows,

wi jkl = −A{δi j (1 − δkl) + δkl (1 − δi j )}
− Bdi j (δlk+1 + δl−k−1), (12)
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θi j = 2A, (13)

where δi j is the Kronecker delta, δi j = 1 when i = j, other-
wise δi j = 0.

For the QAPs whose objective function is

F (p) =
N∑
i=1

N∑
j=1

ai jbp(i)p( j), (14)

the energy function can be formulated as follows,

EQ = A[{
N∑
i=1

(
N∑
k=1

xik (t) − 1)2}+{
N∑
k=1

(
N∑
i=1

xik (t)−1)2}]

+ B
N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

ai jbkl xik (t)x jl (t). (15)

When xi j (t) = 1, the unit i is assigned on the jth index.
From Eq. (15), the connection weight and the threshold for
the QAPs are obtained as follows,

wi jkl=−A{δi j (1 − δkl)+δkl (1−δi j )} − Bai jbkl, (16)
θi j = 2A. (17)

4.1 Performance of the Neural Networks with Chaotic
Noise

We use the following neuron update equation to apply addi-
tive noise to the neural network,

xik (t + 1) = f [
N∑
j=1

N∑
l=1
wik jl x jl (t) + θik + βzik (t)],

(18)

where zi j (t) is a noise sequence adding to the (i, j)th neuron,
β is the amplitude of noise, and f is the sigmoidal output
function, f (y) = 1/(1 + exp(−y/ϵ )). The noise sequence
introduced as zi j (t) is normalized to zero mean and unit
variance.

Figures 5 and 6 show the results of the logistic map
chaos, zci j (t + 1) = azci j (t)(1 − zci j (t)), and the white Gaus-
sian noise used as the additive noise for the neural network.
For the logistic map chaos, 3.82, 3.92, and 3.95 are used
for the parameter a. The horizontal axis is the amplitude of
the noise, β in Eq. (18). The solvable performance on the
ordinate is defined as the percentage of the optimum solu-
tion obtained in 1000 runs with different initial conditions.
Achieving the optimum solution at each run is defined as
hitting the optimum solution value at least once in a fixed it-
eration. Exact solution methods can find the exact solutions
for each problem introduced in this paper, but those methods
require larger amount of computation to obtain the solutions.
In this paper, the solvable performance of each type of noise
are evaluated using a small and fixed computational amount.
The cutoff times of each run are fixed at 1024 iterations for
TSP and at 4096 iterations for QAP, respectively. The pa-
rameters of the neural network are A = 1, B = 1, and ϵ = 0.3

Fig. 5 Solvable performance of chaotic noise and white Gaussian noise
on the TSP.

Fig. 6 Solvable performance of chaotic noise and white Gaussian noise
on the QAP.

for the TSP and A = 0.35, B = 0.2, and ϵ = 0.075 for the
QAP, respectively. The problems introduced in this paper
are a 20-city TSP in [12] and a QAP with 12 nodes, nug12
in QAPLIB [17].

The results in both Figs. 5 and 6 show that the chaotic
noise performs much better than the stochastic noise, on a
comparison of the peaks of the solvable performances as the
noise amplitude changes. The noise amplitude values for the
best performance are different among the noise sequences.
This is not because of a difference in the variances of the
original sequences because each sequence is normalized be-
fore being added as zik (t).

4.2 Improving Performance of Neural Networks by LSF

The autocorrelation coefficients of chaotic sequences used
in the results of Figs. 5 and 6 are shown in Fig. 7. The fig-
ure shows that the autocorrelation of the effective chaotic
sequences has a negative value at lag 1 and dumped oscil-
lation. In the previous section, it is shown that minimum
asynchronous cross-correlation can be realized using the se-
quences having autocorrelation, C(τ) ≈ C×rτ, r < 0. In this
subsection, such autocorrelation C(τ) ≈ C × rτ is applied
to the Hopfield-Tank neural network and the effectiveness
of the negative autocorrelation in solvable performance is
evaluated.
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Fig. 7 Autocorrelation coefficients of chaotic noise that has high solvable
performance.

Fig. 8 Solvable performance on the 20-city TSP with changing parameter
r in autocorrelation C (τ) ≈ C × rτ .

In order to give such autocorrelation, we apply the LSF
to the Hopfield-Tank neural networks. The modified update
equation with the LSF is defined as follows,

yik (t + 1) =
N∑
j=1

N∑
l=1
wik jl x jl (t) + θik + βzik (t) (19)

ŷi j (t + 1) =
M∑
u=0

ru yi j (t + 1 − u) (20)

xik (t + 1) = 1/(1 + exp(− ŷik (t + 1)/ϵ )). (21)

In this formulation, the internal state is defined as y (t) and
the LSF is applied to it. The LSF can be transformed to the
following form suitable for numerical computation,

ŷik (t + 1) = r ŷik (t) + yik (t + 1). (22)

Figures 8 and 9 show the results of the TSP and the
QAP solved with stochastic and chaotic noise whose auto-
correlation is C(τ) ≈ C × rτ as r is varied. The solvable
performance is evaluated as the percentage of obtaining op-
timum solutions in 1000 runs with different random initial
conditions. In this simulation, the several types of white
noise is used for zik (t) in order to tune the autocorrelation
only by the parameter r .

Figures 8 and 9 clearly show that negative r induces
higher performance. The results demonstrate that a negative
autocorrelation with oscillation (r < 0) has a higher perfor-
mance than white noise (r = 0) and positive autocorrelation

Fig. 9 Solvable performance on the 12-node QAP with changing param-
eter r in autocorrelation C (τ) ≈ C × rτ .

noise (r < 0). In comparing the best results with Figs. 5
and 6, we can see that stochastic noise with a negative au-
tocorrelation has almost the same performance as chaotic
noise. As shown in Fig. 7, chaotic noise also has a negative
autocorrelation with damped oscillation.

5. Improving Heuristic Search by LSF

In the previous section, performance improvement by the
LSF and the negative autocorrelation has been analyzed on
the Hopfield-Tank neural network algorithm. However, the
Hopfield-Tank neural network is not applicable to large-scale
problems, because it requires N ×N neurons for the problem
size N and the number of the mutual connections between
the neurons becomes the order of N4. In this section, ef-
fectiveness of the LSF and negative autocorrelation is also
analyzed on heuristic algorithms, which can be easily applied
to much larger combinatorial optimization problems.

5.1 Improving 2-Opt for TSP by LSF

The 2-opt method is a simple algorithm applicable to large-
scale TSPs. Various meta-heuristic algorithms have been
realized based on the 2-opt. As shown in Fig. 10, the 2-opt
flips two pairs of links with keeping a closed tour. It is
possible to improve the solution by the flipping when the
tour length can be shorten. However, such a simple search
only decreasing the tour length stops at an undesirable local
minimum. In the conventional meta-heuristics, stochastic
random fluctuations or tabu searches have been applied to
this simple algorithm to improve the solutions.

In the previous works, effectiveness of chaos on the
meta-heuristics has also been shown. In Ref. [7], chaotic
dynamics has been applied to the 2-opt and its effectiveness
has been clarified. Reference [9] has proposed chaotic tabu
search, which has been realized by using refractory effects
of the chaotic neural networks. Effectiveness of the chaotic
tabu search applied to the 2-opt was shown in very large-scale
TSPs.

In the general 2-opt method, each flip will be applied
one by one. Therefore, in the high-dimensional searching
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Fig. 10 2-opt method for TSP.

Fig. 11 Performance of 2-opt method with LSF.

space of the TSP, 2-opt will improve the solution on each axis
asynchronously. For such asynchronous algorithm, we can
apply the ideal low cross-correlation to improve the solution,
similarly to the case of the Hopfiled-Tank neural networks.

In order to apply the LSF to the 2-opt method, we
use an update equation which has been defined in Ref. [7].
∆i j (t) is the improvement of the solution when the 2-opt flip
connecting the city i to j was applied. The original 2-opt
method can be realized by defining xi j (t + 1) = ∆i j (t + 1)
and updating the solution by the corresponding flip only the
case xi j (t + 1) > 0. The LSF can be applied to this 2-opt
method as follows,

x̂i j (t + 1) =
M∑
u=0

ru xi j (t − u)

=

M∑
u=0

ru∆i j (t − u). (23)

When x̂i j (t + 1) > 0, the 2-opt flip connecting the city i
with j will be applied. The autocorrelation of each flip will
be close to C(τ) ≈ C × rτ and the lowest cross-correlation
among the flip will be realized. We use the following form
of the 2-opt with LSF suitable for the numerical simulations,

x̂i j (t + 1) = r x̂i j (t) + ∆i j (t). (24)

Figure 11 show the results on the 100-city TSP
(KroA100), 200-city TSP (KroA200), 318-city TSP
(Lin318), 442-city TSP (Pcb442), 1173-city TSP (Pcb1173)
and 2394-city TSP (Pr2394) [18]. The performances are
evaluated by the difference of the obtained average solutions
from the optimum solution. The average solution is obtained
by 100 runs with different initial conditions, and cutoff time
of each run is 50000 iterations.

From Fig. 11, the best performance could be obtained by

Fig. 12 2-exchange method for QAP.

Fig. 13 2-exchange method with the LSF.

negative r . The best performance could be realized around
−2 +

√
3, which has been clarified to make the minimum

cross-correlation.

5.2 Improving 2-Exchange for QAP by LSF

Performance improvement by the LSF is evaluated also on
the QAP. As the basic flip of the solution, we usually apply
the exchange of two elements as shown in Fig. 12, We can
use the same update rule as the case of the 2-opt defined in
Eq. (24).

Figure 13 shows the performances of 2-exchange with
LSF on 5 benchmark QAPs from the QAPLIB [17], Tai20b,
Tai30b, Tai50b, Tai100b and Tai150b. The results also show
that the performance becomes best when r is negative. Also
from these results, it could be confirmed that the performance
of the heuristic algorithms can be improved by the low-cross
correlation realized by the LSF.

6. Conclusion

This paper applied the theory of minimizing the asyn-
chronous cross-correlation to improvement of heuristic
searching algorithms for combinatorial optimization prob-
lems. We have introduced the LSF to generate the ideal
searching dynamics and applied it to improvement of the
Hopfield-Tank neural networks, the 2-opt and the 2-exchange
algorithms. By minimizing the cross-correlation in these
asynchronously updating heuristic algorithms, their perfor-
mance could be improved.

The theory of minimizing the asynchronous cross-
correlation was originally investigated on the chaotic CDMA
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[1]. By using the sequences having the autocorrelation with
dumped oscillation, C(τ) ≈ C × rτ, r = −2 +

√
3, asyn-

chronous cross-correlation becomes minimum. This paper
clarified effectiveness of such sequences also on combinato-
rial optimization.

The theory of chaotic CDMA may also improve per-
formance of other methods in various fields, in which mini-
mization of the cross-correlation is needed. There are several
ways to generate such lowest cross-correlation such as the
Kalman map, the LSF. and so on. In our future works, we
try this theory also on other applications to improve perfor-
mance by lowest cross-correlation.
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