
96
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

INVITED SURVEY PAPER
Research Challenges for Network Function Virtualization –
Re-Architecting Middlebox for High Performance and Efficient,
Elastic and Resilient Platform to Create New Services –

Kohei SHIOMOTO†a), Fellow

SUMMARY Today’s enterprise, data-center, and internet-service-
provider networks deploy different types of network devices, including
switches, routers, and middleboxes such as network address translation
and firewalls. These devices are vertically integrated monolithic systems.
Software-defined networking (SDN) and network function virtualization
(NFV) are promising technologies for dis-aggregating vertically integrated
systems into components by using “softwarization”. Software-defined net-
working separates the control plane from the data plane of switch and router,
while NFV decouples high-layer service functions (SFs) or Network Func-
tions (NFs) implemented in the data plane of a middlebox and enables the
innovation of policy implementation by using SF chaining. Even though
there have been several survey studies in this area, this area is continuing
to grow rapidly. In this paper, we present a recent survey of this area. In
particular, we survey research activities in the areas of re-architecting mid-
dleboxes, state management, high-performance platforms, service chaining,
resource management, and trouble shooting. Efforts in these research areas
will enable the development of future virtual-network-function platforms
and innovation in service management while maintaining acceptable capi-
tal and operational expenditure.
key words: network function virtualization, software-defined networking,
service chain, policy management, resource management

1. Introduction

Many different types of network devices, including switches,
routers, and middleboxes [1], such as network address trans-
lation (NAT) and firewalls, are deployed in today’s enter-
prise, data-center, and internet-service-provider (ISP) net-
works. Figure 1 illustrates a general model of network de-
vices including switch, router, and middlebox. Packet pro-
cessing modules (PPMs) that terminate network interface
and handle layer 2 and 3 packet processing are connected to
ports of switch module (SM). Control modules (CMs) that
handles control and management planes, e.g., routing and
signaling protocols, are connected to ports of SM. PMMs
that handle higher than layer 3 are connected to ports of SM.
These network devices are vertically integrated monolithic
systems; individual vendors exercise proprietary design for
system architecture of their products. These devices are be-
coming more complicated because network-equipment ven-
dors frequently add new features to their products, resulting
in thousands of embedded features and protocols with tens

Manuscript received April 7, 2017.
Manuscript revised June 30, 2017.
Manuscript publicized July 21, 2017.
†The author is with Faculty of Knowledge Engineering, Tokyo

City University, Tokyo, 158-8557 Japan.
a) E-mail: shiomoto@tcu.ac.jp
DOI: 10.1587/transcom.2017EBI0001

Fig. 1 General model of network devices including switch, router, and
middlebox.

of millions of lines of source code [2]. Therefore, these
network devices are black boxes, that is, it is sometimes
difficult to diagnose network-service problems caused by
failure of such devices and difficult to improve such devices
by introducing new features. Discontinuing the production
of a certain component could risk the failure of the entire
network-device system (so-called “end of life (EOL)”). Soft-
warization is ushering in a new paradigm for disaggrega-
tion of traditionally vertically integrated network devices.
Software-defined networking (SDN) and network function
virtualization (NFV) are the first steps in disaggregation:
they disaggregate vertically integrated systems into software
and hardware components.

Software-defined networking [3], [4] decouples the con-
trol plane from network devices such as routers and switches.
The logically centralized controller determines network con-
trol including reachability, load balancing, access control,
security, and interface configuration. The management of
Internet Protocol (IP) networks is becoming difficult as they
serve as infrastructures for a wide range of services and
applications; therefore, providing reliability and high perfor-
mance. Control over the paths to deliver traffic with target
performance objectives (also known as traffic-engineering)
is difficult to execute with traditional routing mechanisms
implemented in switches or routers (e.g., OSPF, BGP, SPT).
The routing control platform [5] and path computation ele-
ment [6] are the results of early efforts in separating the con-
trol plane from switches or routers. The 4D architecture [7]
was proposed to refactor network management to decouple
the control plane from the hardware data plane (forwarding
plane), benefiting simple decision logic in logically central-
ized control, which enables independent development and
advances in the control and data planes. Separation of an

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
97

intelligent control plane and simple data plane allows us to vi-
sualize network flexibility required in enterprise, data-center,
and service-provider networks. Advanced features, such as
traffic-engineering and virtual private networks (VPNs), can
be implemented as part of the decision logic in the logically
centralized controller. SANE [8] and Ethane [9], [10], which
use a centralized controller for admission and routing con-
trol of flows to improve reliability and security of enterprise
networks, are the result of early SDN proof-of-concepts and
provide the foundation for openflow architecture [11]. A
fair amount of research has been conducted, as reported in
several survey studies [3], [4], [12]–[15].

NFV [16], [17] decouples NFs or SFs implemented in
the data plane frommiddleboxes as software running on com-
modity off-the-shelf (COTS) X86 servers due to advances in
IT virtualization technologies (e.g., virtual machine (VM)
and container). SF is realized by an associated NF and
therefore we use NF and SF interchangeably hereafter. Ser-
vice functions implemented in the data plane can be com-
plex; theymodify traffic across multiple protocol layers (e.g.,
packet-header rewriting, payload rewriting, and session-level
behavior modification); therefore, they are normally imple-
mented as software. Thus, a middlebox is implemented as an
appliance that runs service function software on a platform
consisting of general purpose processors (GPUs) with possi-
ble optional hardware accelerators. By decoupling functions
from the hardware components of middleboxes, NFV brings
about benefits of elastic capacity, resource efficiency, per-
formance, resiliency, and fault tolerance. A group of mid-
dleboxes will be used to implement a network policy, which
typically requires a packet to go through a series of middle-
boxes, which is called SF chaining. For example, a network
policy in an enterprise network requires that HTTP traffic
incoming from the Internet should go through a series of an
IP firewall (IP-FW), intrusion-detection system (IDS), and
proxy, and non-HTTP traffic should go through an IP-FWand
IDS. Both SDN and NFV will have to evolve to maximize
the benefits of coordinated software-based control and data
planes. Several studies [16], [18], [19] surveyed research on
NFV, gave an overview of NFV projects and standardization
efforts, and identified research directions.

SDN and NFV are promising driving technologies to
disaggregate vertically integrated system into components by
using “softwarization”. Software-defined networking sep-
arates the control plane from the data plane of a switch
and routers, while NFV decouples high-layer SFs imple-
mented in the data plane of a middlebox and enables inno-
vation in policy implementation by using SF chaining. Both
SDN and NFV will have to evolve to maximize the bene-
fits of coordinated software-based control and data planes.
Even though there have been several survey studies in this
area [3], [4], [12]–[16], [18], [19], this area is continuing
to grow rapidly; therefore, it is useful to survey state-of-
art research activities. NFV are rapidly growing in top-
ics such as re-architecting middleboxes, state management,
high-performance platforms, service chaining, and resource
management. In this paper, we present a recent survey of

these areas with a special focus on the above topics, with
which we have been witnessing remarkable advances in the
past few years. The rest of the paper is organized as follows.
In Sect. 2 we give an overview of the technical aspects of to-
day’smiddleboxes to understand the problems to be solved by
NFV.We survey reseach and discuss challenge in the areas of
re-architecting middlebox (Sect. 3), high-performance plat-
form (Sect. 4), state management (Sect. 5), service chaining
(Sect. 6), resource management (Sect. 7), and trouble shoot-
ing (Sect. 8). In Sect. 9 we conclude the paper.

2. Middlebox

The end-to-end argument of the initial Internet principle
[20] is rarely seen in today’s enterprise and internet-service-
provider (ISP) networks. A middlebox [1], which exe-
cutes more complex packet processing functions in the data
plane than normal IP routers, is placed like “bumps-in-the-
wire” between a source host and destination host to provide
value-added services to customers, including improved per-
formance, improved security, and reduced bandwidth costs.
Network deployments handle changing applications, work-
load, and policy requirements via the deployment of middle-
boxes. Today, middleboxes are expensive and closed systems
and are acquired from independent vendors and deployed as
standalone deviceswith little cohesiveness in how the ensem-
ble of middleboxes is managed. A recent survey of 57 en-
terprise networks [21]–[23] revealed that today’s middlebox
infrastructure requires high capital and operational expendi-
ture (CAPEX and OPEX) and induces new failure modes.
The number of middleboxes is comparable to the number
of routers and switches in enterprise networks, which could
translate into high capital expenditure of millions of dollars
in five years for very large enterprise networks (with more
than 100k hosts). Very large enterprise networks could even
deploy several categories of middleboxes, which requires
broad expertise and consequently large management teams.
Such management teams perform daily tasks of monitor-
ing and diagnostics, policy configuration tasks on-demand,
and appliance configuration tasks in installment and replace-
ment time, while performing long-term tasks includingman-
ufacturer interaction and training for upgrades occurring in
roughly four-year cycles. Misconfiguration, overload, and
physical and electrical failures are most common causes of
failures in the deployment of middleboxes. Middlebox de-
ployment induces high CAPEX, complex management in-
ducing high OPEX, and failures from overload and physical
and electrical failures.

These challenges can be solved by outsourcing middle-
boxes to a cloud-based middlebox infrastructure [2], [22],
[23]. The middlebox-placement problem can be solved by
using SDN. “Plumbing” and “services” are separated and
under different organizations; an enterprise network only
forwards data, and any additional processing is provided as
cloud services. Network function virtualization is well in
line with this direction. Cloud-service providers construct
physical infrastructures using a farm of COTS X86 servers



98
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

and have diversified types of middlebox applications that run
on top of these physical hardware infrastructures.

Enforcement of network-wide policies involves
network-management tasks ranging across stateful policy
routing, access-control and rate-limiting traffic, and diag-
nostics for performance debugging, forensics for detecting
malicious activity, etc. Among them, stateful policy rout-
ing for packet traverses a given sequence of middleboxes is
challenging for its enforcement and verification. The root
cause of this problem is that as packets traverse the network,
their headers and contents may be dynamically modified by
middleboxes. These modifications make it difficult to en-
sure that the desired set of policies are consistently applied
throughout the network. This is particularly challenging be-
cause middleboxes often rely on proprietary internal logic
for affecting such dynamic traffic transformations.

Details ofmiddlebox functionality and deployment con-
figuration is written in vendor manuals or not clearly de-
scribed. There have been few studies describing diversified
middlebox functionality and deployment configuration, ex-
cept [1], [24], [25]. Some middleboxes rewrite the packet
header, such as NAT, and others do payload such as the re-
dundancy eliminator (RE). Even some middleboxes modify
session-level behavior such as a wide area network (WAN)-
optimizer. It is crucial to understand diversified types of
middleboxes before we discuss the NFV research challenges
such as service chaining, state management, high perfor-
mance platforms, re-architecting middlebox, and trouble-
shooting.

2.1 Diversified Types of Middleboxes

Diversified middleboxes are deployed in enterprise [22], ISP
[26], and data-center networks [27]. The middleboxes such
as IP Firewall (IP-FW), application firewall (AFW), NAT,
load balancer (LB), proxy, deep packet inspection (DPI),
intrusion detection system (IDS), intrusion-prevention sys-
tem (IPS), virtual router (VR), redundancy eliminator (RE),
WAN optimizer, etc. are deployed. Serving gateway (S-
GW) and packet data network gateway (P-GW) are deployed
inmobile carrier networks while HomeGateway (HGW) and
broadband network gateway (BNG) are deployed for broad-
band residential access networks. Even though the above-
mentioned middleboxes are not exhaustive, we review these
middleboxes to see how much their functionalities differ be-
fore we discuss the NFV research challenges such as service
chaining, state management, high performance platforms,
re-architecting middlebox, and trouble-shooting.

IP-FW and AFW: The IP-FW monitors and drops IP
packets based on the IP header and transport-layer header.
It looks up the access control list (ACL) when it receives a
packet. It drops the packet if the ACL dictates that it should
not pass through. No packet modification is done. The
stateless IP firewall typically allows all IP fragments to pass
through because it does not have enough upper-layer header
information to make a filtering decision. This middlebox
reassembles IP fragments to avoid leaking IP fragments.

The AFW acts as a protocol end point.
NAT: NAT is normally placed at the boundary between

public and private domains for security reasons or convenient
and flexible address management. It dynamically allocates a
source port at its public IP address when a host in the private
domain initiates a new Transmission Control Protocol (TCP)
connection or sends a new UDP packet. It rewrites the IP
address and transport layer port number fields to multiplex
outbound IP packets over the same public IP address and
to demultiplex inbound IP packets to a host in the private
domain. Even though NAT seems to be a simple middlebox,
different types of implementations exist and their behaviors
differ: Restricted Cone NAT, and Symmetric NAT [28]. It
should be noted that vendors may differ in their detailed im-
plementation options for even the same class of middlebox.

LB: LB is placed in front of a farm of servers (e.g.,
Web, Domain Name System (DNS), etc.). When it receives
the fist packet of a new flow to a Web site, it dynamically
selects a Web-server instance for the flow and records it
in the state table. It rewrites the destination IP address
to that of the web server. The subsequent packets of the
flow follow the same address translation. When it receives
packets from a Web-server instance, it looks up the state
table and sends the packet out after rewriting the source IP
address to that of theLB.TheLBcan perform persistent load-
balancing; it redirects a session from a certain customer to
the same Web-server instance persistently using Cookie for
the instance. Algorithms for Web-server-instance selection
differ from vendor to vendor (e.g., leased-loaded, round-
robin, etc.). Some vendors can use leased-loaded while
others can use round-robin or a mixture of both. The layer-7
LB executes URI-based load-balancing. It terminates the
TCP sessions and parses the HTTP GET request messages.
It can also offload Secure Socekts Layer (SSL) processing
for encrypted traffic.

Proxy: Proxy acts as both a server and client for the
purpose of making requests on behalf of other clients. A
“transparent proxy” is a proxy that does not modify the re-
quest or response beyond what is required for proxy authen-
tication and identification. A “non-transparent proxy” is a
proxy that modifies the request or response to the user agent,
such as group-annotation services, media-type transforma-
tion, protocol reduction, or anonymity filtering. Web proxy
terminates an IP flow and recreates another one in between
the user agent and web server. A proxy is used for different
purposes such as monitoring and filtering, performance im-
provement, anonymous service access, and security. Squid
[29] is a caching and forwarding web proxy.

DPI: DPI [30] is a function that deeply inspects pack-
ets at an inspecting point in a network for various purposes
such as bandwidth management, user profiling, network se-
curity, surveillance, network forensics, and censorship and
content regulation [31], [32]. It deeply inspects a packet
to recognize the characteristics contained in the packet. If
it recognizes that the packet needs some treatment for its
purpose, appropriate actions will be triggered. Characteris-
tics include protocols, applications, URLs, media content,



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
99

text string, special-format data, viruses, malware, and other
cyber-security concerns. For example, for use of bandwidth
management, DPI recognizes a user’s application type and
executes appropriate bandwidth allocation for each applica-
tion (e.g., high priority on real-time applications and low for
bandwidth-hungry but non-real-time applications). For use
of network security, the DPI recognizes malicious traffic by
inspecting certain bit patterns (signature ) in packets as part
of the IDS, as described below.

IDS and IPS: The IDS monitors a network to de-
tect malicious activities or policy violations. For malicious
detection activities, the IDS is categorized into two types:
signature and anomaly based. The signature-based IDS
searches for specific patterns in traffic, such asByte-sequence
pattern and known malicious instruction sequences used by
malware. The anomaly-based IDS detects traffic deviated
from a well behaved traffic model that is often constructed
using machine learning algorithms and marks it as malicious
traffic. The IPS can be considered as an extension of the IPS
in that it also detects malicious traffic or policy violations,
and it takes such actions as sending an alarm, dropping de-
tected malicious packets, resetting a connection, or blocking
traffic from the offending IP address. Bro [33], [34] is an
open-source UNIX-based traffic-monitoring tool, which is
often used as an IDS. Snort [35], [36] is an open-source
UNIX-based IPS. Other IDS/IPS products include Palo Alto
Networks [37], OpenVPN [38], Passive Real-time Asset De-
tection System (PRADS) [39].

VR: The VR instance is separated from the physical
router platform to support live migration from one physical
platform to another [40], [41]. The complexity of network
management is reduced by relieving a task for maintaining
consistency between the physical and logical configuration
by using VR. Major router vendors released router virtual-
ization technology to allow multiple VR instances running
over the same physical router platform. Currently, VR runs
on a COTS server platform (e.g., X86 machine) to deliver
10-Gb/s throughput per CPU core [42].

RE: The RE is widely used by data centers and enter-
prise networks to improve network efficiency by eliminating
redundant data between end points [43]–[51]. It executes
application-agnostics (protocol-agnostic) redundant elimi-
nation. An upstream RE device stores packets in memory
over a certain period. Packet contents are indexed using
fingerprints, which work as hooks pointing to content in ran-
dom locations within the packet. For each incoming packet,
the upstream RE device checks if the packet’s fingerprints
have appeared in earlier in-memory packets. Each match-
ing fingerprint indicates a certain region of partial overlap
between the incoming packet and an earlier packet. The
matching packets are compared to identify the maximal re-
gion of overlap. Such overlapping regions are removed from
the incoming packet and a shim, which provides the finger-
print that caused the match and byte range for the matching
in-cache packet, is inserted to notify the downstream RE
device of how to decode the packet. A packet can carry mul-
tiple shims, each potentially matching a different in-memory

packet. The downstream RE device uses the shim in the
encoded packet to retrieve the matching packet(s) and fills in
the corresponding missing byte range(s). It is assumed that
the cache on the downstreamRE device is consistent with the
upstream one. Redundancy eliminator can be implemented
as software running on a commodity server [52].

WAN-Optimizer: A WAN-optimizer is used to im-
prove data-transmission efficiency between two end points
(e.g., between branch office and headquarters, between a data
center and another data center) across a WAN. Even though
most earlierWAN-optimizers have been used a TCP proxy to
tackle high bandwidth-delay product issues in the TCP, they
now use a variety of techniques, e.g., latency improvement,
data compression, caching, redundancy elimination, traffic
shaping, and forward-error correction. Several vendors pro-
vide WAN-optimizer products [51], [53]–[56].

S-GW and P-GW: Long-Term Evolution (LTE) net-
works consist of a radio access network (RAN) and evolved
packet core (EPC) [57], [58]. A RAN includes eNodeBs that
provide wireless access to user terminals. An EPC consists
of network entities that both manage devices and route the
data traffic. A S-GW and P-GW are routers that provide con-
nectivity to devices. The GPRS Tunneling Protocol (GTP) is
used to establish a session between eNodeB and P-GW. The
control plane elements consist of the mobility management
entity (MME), home subscriber server (HSS), and policy
and charging rules function (PCRF). The HSS and PCRF
are database servers for user-subscription information and
quality of service/billing policies, respectively. An MME is
the key control node that manages both device connectiv-
ity and mobility in the EPC network. In addition to being
the entry point for control plane messages from devices, it
manages other control plane entities using 3GPP standard
specific well-defined interfaces.

HGW and BNG: An HGW and BNG are deployed
for broadband residential-access networks [59], [60]. The
Point-to-Point Protocol over Ethernet (PPPoE) or IP over
Ethernet (IPoE) is used to establish a session for the customer
admitted via authentication, authorization, and accounting
procedures.

2.2 Traffic Modification by Middlebox

Different types of middleboxes are characterized by a few
key attributes. For example, Qazi et al. [61] classifies dif-
ferent type of middleboxes in terms of key attributes, e.g.,
the inputs they operate on, their actions, time-scale at which
dynamic traffic modifications occur, and information they
require for operation. Regarding the inputs they operate on,
they use either packet header, payload, flow, session, or a
combination of them. Regarding their actions, they can take
different actions, e.g., no change, drop packet, rewrite header,
rewrite payload, redirect traffic, or map sessions. Regarding
the time-scale at which dynamic traffic modifications occur,
they can modify traffic at time-scale of either per-packet,
per-flow, or per-session. We observe that different types of
middleboxes operate at different granularity (per-packet, per-



100
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 1 Middle box.
Middlebox Modification Actions
IP-FW and AFW No Pass or Drop
NAT IP address, Port

num.
Header conversion

LB IP address Address conversion and Switch
Proxy Session Session termination and re-creation
DPI No Inspect packet data
IDS and IPS No Inspect packet data and Drop or Report if malicious
VR No Forward packets
RE Payload Overlapping bytes are removed and fingerprinted at sending

side, re-created at receiving side
WAN optimizer YES Latency improvement, data compression, caching, RE, shap-

ing, FEC
S-GW and P-GW YES S-GW and P-GW for handling GTP tunneling in data plane,

MME for mobility management in control plane
HGW and BNG YES HGW and BNG for handling PPoE or IPoE tunneling in data

plane, Radius server for AAA in control plane

flow, per-session), modify traffic differently (rewrite header,
rewrite payload, map sessions), and operate at different time-
scales (per-packet, per-flow, per-session). Operators have to
pay attention to the impact of those behaviors of middle-
boxes when they place middleboxes in their networks and
configure routing and policy. Table 1 lists diversified mid-
dleboxes and highlights how they modify packets and be-
have. Bearing those middlebox behavior in mind, in the rest
of paper, we discuss the NFV research challenges such as
re-architecting middlebox, high-performance platform, state
management, service chaining, resource management, and
trouble-shooting.

3. Re-Architecting Middleboxes

Network deployments handle changing applications, work-
load, and policy requirements via the deployment of mid-
dleboxes. Middleboxes are expensive and closed systems,
acquired from independent vendors, and deployed as stan-
dalone devices with little cohesiveness in how the ensemble
of middleboxes is managed. A middlebox is developed and
managed as a standalone device. That is, a new type of mid-
dlebox is developed and introduced into the infrastructure
as a one-shot solution to a specific requirement. In addi-
tion, each middlebox has its own configuration command
line interface; therefore, it is difficult to manage different
types of middleboxes in a unified way. Infrastructure hard-
ware resource is under-utilized because each middlebox is
provisioned for its own peak load hour, which may be dif-
ferent from one to another. To address these issues, several
research projects have been conducted to re-architect mid-
dleboxes [62]–[65].

3.1 Software-Based Programmable Router

Click [66] provides a framework that allows us to build
routers by composing graphs of elements, each having a
single simple atomic function. A Click router [66] is built
from a set of packet processing modules called elements,

which implement basic router functions. Click has been used
as an NFV platform because it allows developers to easily
compose middlebox functionality by reassembling the ele-
ments provided by Click and customized elements developed
by the developers. Different from the computer architec-
ture assumed when Click was originally developed, modern
commodity hardware exhibits characteristics such as hard-
ware multi-queue, multi-core processors and non-uniform
memory access (NUMA). Barbette et al. [67] carried out
an extensive study of the integration of packet-processing
mechanisms and user-space packet I/O framework into the
Click modular router and proposed FastClick by incorporat-
ing a high-speed packet I/O framework to enhance the perfor-
mance of Click. They demonstrated that FastClick with both
Netmap and DPDK exhibits up to about 2.3 × increase in
speed compared to conventional software implementations.
Click does not provide native TCP support for applications;
Therefore, its applicability to middlebox applications is lim-
ited. Click does not provide blocking I/O; therefore, it leads
to waste of CPU resources while being busy waiting on I/O.
To work around these two limitations of Click, Laufer et al.
[68] proposed a Click-based middlebox architecture called
CliMB, which introduces the concept of blocking tasks in
Click to allow network applications to efficiently wait on I/O
without consuming CPU resources. It also provides a full-
fledged modular TCP implementation, supporting blocking
and non-blocking I/O as well as socket and zero-copy APIs
for application portability and high performance.

Sekar et al. [62], [63] proposed CoMb, a middlebox
infrastructure that converts expensive and specialized stan-
dalone middlebox devices into software-centric implemen-
tations of consolidated to run a shared COTS hardware plat-
form by decoupling middlebox application software from a
standalone device. The CoMb targets consolidation at two
levels: individual middleboxes and managing an ensemble
of middleboxes. At the level of an individual middlebox, by
having middlebox applications run on a consolidated hard-
ware platform, they reuse low-level modules such as packet
capture, parsing headers, reconstructing session state, and



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
101

parsing application-layer protocol. At the level of managing
an ensemble of middleboxes, each CoMb box runs multiple
software-based middlebox applications. The network con-
troller of CoMb assigns processing responsibilities across
the network. Sekar et al. presented a CoMB single-box de-
sign assuming a number of parallel computation cores and
multiple queues at the NIC. By having all middlebox appli-
cations within a service chain (what they call hyperapp in
their paper) run on the same processor core and associat-
ing each queue of the NIC with a policy shim (pshim) layer
representing a hyperapp, it avoids inter-core synchroniza-
tion overheads and shared data structures across cores. They
compared it with having identical middlebox applications
run on the same core and demonstrated its advantage com-
pensates its disadvantage of it could incurring overhead due
to the context switches and contention over shared resources
on a single core. They demonstrated proof-of-concept by
implementing a Clik router-based platform.

The CoMb is targeted at per-packet processing; there-
fore, it is less applicable to stream or flow-based process-
ing, which is common to the class of load-balance switch
(LBS) middleboxes. Such middleboxes require operating
on a byte-stream rather than individual packets and require
communication among multiple network elements to exe-
cute dynamic forwarding and rewriting. The TCP connec-
tion collapsing and HTTP request rewriting for persistent
connections are also required for LBSmiddleboxes. To meet
these goals, Anderson et al. [64] proposed an extensible open
middlebox (xOMB) software architecture for building flexi-
ble, programmable, and incrementally scalable middleboxes
based on commodity server components. The xOMB con-
sists of commodity hardware switches, front-end software
middleboxes, back-end application servers, and a controller
for coordination. A front-end software middlebox parses,
processes, and forwards streams of requests and responses
between clients and the back-end servers. The xOMB sup-
ports arbitrary protocol and application logic through user-
defined processing modules (PMs). Deployments can scale
processing capacity by stacking xOMB servers in either way
that every server runs the same modules or that servers run
different modules and form a processing chain. To han-
dle arbitrary byte streams, they terminate client TCP con-
nections at the middlebox, execute the appropriate modu-
lar processing pipeline containing user-defined processing
logic on an incoming byte stream, then transmit the result-
ing byte stream over a new TCP connection to the appro-
priate back-end server. The xOMB [64] demonstrates the
feasibility of constructing extensible middleboxes with com-
modity servers and operating systems (OSes). Through the
use of general programmable network-processing pipelines,
the xOMB creates a service chain in one single OS. The
xOMB uses a general programmable pipeline for network
processing, composed of xOMB-provided and user-defined
C++modules responsible for arbitrary parsing, transforming,
and forwarding messages and streams. It provides a single,
unified platform for implementing the various functions of
static load balancing/filtering, dynamic request routing, and

protocol acceleration.
Greenhalgh et al. [65] discussed a class of system archi-

tectures for building in-network processing platforms called
“flowstream architectures” to strike a balance between per-
formance, scalability and flexibility. They proposed the im-
plementation of network functionalities in virtualized ma-
chines/servers/routers running on top of commodity PCs.
The traffic flow among these virtual network entities is con-
trolled by a programmable network switch implementing
Openflow. A flowstream architecture consists of an Ether-
net switch and commodity servers attached to the Ethernet
switch via ports for additional processing. The switch and
servers are managed as a single platform from the operators’
point of view by a controller.

Many types of middleboxes execute a variety of ad-
vanced network functionalities. A closer look at these mid-
dleboxes reveals that they have many shared primitive func-
tions: most middleboxes execute packet header analysis, and
many middleboxes examine the application payload and/or
reconstruct the TCP session. Bremler-Barr et al. [25] pro-
posed OpenBox, a logically-centralized framework that de-
couples the control plane of middleboxes from their data
plane. They investigated different types of existing middle-
boxes and modeled data plane processing of middleboxes
as an ordered list of stages of the unified processing de-
fined by a set of rules consisting of header match, payload
match, and instructions. They showed how multiple middle-
box applications can be implemented by using a subset of
processing stages to provide the requested functionality. As
mentioned above, OpenBox decouples the control plane of
middlebox from their data plane. A high-level control plane
defines monitoring and performance goals. A low-level data
plane defines the processing stages of multiple middleboxes
as instructed by the control. The data plane is composed of
either separate or consolidated OpenBox service instances
(OBIs) that provide the necessary functionality of the dif-
ferent processing stages and low-level processing entities
that perform one or more stages of the unified processing
stages. Each OBI receives a processing graph (PG) and a set
of processing rules from the OpenBox controller, which is
a logically centralized server that communicates with OBIs
and is in charge of making service chains and enforcing them
by communicating with the OBIs. Bremler-Barr et al. de-
fined the OpenBox protocol that allows adding and removing
rules, specifying PGs, sending alerts and log messages, and
inquire OBIs for statistics. They defined the box abstraction
layer as an abstract API for writing OpenBox applications
to specify a processing path and a set of rules. OpenBOX
is expected to replace legacy middlebox architecture, make
advanced packet processing easier and faster, provide more
flexible and scalable deployment, and allow innovative ap-
plications to be easily developed.

The move from hardware middleboxes to software Net-
work Functions (NFs) as advocated by NFV has proven chal-
lenging. Developing newnetwork functions remains tedious,
while providing isolation between NFs relies on VM or con-
tainer technologies; therefore, incurs high performance over-



102
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

head. Panda et al. [69] proposed Net Bricks to address this
challenge in both building and running middleboxes. Re-
garding building middleboxes, they argue that NetBricks
supports only a limited set of abstractions whose actions
can be optimized through user code rather than supporting a
totally general framework where the developer must take on
the task of optimizing the resulting code, as in Click [66].
NetBricks is focused on a core set with well-known seman-
tics and highly optimized implementations and provides the
necessary generality by allowing customization through the
user of user-defined functions. Regarding running middle-
boxes, they proposed a technique to compile-time and run-
time checks to enforce memory isolation in software (they
call this technique zero-copy software isolation) rather than
relying on isolation provided by using VM and container
technologies which incur significant performance penalties.
NetBricks builds on Rust, a safe language and runtime en-
vironments, and uses Low Level Virtual Machine (LLVM)
[70] to provide the same memory isolation as containers and
VMs, without incurring the same performance penalties by
relying on compile-time and runtime checks to enforcemem-
ory isolation in software. Recent advances in language and
runtime design with the widespread adoption of LLVM as
an optimization backend for compilers has improved perfor-
mance of safe languages and runtime environments which
provide memory isolation mechanisms in software.

Palkar et al. [71] proposedE2, a framework for NFV ap-
plications with motivation for scale-out central offices where
BNGs and EPC gateways are located supporting awide range
of higher-level traffic-processing functions - content caching,
DPI, parental controls, WAN and application acceleration,
traffic scrubbing for Distributed Denial of Service (DDOS)
attach prevention, and encryption - in addition to traditional
NFs. The E2 framework meets system requirements such
as NF placement, elastic scaling, service composition, fault
tolerance, and monitoring. It automates the common tasks
of placement, service interconnection, and dynamic scaling.
It simplifies the building, deploying, and managing of NFs.
The policy statement called pipelets defines a traffic class
and directed acyclic graph that captures how this traffic class
should be processed by NFs. The E2 framework is responsi-
ble for implementing the policy statements that are translated
from network-wide policies by the SDN controller. It uses
three components: (1) scaling, (2) placement, and (3) inter-
connection. The scaling component dynamically computes
the required number of NF instances to support dynamically
varying traffic demand and generates an instance graph called
iGraph. The placement component translates the iGraph into
an assignment of NF instances to specific servers. The inter-
connection component configures the network to steer traffic
across appropriate NF instances. Palkar et al. implemented a
data plane using SoftNIC [72], a software switch that allows
packet PMs to be configured as a data-flow graph in a similar
manner to Click [66].

Anwer et al. [73] proposed Slick, a programming frame-
work that allows a programmer to write a single high-level
program based on Python to implement policy. They devel-

oped a programming abstraction where a specific function is
implemented as an element, in a similarmanner to Click [66],
to compose custom network functions and specify SF chains.
Slick runtime implements the programming abstraction by
decomposing it into constituent functions and placing those
functions at appropriate locations. Slick runtime executes
both placement of modular packet-processing elements and
steering traffic through those elements.

Bezahaf et al. [74] proposed FlowOS, a flow-based pro-
grammable platform for commodity hardware middleboxes.
It provides a development environment for flow PMs that
can be regarded as a middlebox that works on a stream of a
flow. It provides a socket-like interface for writing middle-
box software that processes application byte streams instead
of IP packets. It exposes the byte streams in a clean way
and hides the intricacies of the IP packet structure or TCP
segments.

Table 2 lists summary of relatedwork on software-based
programmable router to re-architect middlebox.

3.2 Hardware-Based Programmable Router

Bosshart et al. [77], [78] proposed the reconfigurable match
tables (RMT) model for high-speed programmable data
switch. In the RMT model, a programmer is allowed to
(1) modify the definitions of a field, (2) modify specification
of match tables, and (3) define new actions. Specifically,
it allows the definition of arbitrary headers and header se-
quences, arbitrary matching of fields by an arbitrary number
of tables, arbitrary writing of packet-header fields (but not
the packet payload), and state update per packet. An RMT
switch consists of a parser followed by a number of match
stages. The parser allows field definitions to be modified or
added. The parser output is a packet-header vector, which is
a set of header fields with meta-data fields. The vector flows
through a sequence of match stages, each of which abstracts
a logical unit of packet processing. Each logical match stage
allows the match-table size to be configured. An input selec-
tor selects the fields to be matched. Packet modifications are
done using a wide instruction, very long instruction word
that can operate on all fields in the header vector concur-
rently. There is an action unit for each field F in the header
vector, which can rewrite F by taking input arguments of
the header vector and the action data results of the match.
Control flow is made possible by an additional output. The
next-table-address from each table match provides the index
of the next table to execute. In summary, the RMT model
allows new fields to be added by modifying the parser, new
fields to be matched by modifying match memories, new
actions by modifying stage instructions, and new queuing
by modifying the queue discipline for each queue. The for-
warding plane can be changed in the field without modifying
hardware. Bosshart et al. demonstrated a 640-Gb/s switch
chip (10-Gb/s per port) using an industry standard 28 nm
process.

Bosshart et al. [79] proposed “P4”, a high-level lan-
guage for programming protocol-independent packet pro-



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
103

Table 2 Summary of research projects on “re-architecting middlebox”.
Research project Type Distinctive Features
“Click”, Morris et al. [66],
[75], [76] (1999)

Building block for software-
based router

Click provides a set of packet processing modules called elements that
allows developers to compose amiddlebox functionality by reassembling
the elements.

“Flowstream Architectures”,
Greenhalgh et al. [65] (2009)

Ethernet switch and com-
modity servers

The switch and servers are managed as a single platform by a controller.
Virtualized machines/servers/routers run on top of commodity PCs.

“CoMb”, Sekar et al. [62],
[63] (2012)

Consolidated middlebox Reusing low-level modules such as packet capture, parsing headers,
reconstructing session state, parsing application-layer protocol. All
middlebox applications within a service chain run on the same core of
processor. Click router-based implementation.

“xOMB”, Anderson et al.
[64] (2012)

eXtensible open MiddleBox
software architecture

xOMB consists of commodity hardware switches, front-end software
middleboxes, back-end application servers, and a controller for coordi-
nation. It realizes a service chain in one single OS. A front-end software
middlebox terminates client TCP connections, executes user-defined
modular processing pipeline, and transmits the resulting byte stream
over a new TCP connection to a back-end server.

“FlowOS”, Bezahaf et al.
[74] (2013)

a flow-based platform It provides socket like interface for writing middlebox software that
process application byte streams instead of IP packets.

“OpenBox”, Bremler-Barr et
al. [25] (2015)

a logically-centralized frame-
work

Middleboxesmodeled as a ordered list of stages of the unified processing
defined by a set of rules consisting of header match, payload match, and
instructions.

“E2”, Palkar et al. [71]
(2015)

a framework for NFV appli-
cations for BNGs and EPC

Policy statement called pipelets defines a traffic class and directed acyclic
graph (DAG) that captures how this traffic class should be processed by
network functions. It employs three components: (1) scaling compo-
nent, (2) placement component, and (3) interconnection component.

“Slick”, Anwer et al. [73]
(2015)

Python programming frame-
work to implement policy.

A function is implemented as element in a similar manner of Click
[66]. Slick runtime performs placement of modular packet processing
elements and steering traffic.

“FastClick”, Barbette et al.
[67] (2015)

Integration of high-speed packet I/O and userspace packet I/O framework
(e.g., netmap and DPDK) into the Click modular router.

“NetBricks”, Panda et al.
[69] (2016)

A limited core set of abstrac-
tions with well-known se-
mantics

Compile-time and runtime checks to enforce memory isolation in soft-
ware called Zero-Copy Software Isolation (ZSCI). NetBricks builds on
a safe language (Rust) and uses LLVM [70] for software isolation.

“CliMB”, Laufer et al. [68]
(2016)

Click improvement It provides a modular TCP implementation, supporting blocking and
non-blocking I/O as well as socket and zero-copy APIs.

cessors. It works in conjunction with SDN control protocols
such as OpenFlow. Its goals include (1) reconfigurability in
the field, (2) protocol independence, and (3) target indepen-
dence. Regarding reconfigurability, the controller should be
able to redefine the packet parsing and processing in the field.
Regarding protocol independence, the controller should be
able to specify (i) a packet parser for extracting header fields
with particular names and types and (ii) a collection of typed
match+action tables that process these headers. Switches
forward packets via a programmable parser followed bymul-
tiple stages of match+action, arranged in series, parallel, or
a combination of both. An abstract model generalizes how
packets are processed in different forwarding devices and
by different technologies. This allows us to devise a com-
mon language, P4, to represent how packets are processed in
terms of a common abstract model. The forwarding model
is controlled by two types of operations: configure and pop-
ulate. Configure operations program the parse, set the order
of match+action stages, and specify the header fields pro-
cessed by each stage. Populate operations add and remove
entries to the match+action tables that were specified dur-
ing configuration. Arriving packets are first handled by
the parser. The extracted header fields are then passed to
the match+action tables. A packet-processing language al-
lows the programmer to express serial dependencies between

header fields. Dependencies can be identified by analyzing
table-dependency graphs (TDGs). A two-step compilation
process is used. A compiler translates the P4 representation
to TDGs to facilitate dependency analysis then maps a TDG
to a specific switch target. The P4 language is designed to
make it easy to translate a P4 program into a TDG.

Song et al. [80] proposed protocol-oblivious forward-
ing (POF) to remove the dependency on protocol-specific
configurations on forwarding elements (FEs) and to enhance
the data path with new stateful instructions. An FE ex-
tracts and assembles the search keys from the packet header,
conducts the table lookups, and executes the associated in-
structions. The FEs do not have any information on any
forwarding protocols. The packet parsing is directed by the
controller through a sequence of generic key-assembly and
table-lookup instructions. To achieve this, they expand the
packet meta-data as a generic scratch pad associated for each
packet in the processing pipeline. Song et al. argue that
a concise set of protocol-independent instructions is suffi-
cient to design a simpler and more generic forwarding plane
model. They proposed the flow instruction set. The search
key is simply defined by one or more {offset, length} tuples.
Forwarding instructions are made protocol agnostic. For the
instructions that manipulate the packet or meta-data (e.g. in-
sert, delete, and modify), {offset, length} is used to locate



104
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

the target data. A new instruction AddField is added to cope
with the situation in which we need to push a new header.
Simple mathematical instructions (addition, subtraction, and
shift) and logic (AND, OR, NOT, and XOR) are also added.
Instructions that allow the data path to actively manipulate
the flow tables are added. They allow each flow entry to
invoke the same set of instructions with different parame-
ters efficiently by storing the unique parameters with flow
entries and letting the flow entries that share the same set of
instructions point to a common instruction block. Statistic
counters are treated as a shared resource that is allocated on
an on-demand basis. Possible lookup tables are categorized
into different types such as direct table, exact match, longest
prefix match, and masked match.

In terms of programmability, recent programmable
switch chips [77], [78], [81]–[83] allow only packet pars-
ing and forwarding but do not state modification in the data
plane while many data plane algorithms create and modify
the algorithmic state such as congestion control, scheduling,
measurement, and active queue management. Sivaraman et
al. [84] proposed an abstraction to program and implement
data plane algorithms called a packet transaction. It is a
sequential code block that is atomic and isolated from other
such code blocks, with the semantics that any visible state is
equivalent to a serial execution of packet transactions across
packets in the order of packet arrival. Packet transactions
let the programmer focus on the operations needed for each
packet without worrying about other concurrent packets. To
enable packet transactions, they make three contributions.
First, Banzai, a machine model for programmable line-rate
switches that models two important constraints for stateful
line-rate operations: the inability to share a state between
different packet-processing units, and the requirement that
any switch-state modification be visible to the next packet
entering the switch. Banzai abstracts pipelines consisting
of match-action tables arranged in stages at the ingress and
egress of recent programmable switch architectures and ex-
tends themwith stateful processing units to implement a data
plane algorithm. Second, Domino, a new domain-specific
language for data plane algorithms with packet transactions
at its core, is an imperative language with C-like syntax.
Third, a compiler fromDomino-packet transactions to aBan-
zai target, which extracts codelets from transactions: code
fragments, which if executed atomically, guarantee a packet
transaction’s semantics. It then uses program synthesis to
map codelets to atoms, rejecting the transaction if the atom
cannot execute the codelet. Sivaraman et al. demonstrate
that these targets are feasible in a 32-nm standard cell library
in area relative to a 200mm2 baseline switching chip.

Li et al. [85] proposed “ClickNP”, a field-
programmable gate array (FPGA)-accelerated platform for
flexible and high-speed NFs achieving 40-Gb/s line rate with
commodity servers. It exhibits a modular architecture sim-
ilar to the Click router. Elements are programmable and
written in high-level C-like languages. ClickNP elements
are compiled into binaries on the CPU and low-level hard-
ware description language for FPGAs. High-level synthesis

(HLS) tools are used for this. ClickNP uses a set of opti-
mization techniques to use massive parallelism in FPGAs.
ClickNP organizes each element into a logic block in an
FPGA and connects them with first in, first out buffers so
that all these elements blocks can run in full parallel. The
processing function is written to minimize the dependency
among operations, which allows the HLS tools to gener-
ate maximum parallel logics. Delayed write and memory
scattering is used to address the read-write dependency and
pseudo-memory dependency. Operations in different stages
are balanced to match their processing speed to maximize
the overall throughput of pipelines. The ClickNP host pro-
cess has one manager and zero or multiple worker threads.
The manager thread loads the FPGA image into the hard-
ware, starts worker threads, initializes ClickNP elements in
both the FPGA and CPU, and controls their behaviors by
sending signals to elements at runtime. Each worker thread
may process one or more modules if they are assigned to the
CPU.

Table 3 lists summary of related work on hardware-
based programmable router to re-architect middlebox.

4. High-Performance Platform

4.1 Software Router

There are a lot of works on high-performance packet process-
ing. Veal et al. [86] investigated the performance scalability
of a multi-coreWeb server. They found that flow-level paral-
lelism is well exploited; thus, the performance is scaled. An
address bus is a bottleneck of scaling performance, and the
performance is scaled until the capacity of the address bus
is saturated. Bolla et al. [87] investigated the architectural
bottleneck of software routers running on PCs with multi-
core processors. Santos et al. [88] proposed changing the
architecture to Xen to overcome the overhead issues of the
driver-domain model. They moved the copy operation to the
guest CPU to increase the cache locality, used hardware sup-
port of NICs to place data directly into the guest domain to
avoid data copy between domains, and relaxed the memory
isolation property to minimize the cost of granting the driver
domain access to the guest-domain pages.

Dobrescu et al. [89] proposed “RouteBricks”, a software
router architecture that exploits parallelism across multiple
servers aswell asmultiple coreswithin a server. RouteBricks
is a cluster router architecture, which is aimed to scale up
to ones with hundreds of 10-G/bs ports. All clusters of
commodity servers are interconnected in a full-mesh topol-
ogy, reducing the interconnecting link speedup ratio. Direct
valiant load balancing (Direct VLB) [90] is used to achieve
robust load-balancing against a variable and unpredictable
traffic matrix. To minimize packet re-ordering in TCP or
User Datagram Protocol (UDP) flow, a set of same-flow
packets arriving at the cluster within δ ms from one another
are sent through the same intermediate node like the Flare
load-balancing method [91]. Dobrescu et al. note that due to
limited per-node fan-out, a low-degree multi-hop topology



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
105

Table 3 Summary of research projects on “re-architecting middlebox (forwarding)”.
Research project Type Distinctive Features
Bosshart et al. [77], [78] reconfigurable match tables

(RMT) model
Programmer is allowed to (1) modify the definitions of field, (2) modify
specification of match tables, (3) define new actions. 640 Gb/s switch
chip (10Gb/s per port) using an industry standard 28nm process.

“Protocol-oblivious Forward-
ing (POF)”, Song et al. [80]

Protocol-free configuration
on forwarding elements

The search key is simply defined by one or more {offset, length} tuples.
Instructions for mathematics, logic, and header and flow manipulation
are defined.

Sivaraman et al. [84] abstraction to program and
implement data plane algo-
rithms

“Banzai”, a machine model, abstracts pipelines consisting of match-
action tables arranged in stages. “Domino”, a new domain-specific
language (DSL) for data plane algorithms, is an imperative language
with C-like syntax.

“ClickNP”, Li et al. [85] FPGA-accelerated platform It exhibits a modular architecture like Click router. Elements are pro-
grammable and written in high-level C-like languages. ClickNP ele-
ments are compiled into binaries on CPU and low-level hardware de-
scription language (HDL) for FPGAs. ClickNP host process has one
manager and zero or multiple worker threads. The manager thread loads
the FPGA image into the hardware, starts worker threads, initializes
ClickNP elements in both FPGA and CPU, and controls their behav-
iors. Each worker thread may process one or more modules if they are
assigned to CPU.

Table 4 Summary of research projects on “high performance platform” (Part 1).
Research project Type Distinctive Features
Veal et al. [86] (2007) Performance scalability of

a multi-core Web server.
Flow-level parallelism is well exploited. Address bus is a bottleneck.

Santos et al. [88] (2008) Xen architecture change It overcomes the overhead issues of driver domain model.
Ram et al. [92] (2009) Overhead of network I/O

of driver domain I/O in
Xen.

Multi-queue NIC is supported in driver domain model in Xen.

“RouteBricks”, Dobrescu
et al. [89] (2009)

Software router architec-
ture based on a cluster
router architecture.

All clusters of commodity servers are interconnected in a full-mesh
topology, where Direct Valiant load balancing (Direct VLB) [90] is
employed. Each packet should be handled by a single core to avoid
overhead of synchronizing cores to transfer the packet and potential
additional L3 cache misses.

based on a k-ary n-fly (a generalized butterfly topology that
interconnects N nodes with n = logk N stages of k-degree
nodes) will be, in practice, used for large-scale nodes. To
exploit parallelism at the CPU level, each packet should be
handled by a single core to avoid overhead of synchronizing
cores to transfer the packet and potential additional Level
3 (L3) cache misses. Batch packet processing is used to
reduce overhead per-packet book-keeping overhead-reading
and -updating socket-buffer descriptors and the data struc-
tures that point to them. They demonstrated that there is
no difference in throughput for different data placements
contrary to the preliminary concern on throughput drops
in the NUMA architecture. They constructed a prototype
called RB4, which implements Click-based software routers
on four Nehalem servers interconnected through a full-mesh
topology with direct-VLB routing with 10 Gb/s of external
links.

Table 4 lists the summary of related work in the area of
software router architecture.

4.2 Recent Technologies for High-Performance General
Purpose Processors

Virtual Network Function (VNF) is a network function that

was embedded into a dedicated hardware appliance, im-
plemented as software that is supposed to run on VM or
container. A frequently raised issue about VNFs is perfor-
mance. By having network SFs implemented as software
and running on COTS X86 server, NFVs could lead to large
variations in latency and erratic throughput even when the
underlying physical resource is only lightly used. For ex-
ample, Wang and Ng measured the end-to-end networking
performance of the Amazon EC2 cloud and found that very
unstable TCP/UDP throughput, fluctuating between zero and
1 Gb/s at the tens of ms time granularity, and the delay varia-
tions among Amazon EC2 instances can be 100 times larger
than most propagation delays, which are smaller than 0.2ms,
even when the network is not heavily loaded [93]. The unsta-
ble networking characteristics caused by virtualization can
obviously affect the performance and deployment of virtual
appliances.

Three challenges need to be addressed to accomplish
software-based packet processing at line speed, i.e., inter-
ruption, data copy, and network I/O. First, packets arrive at
unpredictable times, causing interruptions in notifying an
OS that received packet data are ready for processing. Han-
dling millions of interruptions per second quickly exceeds
the time spent packet processing at 10 Gb/s. Second, the



106
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

OS reads incoming packets into kernel space then copies
the data into user space. Those packet copies will exac-
erbate performance, ending up with a longer latency and
lower throughput, especially when we conduct a chain of
NFs across multiple VMs. Finally, network I/O in virtu-
alization can have even greater overheads with additional
copies between the hypervisor and guest OSes. Again those
additional copies will exacerbate performance, especially
when we conduct a chain of NFs across multiple VMs.

The new API (NAPI) has been supported by Linux
2.6 and later. The NAPI is a modification of the packet-
processing framework in Linux device drivers to improve the
performance of high-speed networking. It disables some in-
terruptionswhen the network-traffic load is high and switches
to polling the devices instead of avoiding frequent interrup-
tions sharing the samemessage that there aremany packets to
process. Another advantage of this polling-based approach
is that when the kernel is overwhelmed, the packets that
cannot be handled in time are simply dropped in the device
queues (i.e., overwritten in the incoming buffer).

Intel Data Plane Development Kit (DPDK) [94] is an-
other software-based acceleration for high-speed networking
applications that also uses polling to avoid the overhead of
interrupt processing. Intel DPDK reduces the overheads
caused by interruption and data copies by allowing user-
space applications to directly poll the NIC for data. It
uses huge memory pages and allows applications to write
and read data directly into these pages using direct mem-
ory access (DMA). It allows applications to access the NIC
card directly without involving kernel processing. While
DPDK enables high throughput user-space applications, its
pass-through mode that provides DMA to and from a VM
can have lower performance than native network I/O. While
DPDK supports single-rooted I/O virtualization (SR-IOV)
to allows multiple VMs to access a single NIC, and a MAC
address is used to switch packets in a virtual switch. Extra
data copies are required if packets are forwarded between
VMs.

Ram et al. [92] developed two mechanisms to address
the issues on the overhead of network I/O of the driver-
domain I/O virtualization model in Xen. First, a multi-
queue NIC is supported in the driver-domain model in Xen
to eliminate the overheads of packet de-multiplexing and
copying. Second, to reduce the grant overhead for memory-
access protection in the driver-domain model, a grant-reuse
mechanism is developed based on a software I/O address-
translation table.

Egi et al. [95] investigated the performance of the soft-
ware router Click [66], [75], [76] running on multi-core
CPUs with multi-queue NICs. They revealed that multi-
queuing does not completely eliminate the need for task
synchronization in software routers and that replication of
full forwarding paths on CPU cores offers the best allocation
policy because it is better at using spare CPU cycles through
higher parallelism.

Rizzo et al. [96] proposed “netmap”, a framework that
enables OSes to handle millions of packets per seconds. To

remove data copying, meta-data management, and system
call overheads, they implemented a number of techniques
in FreeBSD and Linux: a lightweight meta-data represen-
tation, pre-allocated linear fixed size packet buffer, granting
applications direct-protected access to the packet buffers,
and supporting multi-queue NIC.

Kim et al. [97] proposed “The Power of Batching in
the Click Modular Router.” They investigated a method to
run the Click in recent high-performance commodity servers
consisting of multi-core CPUs in a NUMA architecture with
multi-queue NIC. They demonstrated that batching in terms
of both packet I/O and computation is crucial, and we should
take care of NUMA architecture and multi-queue NIC for
multi-core CPU.

Recent work by Hwang et al. [98] extends the DPDK
libraries to provide low-latency and high-throughput net-
working in virtualized environments. The NetVM platform
extends DPDK to achieve high-speed inter-VM communi-
cations [99], [100]. It allows zero-copy delivery of packet
data to VMs through a small shared ring-buffer shared be-
tween the hypervisor and each individual VM that is used
to transmit packet descriptors. NetVM also uses a huge
page region shared with a group of trusted VMs that allows
chained NF applications to directly read or write packet data.
It introduces a lockless memory sharing design, which uses
multiple queues and receive-side scaling (RSS). Therefore, it
does not require synchronizations to allow one application to
have control of the descriptor containing a packet’s address,
preventing overheads caused by inter-core communications
and context switching, which could cause the system to fall
behind; thus, may result in tens of packets being dropped.
It also introduces NUMA-aware design to ensure that as a
packet is processed by either the host or guest OS, it al-
ways stays in a local memory bank, and cache lines will
never need to be passed between sockets. NetVM imple-
mentation includes the NetVM manager and NetVM core
engine, drivers for an emulated PCI device, modifications
to the KVM’s CPU-allocation policies, and NetLib (library
for building in-network functionality in a VM’s user space).
The NetVM manager runs in the hypervisor and provides
a communication channel to the NetVM core engine. The
NetVM core engine, which is a DPDK user-space applica-
tion running in the hypervisor, receives packets and delivers
them to VMs using zero copy. It also communicates with
the NetVM manager to synchronize information about new
VMs. It polls the NIC to read packets directly into the huge
page area using DMA, and NetVM inserts a descriptor of the
packet in the ring buffer that is a small sharedmemory region
shared between the hypervisor and each individual VM that
is used to transmit packet descriptors. Emulated (PCI) is
used to get around the limitation that QEMU and KVM do
not allow memory to be shared between the hypervisor and
VMs. NetVM can compose complex NF chains from mul-
tiple pipelined VMs and achieve throughput up to 10 Gb/s,
which is an improvement of more than 250% compared to
existing the DPDK framework that uses SR-IOV.

Network operators need to instantiate and migrate vir-



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
107

tual appliances dynamically and efficiently. The native solu-
tion of running VNFs in Linux or other commodity OS VMs
has a slow instantiation time (several seconds) and a rela-
tively large memory footprint. Martins et al. [98] recently
proposed ClickOS, a tiny Xen-based VM to facilitate NFV.
ClickOScan be instantiatedwithin around 30ms and requires
about 5 MB of memory when running. ClickOS relies on
hypervisor virtualization (in particular, para-virtualization)
to achieve flexibility, isolation, and multi-tenancy. It adopts
Click [66] as the main programming abstraction for mid-
dleboxes and creates a tailor-made middlebox VM to run
Click configurations. It provides tools to build and manage
ClickOS VMs including inserting, deleting, and inspecting
middlebox states. A ClickOS VM consists of the Click
router running on top of miniOS that implements the basic
functionalities needed to run as a Xen VM. The miniOS has
a single address space that does not require separation of
the address space between the kernel and user and the co-
operative scheduler-reducing context switch overhead. To
achieve high-performance, it overhauls the Xen I/O subsys-
tem by changing the back-end switch from Open vSwitch to
VALE [101], optimizing virtual net devices (e.g., reducing
the number of hyper calls, use of batching, and removing
unnecessary software layers and data paths), and redesign-
ing back-end and front-end drivers. A ClickOS VM is small
(5MB), boots quickly (around 30ms), and adds a small delay
(45 µs). Over one hundred ClickVMs can be concurrently
run over a 10-Gb/s pipe on a commodity server.

Even though high-performance network I/O libraries,
such as netmap [96] and DPDK [94], enables packet-
processing rates of 10Gb/s and higher by avoiding the ker-
nel’s networking stack and allowing direct access to packet
data from a user-space application, they dedicate NIC ports
to a single process; therefore, it is impossible to run multi-
ple processes on the same server. Thus, ClickOS [98] and
E2 [71], which use netmap and DPDK, respectively, are de-
signed for static service-function chaining because the SF
chaining is hard coded and cannot be modified dynamically
by an NFV manager. Zhang et al. [102] proposed Open-
NetVM, a packet-processing framework that allows dynamic
SF chaining. It runs NFs as standard user-space processes
inside a lightweight docket container while providing them
high-performance network I/OviaDPDKusing sharedmem-
ory accessible to each docket container within a common se-
curity domain. Unlike a VM whose disk image is gigabytes
in size, the docker container, defined by a configuration list
of packages and files to be installed, greatly simplifies the
deployment and sharing of containers, allowing NFs to start
in less than a second.

Hirschman et al. [103] investigated the applicability, in
terms of performance, of general-purpose processors (e.g.,
Intel Xeon processor) for the EPC, which is a key component
of LTE systems. They argued that general-purpose proces-
sors can execute EPC functions for representativemarket call
models and that workloads can scale across bearer and con-
trol planes at a line rate without acceleration technologies.

Bronstein et al. [104] addressed abstraction of hard-

ware accelerators (HWAs) to improve performance of VNFs
in the NFV infrastructure (NFVI). An HWA combines
a general-purpose CPU with a specialized HW such as
application-specific integrated circuit (ASIC), FPGA, multi-
core network-processor unit (MC-NPU), and graphics pro-
cessing unit (GPU). The VNF provides the expected perfor-
mance improvements in case HWA is available; otherwise,
it keeps running even with lower performance. Bronstein
et al. proposed extensions to the virtual infrastructure man-
ager (VIM) and VNF manager (VNFM) to conduct HWA
life-cycle management allowing HWAs to be shared and dy-
namically allocated to VNFs.

Table 5 lists the summary of related work in the area
of software router architecture based on recent high perfor-
mance processor technologies.

4.3 Graphical Processing Units (GPUs) Based Approaches

Multi-core Central Processing Units (CPUs) and many-core
Graphic Processing Units (GPUs) are used to accelerate
packet processing [111]–[123]. The key software technique
to exploit hardware performance include batching, pipelin-
ing, and parallelization.

Han et al. [113], [124] proposed “PacketShader”, a
high-speed software-based packet-processing framework. It
uses GPUs as co-processors of CPUs to offload memory-
intensive jobs such as IP table lookup, or computation-
intensive ones, such as IPsec encryption, to scale packet
processing with massive parallelism of GPUs. It imple-
ments optimized packet I/O to eliminate per-packet memory
management overhead and process packets in batch.

Sun et al. [114] proposed “SNAP”, a high-speed
software-based packet-processing engine that exploits par-
allelism using GPUs. Snap is built on top of the Clik
modular router. Click is a modular software router that
provides an efficient pipeline-like abstraction for packet pro-
cessing on PC hardware. A packet processor is constructed
by connecting small software modules called elements, the
building blocks of packet processing, into a graph. It en-
ables individual elements to be implemented as GPU code
to offload heavy packet-processing jobs on the GPU. It adds
a set of new features including batched packet processing,
memory structure optimized for offloading to the GPU, and
asynchronous scheduling with in-order completion, while
maintaining flexibility in Click, which allows users to build
complex packet-processing pipelines from simple elements.
Therefore, it amortizes overhead occurring every time a host
CPU instructs GPUs to execute a program code called “ker-
nel” in GPU programming terminology.

Kim et al. [115] proposed “network balancing act
(NBA)”, a software-based packet-processing framework that
exploits the latest hardware technologies including multi-
core CPUs, many-core GPUs, and multi-queue 10-GbE
NICs. It uses batch processing with small overheads by us-
ing memory management and branch prediction and adap-
tive CPU/GPU load balancing to automatically obtain the
maximum throughput. It extends the Click modular-router



108
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 5 Summary of research projects on “high performance platform” (Part 2).
Research project Type Distinctive Features
Egi et al. [95] (2010) Performance of Click run-

ning on multi-core CPUs
with multi-queue NIC.

Multi-queuing does not completely eliminate the need for the task syn-
chronization in software routers. Replication of full forwarding paths
on CPU cores offers the best allocation policy.

“netmap”, Rizzo et al. [96]
(2012)

Framework that enables
operating systems to han-
dle the millions of packets
per seconds.

Implemented a number of techniques in FreeBSD and Linux: a
lightweight meta-data representation, pre-allocated linear fixed size
packet buffer, granting applications direct protected access to the packet
buffers, supporting multi-queue.

Kim et al. [97] (2012) Click on multi-core CPU. Batching in terms of both packet I/O and computation is crucial in a
NUMA architecture with multi-queue NIC.

“IX”, Belay et al. [105]
(2014)

High I/O performancewith
strong protection property.

Uses hardware virtualization to separate management and scheduling
functions of the kernel (control plane) from network processing (data
plane).

“Arrakis”, Peter et al. [106]
(2014)

Remove the kernel from
the I/O data path.

It uses device hardware to deliver I/O directly to a customized user-level
library.

Touitou et al. [107] (2014) Fast Path Offloading. NFV handles a fraction of flow requiring intensive higher layer protocol
processing, which is small portion of the entire flow, by offloading the
rest of flow to the fast path of data plane.

“mTCP”, Jeong et al. [108]
(2014)

User-level TCP stack for
multi-core systems.

High-performance packet I/O libraries allow applications to directly
access the packets in order to address performance issues caused by the
dominating number of short TCP connections, each of which handling
in the kernel could need 70% to 80% of CPU cycles. Context-switch
overhead is amortized by batching packet-level and socket-level events.

Marinos et al. [109], [110]
(2014)

Renouncing generality of
network stacks in com-
modity operating system.

Userspace stacks built on top of netmap framework [96]: Stand-
strom, a specialized userspace stack for serving static web content, and
Namestorn, a specialized userspace stack implementing a high perfor-
mance DNS server.

“NetVM”, Hwang et al.
[98] (2014)

Extensions of DPDK li-
braries for virtualized en-
vironments.

Overheads of inter-core communications and context switching is pre-
vented: (1) Zero-copy delivery of packet data to VMs through a small
shared ring-buffer shared between the hypervisor, (2) Huge page region
shared with a group of trusted VMs that allows chained network func-
tion applications to directly read or write packet data, and (3) Lockless
memory sharing design, multiple queue and receive side scaling (RSS).

“ClickOS”, Martins et al.
[98] (2014)

Tiny Xen-based VM to fa-
cilitate NFV.

ClickOS VM consists of the Click router running on top of miniOS.
The miniOS has a single address space that does not require separation
of address space between kernel and user, and a cooperative scheduler
reducing context switch overhead. Xen I/O subsystem is overhauled by
changing from Open vSwitch to VALE switch [101], optimizing virtual
net devices, and redesigning back-end and front-end drivers.

“SoftNIC”, Han et al. [72]
(2015)

Hybrid software-hardware
architecture.

In order to incorporate diverse network functionality into NIC, it pro-
vides a hardware abstraction layer (HAL) to developer to implement
features.

architecture to hide details of hardware and software archi-
tecture specifics and provides a declarative abstraction for
GPU offloading to reduce implementation efforts.

Vasiliadis et al. [120] proposed “MIDeA”, a software-
based stateful network-traffic analysis tool that runs appli-
cation software based on Snort [36] on off-the-shelf general
purpose hardware that combines multiple CPUs, multiple
GPUs, and multi-queue NICs. It takes advantage of the
parallelism offered by these types of hardware to offload a
computation-intensive code implementing theAho-Corasick
string search algorithm [125] on GPUs to achieve high per-
formance in a scalable way. To mitigate the overhead caused
by extra data transfer between a CPU and GPU over the PCIe
bus, it uses a pipelining that allows CPU and GPU execution
to overlap.

Jamshed et al. [118] proposed “Kargus”, a software-
based IDS that exploits massive parallelism by balanc-
ing the pattern-matching workloads with multi-core CPUs
and many-core GPUs. It offloads a computation-intensive

code implementing the Aho-Corasick string search algo-
rithm [125] on GPUs. It also uses batch processing and
parallel execution with load balancing to achieve high per-
formance. By fetching multiple packets from the NIC si-
multaneously, it has each pattern-matching function handle
a batch of packets simultaneously. It uses a load-balancing
algorithm that selectively offloads Pattern-matching tasks to
a GPU only if the CPU is under heavy load condition, which
dynamically adjusts the offloading threshold.

Jang et al. [117] proposed “SSLShader”, an SSL ac-
celeration that exploits GPUs to offload SSL cryptographic
operations. It selectively offloads cryptographic operations
to a GPU depending on the load level.

Vasiliadis et al. [119] proposed “GASPP”, a pro-
grammable network-traffic processing framework tailored to
modern GPUs. It integrates into a purely GPU-powered
implementation for many of the most common operations
used by different types of network-traffic-processing appli-
cations, including network-flow tracking and TCP-stream re-



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
109

assembly. It also implements novel mechanisms for sharing
memory context between network interfaces and the GPUs
to avoid redundant data movement. It allows developers
to focus on core application logic, alleviating the low-level
technical challenges of data transfer to and from the GPU,
packet batching, asynchronous execution, synchronization
issues, connection-state management, and so on.

Even though the studies mentioned so far rely on mas-
sive parallelism of GPUs to obtain high-throughput packet
processing, Kalia et al. [116] explored a hypothesis that
much of the advantage of using GPUs for packet process-
ing comes from the way GPUs are programmed and that less
comes from the hardware advantage of GPUs over CPUs
that is computational efficiency by having many processing
cores and huge memory bandwidth. They argue that the
key advantage of a GPU is that it can transparently hide the
latency to retrieve data from main memory by using mas-
sive parallelism and fast hardware thread switching. They
applied group pre-fetching and software pipelining to CPU
packet handling code to boost its performance and presented
a preliminary language and compiler-based framework that
incorporates these code-optimization techniques.

Belay et al. [105] proposed “IX”, a data plane OS with
high I/O performance while providing strong protection that
existing kernels offer. With commodity OS design, it was not
assumed that recent hardware technologies, such as multi-
core, high-speed NICs, kernel schedulers, networking APIs,
and network stacks, have been designed under the assump-
tion of multiple applications sharing a single processing
core and packet inter-arrival times being many times higher
than the latency of interrupts and system calls. To address
this mismatch between OS and recent hardware technol-
ogy, IX uses hardware virtualization to separate manage-
ment and scheduling functions of the kernel (control plane)
from network processing (data plane). It separates the con-
trol function of the kernel, responsible for resource config-
uration, provisioning, scheduling, and monitoring, from the
data plane. The control plane multiplexes and schedules
resources among data planes, but in a course-grained man-
ner in space and time. Entire cores are dedicated to data
planes, memory is allocated at large page granularity, and
NIC queues are assigned to data plane cores.

Peter et al. [106] proposed “Arrakis”, an OS designed
to remove the kernel from the I/O data path without compro-
mising process isolation. It uses device hardware to deliver
I/O directly to a customized user-level library.

Touitou et al. [107] proposed fast path offloading to ac-
celerate NFV performance. They claimed that NFV should
be used to handle a fraction of flow requiring intensive higher
layer protocol processing, which is a small portion of the en-
tire flow in most cases, by offloading the rest of the flow
to the fast path of the data plane. They implemented their
proposal on HA-proxy, an open source layer-7 LB to demon-
strate performance improvement.

Jeong et al. [108] proposed “mTCP”, a user-level TCP
stack for multi-core systems to address the performance is-
sues caused by the dominating number of short TCP con-

nections, each of which handling in the kernel may require
70 to 80% of CPU cycles. They leveraged high-performance
packet I/O libraries that allow applications to directly access
the packets. They amortized the context-switch overhead
by batching packet-level and socket-level events. They also
took advantage of load-balancing of concurrent flows by us-
ing multi-core CPUs with RSS.

Marinos et al. [109], [110] proposed specialized net-
work stacks, renouncing generality of network stacks in
commodity OSes. The implemented specialized user-space
stacks built on top of netmap framework [96], i.e., Stand-
strom, a specialized user-space stack for serving static web
content, and Namestorn, a specialized user-space stack im-
plementing a high-performance DNS server.

Han et al. [72] proposed “SoftNIC”, a hybrid software-
hardware architecture to incorporate diverse network func-
tionality into NICs. It provides a hardware abstraction layer
to the developer to implement features in software while
incurring minimal performance overhead.

There have been several studies using a GPU for ac-
celeration. Vasiliadis et al. [122] proposed “Gnort”, an
intrusion-detection system based on Snort that exploits a
GPU to offload pattern-matching operations. They ran the
Aho-Corasick algorithm [125], a multi-pattern matching al-
gorithm, on the GPU exploiting the Single InstructionMulti-
pleData (SIMD) instructions to accelerate performance. Sun
et al. [121] proposed “GPUstore”, a framework for integrat-
ing GPU computing into storage systems within the Linux
kernel. They took advantage of the parallelism of a GPU to
accelerate expensive computations in storage systems such
as encryption, checksums, error correcting codes. Wang et
al. [123] proposed a name lookup engine that exploits GPUs
for massive parallel processing power.

Table 6 lists the summary of related work in the area of
GPU-based high performance approaches.

5. State Management

The management functionality should be able to support
sharing spare resources and elastic provisioning of network
services effectively. The NFV infrastructure should be able
to instantiate VNFs in the right locations at the right time.
Elastic resource allocation to VNFs in response to variable
workload and quick resource provisioning to instantiate new
active VNFs in response to hardware failure is crucial to
provide quality service level. This process can be fully au-
tomated, and the number of virtual instances of a particular
VNF can be changed in response to workload and failure.
Since VNFs can be dynamically created/migrated, it pro-
vides an additional dimension of complexity in terms of
keeping track of where a given VNF is running. One of
the main problems is the fact that many NFs are stateful.
A typical structure of the NF application state can be di-
vided into two classes [126], [127]. The first class contains a
global state accessed independently of the processed traffic.
The second class contains a partitioned state that consists of
chunks of states directly related to network flows or sessions



110
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 6 Summary of research projects on “high performance platform (GPU)”.
Research project Type Distinctive Features
“PacketShader”, Han et al.
[113], [124] (2010)

High-speed software-based
packet processing frame-
work.

It employs graphical processing units (GPUs) as co-processor of CPU
to offload memory-intensive jobs or computation-intensive ones. It
implements optimized packet I/O to eliminate per-packet memory man-
agement overhead and to process packets in batch.

“SNAP”, Sun et al. [114]
(2013)

High-speed software-based
packet processing engine.

Built on top of the Clik modular router, Click elements are implemented
as GPU code. Batched packet processing, memory structure optimized
for offloading to GPU, and asynchronous scheduling with in-order com-
pletion are added.

“NBA (NetworkBalancing
Act)”, Kim et al. [115]
(2015)

Software-based packet pro-
cessing framework formulti-
core CPUs, many-core
GPUs, and multi-queue 10
GbE NICs.

It employs a batch processing by use ofmemorymanagement and branch
prediction and an adaptive CPU/GPU load balancing. Click-based im-
plementation with declarative abstraction.

“MIDeA”, Vasiliadis et al.
[120] (2011)

Software-based stateful net-
work traffic analysis tool
running Snort [36] on
multiple CPUs, multiple
GPUs, and multi-queue
NICs.

Computation-intensive codes for Aho-Corasick string search algorithm
[125] is offloaded on GPUs. Extra data transfer between CPU and GPU
over the PCIe bus is mitigated, by pipelining CPU and GPU execution.

“Kargus”, Jamshed et al.
[118] (2012)

Software-based IDS bal-
ancing the pattern match-
ing workloads with CPUs
and GPUs.

It offloads a computation-intensive codes implementing the Aho-
Corasick string search algorithm [125] on GPUs. It employs batch
processing and parallel execution with load balancing. A load balanc-
ing algorithm selectively offloads pattern matching tasks to GPU only if
the CPU is under heavy load condition.

“SSLShader”, Jang et al.
[117] (2011)

SSL acceleration offload-
ing SSL cryptographic op-
erations to GPU.

It selectively offloads cryptographic operations to GPU depending on
the load level.

“Gnort”, Vasiliadis et al.
[122] (2008)

Intrusion detection system
based on the Snort.

Aho-Corasick algorithm [125] for multi-pattern matching runs on the
GPU exploiting the SIMD instructions.

“GPUstore”, Sun et al.
[121] (2012)

Framework for integrating
GPU computing into stor-
age systems.

Parallelism of GPU is exploited to accelerate expensive computations
in storage system such as encryption, checksums, error correcting codes
within the Linux kernel.

processed by the NF. These state chunks can be identified
with the same information used to identify single flows or
sessions. For IP connections, this is done using 5-tuples
consisting of source IP, target IP, source port, target port,
and protocol. In typical NFs, most parts of the application
state are represented by the second class, which can easily
be distributed across multiple VNF instances [126], [127].

Gember et al. [128] focused on a network-aware or-
chestration layer composed of a forwarding controller, which
forwards traffic flows according to the service-chaining spec-
ification, and a middlebox controller, which monitors appli-
cation performance and receives resource statistics from the
middlebox.

Gember et al. [127] presentedOpenNF, a unified control
plane architecture to manage both the network forwarding
state and internal NF state, which enables middleboxes to
migrate and recover. OpenNF provides efficient, coordinated
control of both the internal NF state and network-forwarding
state to allow quick, safe, and fine-grained reallocation of
flows across NF instances. Consider a scenario in which a
VNF is overloaded andmust be scaled out to satisfy SLAs on
throughput. We can easily launch a new VNF instance and
reroute some in-progress flows to the new instance. TheVNF
accuracy may be impacted due to some VNF-internal states
not being copied or shared. When an internal VNF state
is being moved, packets may arrive at the source instance

after the move starts, or at the destination instance before
the state transfer finishes. Unless care is taken, updates
to the VNF state due to such packets may either be lost
or occur out of order. Similarly, when a state is copied
across NF instances, updates occurring simultaneously may
cause the state to become inconsistent. To account for race
conditions, the authors introduced two constructs: (1) an
event abstraction to externally observe and prevent local state
changes inside NFs, and (2) a two-phase scheme for updating
network-forwarding state. They ensure that state updates are
not lost or reordered during state moves and the shared state
remains consistent.

Rajagopalan et al. [126] proposed a framework called
Split/Merge to achieve elastic flow-processing capacity by
replicating middleboxes and accommodating the flows into
each replica middlebox. The Split/Merge framework pro-
vides a hypervisor-level abstraction for virtual middleboxes.
It allowsmiddlebox applications to bewritten and configured
regardless of the number of replicas that may be instanti-
ated. Thus, it achieves transparent and balanced elasticity by
creating and destroying VM replicas while maintaining the
load between them. A Split/Merge-aware VM is abstractly
defined as a set of identical state machine replicas. Con-
sistency is achieved by ensuring that each replicated state
machine can access the state required to produce the appro-
priate output. Through a specialized shared library instead



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
111

of using system-provided functions, the Split/Merge frame-
work requiresmiddleboxes to allocate and access all per-flow
states required to process packets within the flow and cross-
flow states required to process packets across flows. This
allows the framework to transfer and replicate the middle-
box state without serializing or updating middlebox internal
structures.

Rajagopalan et al. [129] proposed PicoReplication (PR)
to achieve a high-availability (HA) middlebox framework. It
takes advantage of the Split/Merge framework to perform
a flow-level replication for high availability rather than at
the VM level. It fragments a set of flows on a replica into
disjoint subsets called replication groups. Each replication
group has its own output buffer, checkpoint frequency, and
replicationmiddlebox target. By executing a flow-level repli-
cation, it operates at much higher frequency than VM-based
replication and controls the replication frequencies and tar-
gets of different flows independently. Instead of suspend-
ing and checkpointing an entire middlebox at the VM level,
PR allows middlebox applications to enable fine-grained
flow-level replications. It consists of three modules: state-
management module (SMM), packet-management module
(PMM), and replication module (PM). The SMM contains a
set of flow states that consists of backups of other replica’s
states called standby states and provides an interface to mid-
dlebox applications to identify the flow-related state by lever-
aging the concept of the Split/Merge framework [126]. The
PMM acts as an intermediary between a middlebox applica-
tion and the network to ensure that per-flow state replication
maintains consistency through input and output buffers. Us-
ing output buffering, the system ensures that the network
output from a middlebox replica is not seen by the external
world until a checkpoint of the flow states is committed at the
backup node. A checkpoint begins by suspending any exe-
cution that may affect the state. Halting input of a particular
flow is effectively a suspend operation and is sufficient for a
checkpoint of the flow-state commence. Once a flow is sus-
pended and its state is copied, the appropriate output buffer is
released. The RM interacts with the SMM and PMM to im-
plement a policy for replication. The RM instructs the PMM
to halt a flow. Then, the RM obtains the flow state from the
SMM. The RM copies the flow state to the SMM elsewhere
in the network. Finally, after receiving confirmation that the
flow state is backed up, the RM instructs the PMM to release
the output buffer. The RM also informs the SDN controller
of the flow backup targets so that it can quickly recover from
failure.

It is a challenge to develop a fail-over mechanism that
correctly restores states for middleboxes that are stateful.
Active-active replication, where master and slave are exe-
cuted on all inputs but only the master’s output is released
to users, will not work because of the non-deterministic
nature of packet processing in middleboxes. Sherry et al.
[130], [131] proposed a fault-tolerant middlebox, a new de-
sign for fault-tolerant middleboxes that achieves correctness,
fast recoverywith only a slight increase in latency. They took
a replay-based approach that maintains a log of inputs to the

system and recreates the lost state by replaying the inputs
from the log in the event of a failure. To accommodate non-
determinism, they use the approach of intercepting and/or
recording the outcome of all potentially non-deterministic
operations. No output can be released to the external world
until all the information necessary to recreate the internal
state consistent with that output has been committed to sta-
ble storage. It uses ordered logging, which is lightweight
logging of the information needed after recovery, and the
parallel release algorithm that ensures that recovery is al-
ways correct. They identified determinants information that
must be recorded to correctly replay operations that are vul-
nerable to non-determinism. A packet access log is recorded
to represent non-determinism caused from races between
threads accessing shared variables. It ensures that, before
the middlebox transmits a packet, it has successfully logged
to stable storage all the information needed to recreate the
internal state consistent with an execution that would have
generated the packet. They implemented a prototype using
Click and demonstrated 30 µs of latency to median packet la-
tencies and rapid recovery in 40-275 ms for practical system
configurations.

Kablan et al. [132] proposed stateless NFs. They ar-
gued that an NF should be stateless similar to agile stateless
cloud-scale applications that store their states into a dedi-
cated cache and back-end stores. They argued that the state
of an NF should be separated and remain in a back-end
store or cache without loss of performance. They demon-
strated that a stateless NF can overcome the performance
limitation by leveraging low-latency data-store-access meth-
ods such as RAMCloud [133], [134] and FaRM [135]. They
implemented a prototype of stateless NAT using Click and
RAMCloud cluster connected via InfiniBand. where the
NAT translation table is maintained in a RAMCloud clus-
ter. They implemented three modes of operation: blocking,
asynchronous (non-blocking), and cache. They argued that
a stateless NF allows for easier scalability and higher avail-
ability by decomposing applications into micro services that
rely on back-end data stores and middle-tier caching layers
to provide the needed state on-demand.

To achieve elastic resource allocation to VNFs in re-
sponse to variable workload and quick resource provision-
ing to instantiate new active VNFs in response to hardware
failure, stateful middlebox applications need to be modi-
fied to handle the middlebox internal state. Khalid et al.
[136] proposed StateAlyzr, a system that reduces the effort
involved in making modifications to middlebox software to
perform custom state allocation, track updates to state, and
(de)serialize state objects by automating identification of
state objects that require explicit handling. Numerous data
structures and procedures, large call graphs, heavy use of
multi-level pointers, and indirect calls to packet processing
routines are middlebox attributes that make the code modi-
fication tasks difficult. Khalid et al. used program analysis
techniques, such as slicing and pointer Analysis, to automat-
ically identify (1) variables corresponding to state objects
that pertain to individual or groups of flows, (2) variables



112
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 7 Summary of research projects on “state management”.
Research project Type Distinctive Features
“OpenNF”, Gember et al.
[128] (2013)

Network-aware orchestra-
tion layer

OpenNF composed of a forwarding controller that forwards traffic ac-
cording to the service-chaining specification, and an middlebox con-
troller that monitors application performance and resource statistics.

“Split/Merge”, Rajagopalan
et al. [126] (2013)

Hypervisor-level abstrac-
tion for virtual middle-
boxes.

A set of identical state machine replicas is created. Each replicated state
machine access the state required to produce the appropriate output
through a shared library.

“Pico Replication (PR)”,
Rajagopalan et al. [129]
(2013)

High available (HA) mid-
dlebox framework.

Based on Split/Merge framework it performs a flow-level replication and
operates at higher frequency than VM-based replication. Using output
buffering, the system ensures that the network output from a middlebox
replica is not seen by the external world until a checkpoint of the flow
states is committed a the backup node.

“OpenNF”, Gember et al.
[127] (2014)

Unified control plane ar-
chitecture.

Prevention of local state changes inside NFs and a two-phase scheme
for updating state are used to ensure that state updates are not lost or
reordered during state moves and shared state remains consistent.

“Fault-TolerantMiddleBox
(FTMB)”, Sherry et al.
[130], [131] (2015)

Fault-tolerant middlebox. Replay-based approach maintains a log of inputs to the system and
recreate lost state by replaying the inputs form the log. No output can
be released to the external world until all the information necessary to
recreate consistent internal state. A prototype using Click is imple-
mented.

“Stateless Network Func-
tions,” Kablan et al. [132]
(2015)

Stateless cloud-scale appli-
cations platform.

States of network function are separated and stored in a back-end store
A prototype of stateless NAT using Click and RAMCloud cluster con-
nected via InfiniBand is implemented.

“StateAlyzr”, Khalid et al.
[136] (2016)

Reduction of efforts in
modifications to middle-
box software.

Program analysis techniques, e.g., slicing and pointer analysis automat-
ically identify (1) variables for state objects of flows, (2) variables for
state objects updated by an incoming packet, and (3) middlebox I/O
actions.

Khalid et al. [140] (2016) Standard southbound API
for VNF management.

Identifies four core operations: State Management, Service Chaining,
Bottleneck Detection, Configuration. Presents a framework-agnostic
API for managing the network function’s state, chaining the network
functions, and quantifying the network function’s performance.

corresponding to state objects that can be updated by an in-
coming packet at runtime, (3) the flow space corresponding
to a state object, (3) middlebox I/O actions that are impacted
by each state object, and (4) objects updated at runtime by an
incoming packet. They leveraged a typical middlebox code
structure that consists of three basic parts, i.e., initialization,
packet receive loop, and packet processing, to design algo-
rithms that use static program-analysis techniques in a way
that significantly improves precision without compromising
soundness.

Several frameworks have been proposed for NFV man-
agement [61], [126], [128], [132], [137]–[139]. Middlebox
application requires modifications to be controlled under
these frameworks. Unfortunately, the lack of a standard
API for NFV management frameworks and NFVs prevents
adoption of NFVs. Khalid et al. [140] recently proposed a
standard southbound API for VNF management. They iden-
tified four core operations that a generic framework-agnostic
API should provide: state management, service chaining,
bottleneck detection, and configuration. They present a
high-level framework-agnostic API for managing an NF’s
state, chaining NFs (setting up a sequence of NFs and pro-
viding contextual information to another NF in the chain),
and quantifying an NF’s performance. They argue that it
helps facilitate adoption of NFVs and enable innovation in
the design of both management frameworks and NFs.

As Split/Merge proposed [126], providing APIs for NFs
to create/update state is one approach, but it restricts how

internal NF state is structured and may not accommodate
the state allocation/access needs of some packet processing
logic. Instead, they design a novel southbound API for NFs
that allows a controller to request the export or import of
NF state without changing how NFs internally manage state.
Gember et al. [127] implemented their northboundAPI using
Floodlight, and they constructed several control applications
that use this API. They also augmented four NFs – Bro,
Squid, iptables, and PRADS – to support their southbound
API.

Table 7 lists the summary of related work in the area of
state management.

6. Service Chaining

Enforcement of network-wide policies involves network-
management tasks ranging across stateful policy routing,
access control and rate limiting traffic, and diagnostics for
performance debugging, forensics for detecting malicious
activity, etc. Stateful policy routing for packet traversing a
given sequence of middleboxes is challenging for its enforce-
ment and verification. The root cause of this problem is that
as packets traverse the network, their headers and contents
may be dynamically modified by middleboxes. For example,
a proxy terminates sessions while NAT and LB rewrite head-
ers. These modifications make it difficult to ensure that the
desired set of policies are consistently applied throughout
the network. This is particularly challenging because mid-



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
113

dleboxes often rely on proprietary internal logic for affecting
such dynamic traffic transformations.

The enforcement of traditional service-chaining policy
is highly complex. This complexity originates from the need
to carefully plan the network topology and manually set
up rules to steer traffic flows through the desired sequence
of middleboxes. Traditional solutions are inflexible because
service-chaining policy is executed in a manual mode. Thus,
the service chain should be more flexible due to the growth
of traffic flows. Network function virtualization offers a
promising alternative to tackle the challenges based on com-
modity hardware and virtualization technologies. Through
decoupling the control and data planes, SDN maintains a
global view of the network and enables the network control
to become flexibly programmable. Thus, service-chaining
solutions combined with SDN have emerged to provide flex-
ible adjustments. Service chaining should allow network
operators to specify a logical middlebox-routing policy and
automatically translate this into forwarding rules that take
into account the physical topology, switch capacities, and
middlebox-resource constraints.

Joseph et al. [27], [141] proposedPLayer, a new policy-
aware layer-2 architecture for data centers. To introduce
PLayer in existing data centers with less effort, they argue
that it is important to minimize changes to existing layer-2
switches and keep middleboxes unmodified. The PLayer ar-
chitecture includes policy-aware switches called pswitches
and unmodified middleboxes. An unmodified middlebox is
placed off-path and connected to one of the Pswtiches that
are inter-connected to build data-center network infrastruc-
ture. Its design principles include: (i) separating policy
from reachability and (ii) taking middleboxes off the physi-
cal network path. Off-path middlebox placement simplifies
topology modifications and enables efficient use of existing
middleboxes. Redirecting traffic through off-path middle-
boxes is based on the principle of indirection [142]–[146].

A Pswitch plays a key role in the PLayer architecture;
A Pswitch maintains the middlebox traversal requirements
of all applications in the form of policy specifications. It
classifies incoming traffic and explicitly redirects them to
appropriate middleboxes. Based on policies specified by
administrators, Pswitches explicitly forward different types
of traffic through different sequences of middleboxes; thus,
guaranteeing middlebox traversal in the policy-mandated se-
quence. They implemented a prototype Pswitch using Click
[66] and demonstrated the proof-of-concept.

Fayazbakhsh et al. [139], [147] proposed FlowTags for
enforcing network-wide policies in the presence of dynamic
middlebox actions. They identified flow tracking as a key
capability for policy enforcement in the presence of dynamic
traffic transformations caused by middleboxes. The key idea
in FlowTags is to tag packets with the necessary middlebox
context to tackle the dynamic traffic transformations caused
by middleboxes in the service chain. They attempted to
integrate extended middleboxes into SDN-based networks
with minimal impact. With FlowTags, minimal extensions
to middleboxes are expected to add the relevant contextual

information. They extended the middlebox at the ingress
of a service chain in a manner that a middlebox adds a
“tag” in the packet header, enabling downstreammiddlboxes
as well as SDN switches to easily track the service-chain
flow. The SDN controller configures the actions on switches
and middleboxes to use these Tags (added by other mid-
dleboxes) as part of their data plane operations to correctly
enforce network-wide policies. They presented a controller-
middlebox interface, policy abstractions and rule-generation
mechanisms, and FlowTag-enabled middlebox design.

Qazi et al [61], [148] proposed SIMPLE-fying Mid-
dlebox Policy Enforcement Using SDN. They presented the
design and implementation of SIMPLE, an SDN-based pol-
icy enforcement layer for middlebox-specific traffic steering
[27], [141]. One of the challenges is packet modifications:
Middleboxes modify packet headers (e.g, NATs) and even
change session-level behaviors (e.g.,WAN optimizers and
proxies use persistent connections). Operators have to take
into account these effects via careful placement or manually
reason the impact of these modifications on routing con-
figurations. Due to the proprietary nature of middleboxes,
however, an SDN controller may have limited visibility to set
up forwarding rules that take into account such transforma-
tions. Due to the diverse and proprietary behaviors of a vast
array of middleboxes, it is impractical to model their behav-
ior. Qazi et al. regarded middleboxes as a black-boxes and
attempted to learn their input-output behavior frommeasure-
ment. They proposed a method for automatically inferring
mappings between the incoming and outgoing traffic of mid-
dleboxes that may modify packet headers and session-level
behaviors. They also developed a flow-correlation algorithm
that computes payload similarity scores to correlate the in-
coming and outgoing traffic. They implemented a proof-of-
concept of a SIMPLE controller that extends POX.

Ding et al. [149] proposed an open platform for a ser-
vice chain as a service by using the tangible capabilities of
SDN together with NFV. In this platform, the service chain
can be considered as a service; SDN is used to improve
flexibility, NFV is applied to enhance adaptability, and en-
capsulating the service chain can help guarantee scalability.
They demonstrated a new design and architecture by using
the benefits of SDN and NFV for enforcing service-chaining
policy without modifying current SDN standards or mandat-
ing any implementation constraints on middleboxes. This
design encapsulate service-chain identifier based on source
MAC to guarantee scalability and achieve auto-provisioning
based on NFV to provide adaptability. The design uses VMs
to achieve adaptability by automatically creating software-
defined middleboxes to process traffic flows and automati-
cally setting up flow rules to steer traffic flows.

Lin et al. [150] proposed an extended SDN architec-
ture for NFV with a case study on intrusion prevention.
In conventional SDN, a controller classifies the traffic redi-
rected from a switch to determine the path to NFV modules.
The redirection generates a large volume of control plane
traffic. They proposed an architecture for intrusion detec-
tion where two-layer traffic classification is performed in the



114
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 8 Summary of research projects on “service chaining”.
Research project Type Distinctive Features
“PLayer”, Joseph et al.
[27], [141] (2008)

A policy-aware layer-2 ar-
chitecture based on indi-
rection paradigm.

Policy-aware switches called pswitches classifies incoming traffic and
explicitly redirect them to appropriate middleboxes. Off-pathmiddlebox
placement simplifies topology modifications and enables efficient usage
of existing middleboxes. Implemented pswitch using Click.

“FlowTags”, Fayazbakhsh
et al. [147] (2013)

Tag packets with the mid-
dlebox context.

Contextual information is associated with a traffic flow as it traverses
the network, even if packet headers and contents are modified. The tags
are generated by the first middlebox and used by other middleboxes.
SDN-capable switches use the tags as part of their forwarding actions.

“SIMPLE”, Qazi [61],
[148] (2013)

SDN-based policy enforce-
ment layer for middlebox-
specific traffic steering.

Automatically infers mappings between the incoming and outgoing traf-
fic of middleboxes that may modify packet headers and session-level
behaviors. A flow correlation algorithm that computes payload similar-
ity scores to correlate the incoming and outgoing traffic is proposed.

Ding et al. [149] (2015) an open platform for ser-
vice chain as a service us-
ing the capabilities of SDN
together with NFV.

Enforcing service-chaining policy without modifying current SDN stan-
dards or mandating any implementation constraints on middleboxes. It
encapsulates Service Chain Identifier (SC-ID) based on Source MAC
to guarantee scalability, and realizes auto-provisioning based on NFV
to offer adaptability. It uses VM to achieve adaptability by automati-
cally creating software-defined middleboxes to process traffic flows, and
automatically setting up flow rules to steer traffic flows.

Lin et al. [150] (2015) SDN architecture for net-
work function virtualiza-
tion for intrusion preven-
tion.

It moves traffic classification from the controller to the data plane, and
extends OpenFlow messages with a matched field of network events.
The classification (CLA) module is located on the switch. Payload
analysis is shifted to the DPI function as an NFV module.

data plane by extending OpenFlow compared with deploying
NFV modules in an OpenFlow-based SDN. The classifica-
tion module is located on the switch. Payload analysis is
shifted to the DPI function as an NFV module because the
analysis is too expensive to be conducted on the switch. This
architecture moves traffic classification from the controller
to the data plane and extends OpenFlow messages with a
matched field of network events. Two cases of intrusion
prevention were investigated: (1) detecting SYN flooding
from the TCP/IP headers and (2) detecting SQL injection
and cross-site scripting attacks for web applications. Their
extended SDN architecture reduces the traffic overhead to
the controller for providing NFV.

Table 8 lists the summary of related work in the area of
service chain.

7. Resource Management

The problem of mapping each virtual network to specific
nodes and links in the substrate network is called virtual
network embedding. Many techniques have been developed
for solving the virtual-network embedding problem [151]–
[153]. The problem of NF placement and chaining has simi-
larity with that of virtual-network embedding. However, the
solution to virtual-network embedding is not appropriate for
the NF placement and chaining problem because we need
to consider two-level mappings, as described in what fol-
lows. Network-function placement and chaining consists of
interconnecting a set of NFs through the network to ensure
network flows are given the correct treatment. These flows
must go through end-to-end paths traversing a specific set
of functions. This problem can be decomposed into three
phases: (i) placement, (ii) assignment, and (iii) chaining.
The placement phase consists of determining how many NF

instances are necessary to meet the demand and where to
place them in the infrastructure. Virtual NFs are expected to
be placed on groups of commodity servers located as com-
puting infrastructure at points of presence (PoPs). In the
assignment phase, VNF instances in the PoPs are selected to
serve each flow. Instances are assigned to the flow in a man-
ner that prevents processing times from causing intolerable
latencies. Finally, the requested functions are chained, which
consists of creating paths that interconnect the NFs placed
and assigned in the previous phases taking into account path
latencies and processing delays added by different VNFs.

Luizelli et al. [154] formalized the NF placement and
chaining problem as an integer linear programming (ILP)
optimization model and proposed a heuristic procedure to
solve the optimization model. They considered three basic
types of SFC components: (i) line, (ii) bifurcated path with
different endpoints, and (iii) bifurcated path with a single
endpoint. They formulated the problem as an ILP optimiza-
tion problem. Their objective function is aimed at minimiz-
ing the number of VNF instances mapped on the infrastruc-
ture. Their constraints are placed on a resource of CPU and
bandwidth in two-level mappings; SF chaining requests are
mapped onto VNF instances, which are mapped onto the
physical infrastructure. Since the optimal approach searches
an extensive number of symmetrical feasible solutions lead-
ing to prohibitive computational complexity, Luizelli et al.
developed a heuristic approach based on a binary search in
terms of the number of NF instances. Both optimal and
heuristic approaches are evaluated considering different use
cases and metrics, such as the number of instantiated VNFs,
physical- and virtual-resource consumption, and end-to-end
latencies.

Cohen et la. [155] proposed “Near optimal placement
of virtual network functions.” They addressed the issues



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
115

of placement of VNFs in a physical network and tackled the
problemof allocating server resources toNFs at various loca-
tions such that all flows requiring a service are satisfied while
minimizing operational cost. They used the facility-location
problem and generalized assignment problem. Their goal
was to locate NFs in a manner that minimizes the overall
network costs, i.e., (1) connection cost that accounts for the
distance between a client and the facility that provides its
service and (2) setup cost that is required to open a facility
at a node.

Basta et al. addressed virtualization of S-GW and P-
GW in LTE networks [156]. They studied two alternatives:
virtualization and decomposition. Virtualization refers to
the situation in which S-GWs and P-GWs are separated from
transport nodes and located at data centers (note that both
data and control planes of S-GWs and P-GWs are located at
data centers), while decomposition refers to the situation in
which the control plane of S-GWs and P-GWs is separated
and located in data centers and the data plane of S-GWs
and P-GWs remains in advanced transport network nodes
capable of GTP tunneling, charging, etc. They formulated
an optimization problem to minimize the transport-network-
load overhead against several parameters such as data plane
delay, number of potential data centers, and SDN-control
overhead.

Dwaraki et al. [157] addressed the problem of routing
service-chain requests and placing processing functions in
an SDN/NFV-based network. The location of the NF can be
anywhere within the SDN/NFV-based network and placed
on a pre-computed path from the source and destination.
The routing challenge includes: (1) determining a flow path
that traverses nodes providing requested NFs in a requested
order, and (2) considering network load and other dynamic
characteristics. They transformed the network graph into
a layered graph by adding k layers to the graph, where k
represents the number of network functions in the service
chain to be implemented. Every (i − 1, i) layer pair is con-
nected vertically only by edges between node v i−1 and v i if
that node provides the i-th network function required in the
service chain. These vertical edges are weighted by a cost
that is defined by the processing cost for using a NF on node
v . Shortest path algorithms, such as Dijkstra’s, are used to
compute the path. They use delay as a cost metric, consist-
ing of the sum of communication delays on the horizontal
links connecting nodes and processing delay on VNF nodes.
Their proposed adaptive service routing algorithm is simple
and routes traffic adaptively based on instantaneous network
latency.

Bari et al. [158] addressed the optimization problem
on the number and placement of VNFs that they call the
VNF orchestration problem (VNF-OP)”. Their goal is to
minimize the weighted sum of VNF deployment cost, en-
ergy cost, and VNF-traffic-forwarding cost while maintain-
ing service level objectives. They formulated the VNF-OP
as a multi-commodity, multi-plant, capacitated facility loca-
tion problem [159], which is an ILP. Because it is an NP-hard
problem, they developed a heuristic algorithm based on the

Viterbi algorithm [160]. For a given traffic request, they
model it as a multi-stage directed graph, where the i-th stage
represents the (i − 1)-th VNF in the service chain. They
compute a set of VNF placements in the service chain by
running The Viterbi algorithm on the multi-stage graph.

Clayman et al. [161] addressed the architecture forman-
aging virtualized infrastructures. They proposed a system
that consists of a service orchestrator, monitoring manager,
and placement engine. The orchestrator manages the cre-
ation and removal of the virtual nodes, as well as configur-
ing, monitoring, running and stopping applications in these
nodes. Automatic virtual node placement and resource al-
location is executed in support with the monitoring system
that collects and reports on system behavior. Moens et al.
[162] investigated a formal model for resource allocation of
NFVs, a problem they refer to as the VNF placement (NFV-
P) problem. They assume a scenario in which a base load is
carried by physical hardware and burst spillover is carried by
using virtual service instances. The problem is formulated
as ILP. Mehraghdam et al. [163] proposed a context-free
language to describe the SF chaining requests. Given the
SF requests, they formulated the SFC mapping problem as a
mixed-integer quadratically constrained program. Moham-
madkhan et al. [164] formulated service-Function-placement
and flow-steering problems jointly in a single mixed integer
linear problem and developed several heuristic algorithms.
Sahhaf et al. [165] proposed an algorithm to map Network
SF chains to the physical-network infrastructure. They de-
composed an abstract NF graph into a set of specific compo-
nent NFs interconnected into a graph. Their algorithm con-
sists of two steps: decomposition selection and mapping.
Decomposition is in favor of the same type of component
network functions. Mapping the NFs in descending order
in terms of requirements. Ghaznavi et al. [166] addressed
the elastic VNF-P problem and proposed a method called
simple lazy facility location that optimizes the placement
of VNF instances in response to on-demand workload. Gil
et al. [19] presented a comprehensive survey on the NFV
resource-allocation (NFV-RA) problem. They argued that
the NFV-RA problem consists of three stages: VNF chain
composition, VNF forwarding graph embedding, and VNF
scheduling. They classified the related studies as to which
stage they are addressed.

8. Trouble Shooting

Switches, routers, and middleboxes are vertically integrated
monolithic systems; individual vendors exercise proprietary
design for system architecture of their products on their own.
Softwarization ushers in a new paradigm for disaggrega-
tion of traditionally vertically integrated network devices and
disaggregates vertically integrated systems into components.
Even though softwarization has the benefits of cost reduction,
elastic capacity, functional extensibility, extension of system
life, etc., it incurs added complexity; individual components
interact with each other, which could cause instability and
fragility. The traditional network-management paradigm is



116
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Table 9 Summary of research projects on “trouble shooting”.
Research project Type Distinctive Features
“vNMF”, Miyazawa et al.
[169] (2015)

Distributed management
function address the in-
creasing complexity in
management of NFVs.

It collects statistics such as CPU usage, memory usage, disk read-write
I/O, in-out octets/packets, error packets from NFVI and analyzes them
using Self-Organizing Map (SOM), a clustering algorithm based on
unsupervised artificial neural network. They demonstrated that the pro-
posedmethod is applicable to two usecases of memory-leak and network
congestion in NFV system.

Sanchez et al. [170] (2016) Amulti-layer self-diagnosis
framework for networking
services in SDN and NFV
environments.

They used Bayesian networks approach for root cause calculation. Root-
cause analysismodule reasons over the service dependency graph, which
is modeled as Bayesian network, a probabilistic dependency graph.
When the proposed system detects a service failure, it computes ser-
vice dependency graph related to the service and run root-cause analysis
algorithm on the Bayesian network to find the root-cause of the service
failure. The fine-grained templates need to be predefined.

Kushnir et al. [171] (2016) data-driven root-cause anal-
ysis method based on clus-
tering alarm correlation
and inference of causality
between alarms.

The proposedmethod collects the time series data for all alarm, computes
the pairwise alarm type correlation, creates the correlation graph, and
run the clustering. It finally creates directed causality graph within each
cluster. They do not assume apriori information on network topology.

based on a mechanism-driven approach; we need to under-
stand the precise mechanism of the behaviors of individual
components of a system and construct a system behavior
model. We believe that it is not adequate to rely on such
a traditional approach for highly complex systems based on
softwarization such as NFV and SDN. Instead, we argue that
a data-driven approach is suitable, with which we consider
the entire system as a black box and measure the input and
output of the system to understand the system’s behavior.
We believe that machine learning is a key technology for this
data-driven approach [167]. There a few studies in this do-
main for NFV [168]–[171]. Gardikis et al. [168] addressed
NFV monitoring issues and proposed an open-source mea-
surement software framework called T-NOVA, which col-
lects metrics from hardware and hypervisor in the NFVI
to report them at the virtualized infrastructure-management
level.

Miyazawa et al. [169] proposed a distributed manage-
ment function called the virtualized network-management
function to address the increasing complexity in the man-
agement of NFV. It collects statistics such as CPU usage,
memory usage, disk read-write I/O, in-out octets/packets,
and error packets from NFVI, and analyzes them using self-
organizing map, a clustering algorithm based on unsuper-
vised artificial neural networks. They demonstrated that the
proposed function is applicable to two use cases of memory-
leak and network congestion in an NFV system.

Sanchez et al. [170] proposed a multi-layer self-
diagnosis framework for networking services in SDN and
NFV environments. Their framework consists of a (1) multi-
layered template, (2) self-modeling module, and (3) root-
cause analysis (RCA) module. They modeled dependencies
among components by defining fine granularity templates.
They used the Bayesian network approach for root-cause
calculation. The multi-layered template allows operators to
fine-grain model physical, logical, virtual, and service lay-
ers. The self-modelingmodule builds a network-dependency
graph by assembling a set of fine-grained templates, which

describes their internal components and their dependencies
among them, and computes a service-dependency graph
from the network-dependency graph and a virtual-resource
dependency graph. The RCA module reasons over the
service-dependency graph, which is modeled as a Bayesian
network, a probabilistic dependency graph. When their
framework detects a service failure, it computes a service-
dependency graph related to the service and runs the RCA
algorithm on the Bayesian network to find the root cause
of service failure. The fine-grained templates need to be
predefined.

Kushnir et al. [171] proposed a data-driven RCA
method based on clustering alarm correlation and inference
of causality between alarms. The proposed method collects
the time series data for all alarms, computes the pairwise
alarm-type correlation, creates the correlation graph, and
runs the clustering. It finally creates a directed-causality
graph within each cluster. They do not assume a priori infor-
mation on network topology. They evaluated their proposed
method for data sets from a network application that was
running on a cloud network, where 160 VMs were running
to demonstrate that their method extracts a causality graph.

Table 9 lists the summary of related work in the area of
trouble shooting.

9. Conclusion

We surveyed research activities in the area of re-architecting
middleboxes, high-performance platforms, state manage-
ment, service chaining, and resource management.

Recent research activities on re-architecting middle-
boxes have revealed a few new NFV platform data plane
architectures using hardware platforms based on general
purpose processors, and a control plane architecture. State
management of NFs has been the focus of recent intensive
research activities to achieve elastic and fault-tolerant VNF
deployment without disruption. These research efforts cou-
pledwith high-performance platformswill be combinedwith



SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
117

efforts on re-architecting middleboxes to materialize future
VNF platforms.

Recent research activities on service chaining have been
contributing to realization of simple management to imple-
ment diversified service policies by chaining NFs located in
clouds. They will be coupled with research efforts on re-
source management to innovate service management while
maintaining acceptable CAPEX and OPEX. Softwarization
has ushered in a new paradigm for disaggregation of tradi-
tionally vertically integrated network devices. As research
activities on these areas are maturing, innovative services
creation is expected to be accelerated in the future.

References

[1] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and is-
sues,” RFC 3234, RFC Editor, Feb. 2002. http://www.rfc-
editor.org/rfc/rfc3234.txt

[2] G. Gibb, H. Zeng, and N. McKeown, “Outsourcing network func-
tionality,” Proc. First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, pp.73–78, ACM, New York, NY, USA,
2012.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol.11, no.12, pp.20:20–20:40, Dec. 2013.

[4] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intel-
lectual history of programmable networks,” SIGCOMM Comput.
Commun. Rev., vol.44, no.2, pp.87–98, April 2014.

[5] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J.
van der Merwe, “Design and implementation of a routing control
platform,” Proc. 2Nd Conference on Symposium on Networked
Systems Design Implementation - Volume 2, NSDI’05, pp.15–28,
USENIX Association, Berkeley, CA, USA, 2005.

[6] A. Farrel, J.P. Vasseur, and J. Ash, “A path computation element
(PCE)-based architecture,” RFC 4655, RFC Editor, Aug. 2006.
http://www.rfc-editor.org/rfc/rfc4655.txt

[7] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford,
G.Xie, H.Yan, J. Zhan, andH.Zhang, “Aclean slate 4Dapproach to
network control andmanagement,” SIGCOMMComput. Commun.
Rev., vol.35, no.5, pp.41–54, Oct. 2005.

[8] M. Casado, T. Garfinkel, A. Akella, M.J. Freedman, D. Boneh, N.
McKeown, and S. Shenker, “SANE: A protection architecture for
enterprise networks,” Proc. 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, USENIX Association,
Berkeley, CA, USA, 2006.

[9] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, and S.
Shenker, “Ethane: Taking control of the enterprise,” Proc. 2007
Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, SIGCOMM ’07, pp.1–12,
ACM, New York, NY, USA, 2007.

[10] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, and S.
Shenker, “Ethane: Taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., vol.37, no.4, pp.1–12, Aug. 2007.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol.38, no.2, pp.69–74, March 2008.

[12] K. Suzuki, K. Sonoda, N. Tomizawa, Y. Yakuwa, T. Uchida, Y.
Higuchi, T. Tonouchi, and H. Shimonishi, “A Survey on openflow
technologies,” IEICE Trans. Commun., vol.E97-B, no.2, pp.375–
386, Feb. 2014.

[13] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Comput. Netw.,
vol.71, pp.1–30, Oct. 2014.

[14] M. Casado, N. Foster, and A. Guha, “Abstractions for software-
defined networks,” Commun. ACM, vol.57, no.10, pp.86–95, Sept.

2014.
[15] D. Kreutz, F.M.V. Ramos, P.E. Veríssimo, C.E. Rothenberg, S.

Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol.103, no.1, pp.14–76, Jan.
2015.

[16] R. Mijumbi, J. Serrat, J.L. Gorricho, N. Bouten, F.D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol.18, no.1,
pp.236–262, Firstquarter 2016.

[17] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Commun. Mag., vol.53, no.2, pp.90–97, Feb. 2015.

[18] Y. Li and M. Chen, “Software-defined network function virtualiza-
tion: A survey,” IEEE Access, vol.3, pp.2542–2553, 2015.

[19] J.G. Herrera and J.F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. Netw. Serv. Manage., vol.13, no.3,
pp.518–532, Sept. 2016.

[20] J.H. Saltzer, D.P. Reed, and D.D. Clark, “End-to-end arguments in
system design,” ACM Trans. Comput. Syst., vol.2, no.4, pp.277–
288, Nov. 1984.

[21] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox
deployments,” Technical Report, UCB/EECS-2012-24, EECS De-
partment, University of California, Berkeley, Feb. 2012.

[22] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar, “Making middleboxes someone else’s problem: Net-
work processing as a cloud service,” Proc. ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, SIGCOMM ’12, pp.13–24,
ACM, New York, NY, USA, 2012.

[23] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” SIGCOMM Comput. Commun.
Rev., vol.42, no.4, pp.13–24, Aug. 2012.

[24] D. Joseph and I. Stoica, “Modeling middleboxes,” IEEE Netw.,
vol.22, no.5, pp.20–25, Sept. 2008.

[25] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: Enabling in-
novation in middlebox applications,” Proc. 2015 ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization, HotMiddlebox ’15, pp.67–72, ACM, New York,
NY, USA, 2015.

[26] T. Benson, A. Akella, and A. Shaikh, “Demystifying configura-
tion challenges and trade-offs in network-based isp services,” Proc.
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pp.302–313,
ACM, New York, NY, USA, 2011.

[27] D.A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” Proc. ACM SIGCOMM 2008 Conference
on Data Communication, SIGCOMM ’08, pp.51–62, ACM, New
York, NY, USA, 2008.

[28] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN -
simple traversal of user datagram protocol (UDP) through network
address translators (NATs),” RFC 3489, RFC Editor, March 2003.
http://www.rfc-editor.org/rfc/rfc3489.txt

[29] “Squid,” http://squid-cache.org/
[30] C. Xu, S. Chen, J. Su, S.M. Yiu, and L.C.K. Hui, “A survey on

regular expression matching for deep packet inspection: Applica-
tions, algorithms, and hardware platforms,” IEEE Commun. Sur-
veys Tuts., vol.18, no.4, pp.2991–3029, Fourthquarter 2016.

[31] “Procera, application awareness,” https://www.proceranetworks.
com/customers/vendors/

[32] “Allot communications, deep packet inspection,” http://www.allot.
com/technology/dart-dpi/

[33] V. Paxson, “Bro: A system for detecting network intruders in real-
time,” Proc. 7th Conference on USENIX Security Symposium -
Volume 7, SSYM’98, p.3, USENIX Association, Berkeley, CA,
USA, 1998.

[34] V. Paxson, “Bro: A system for detecting network intruders in real-
time,” Comput. Netw., vol.31, no.23-24, pp.2435–2463, Dec. 1999.

http://www.rfc-editor.org/rfc/rfc3234.txt
http://www.rfc-editor.org/rfc/rfc3234.txt
http://www.rfc-editor.org/rfc/rfc3234.txt
http://dx.doi.org/10.1145/2342441.2342457
http://dx.doi.org/10.1145/2342441.2342457
http://dx.doi.org/10.1145/2342441.2342457
http://dx.doi.org/10.1145/2342441.2342457
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2559899.2560327
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1145/2602204.2602219
https://dl.acm.org/citation.cfm?id=1251205
https://dl.acm.org/citation.cfm?id=1251205
https://dl.acm.org/citation.cfm?id=1251205
https://dl.acm.org/citation.cfm?id=1251205
https://dl.acm.org/citation.cfm?id=1251205
http://www.rfc-editor.org/rfc/rfc4655.txt
http://www.rfc-editor.org/rfc/rfc4655.txt
http://www.rfc-editor.org/rfc/rfc4655.txt
http://dx.doi.org/10.1145/1096536.1096541
http://dx.doi.org/10.1145/1096536.1096541
http://dx.doi.org/10.1145/1096536.1096541
http://dx.doi.org/10.1145/1096536.1096541
https://dl.acm.org/citation.cfm?id=1267346
https://dl.acm.org/citation.cfm?id=1267346
https://dl.acm.org/citation.cfm?id=1267346
https://dl.acm.org/citation.cfm?id=1267346
https://dl.acm.org/citation.cfm?id=1267346
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1282380.1282382
http://dx.doi.org/10.1145/1282427.1282382
http://dx.doi.org/10.1145/1282427.1282382
http://dx.doi.org/10.1145/1282427.1282382
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1145/2661061.2661063
http://dx.doi.org/10.1145/2661061.2661063
http://dx.doi.org/10.1145/2661061.2661063
http://dx.doi.org/10.1109/jproc.2014.2371999
http://dx.doi.org/10.1109/jproc.2014.2371999
http://dx.doi.org/10.1109/jproc.2014.2371999
http://dx.doi.org/10.1109/jproc.2014.2371999
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1109/mcom.2015.7045396
http://dx.doi.org/10.1109/mcom.2015.7045396
http://dx.doi.org/10.1109/mcom.2015.7045396
http://dx.doi.org/10.1109/ACCESS.2015.2499271
http://dx.doi.org/10.1109/ACCESS.2015.2499271
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1109/tnsm.2016.2598420
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.3064
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.3064
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.3064
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1109/mnet.2008.4626228
http://dx.doi.org/10.1109/mnet.2008.4626228
http://dx.doi.org/10.1145/2785989.2785992
http://dx.doi.org/10.1145/2785989.2785992
http://dx.doi.org/10.1145/2785989.2785992
http://dx.doi.org/10.1145/2785989.2785992
http://dx.doi.org/10.1145/2785989.2785992
http://dx.doi.org/10.1145/2018436.2018471
http://dx.doi.org/10.1145/2018436.2018471
http://dx.doi.org/10.1145/2018436.2018471
http://dx.doi.org/10.1145/2018436.2018471
http://dx.doi.org/10.1145/1402958.1402966
http://dx.doi.org/10.1145/1402958.1402966
http://dx.doi.org/10.1145/1402958.1402966
http://dx.doi.org/10.1145/1402958.1402966
http://www.rfc-editor.org/rfc/rfc3489.txt
http://www.rfc-editor.org/rfc/rfc3489.txt
http://www.rfc-editor.org/rfc/rfc3489.txt
http://www.rfc-editor.org/rfc/rfc3489.txt
http://squid-cache.org/
http://dx.doi.org/10.1109/comst.2016.2566669
http://dx.doi.org/10.1109/comst.2016.2566669
http://dx.doi.org/10.1109/comst.2016.2566669
http://dx.doi.org/10.1109/comst.2016.2566669
https://www.proceranetworks.com/customers/vendors/
https://www.proceranetworks.com/customers/vendors/
http://www.allot.com/technology/dart-dpi/
http://www.allot.com/technology/dart-dpi/
https://dl.acm.org/citation.cfm?id=1267552
https://dl.acm.org/citation.cfm?id=1267552
https://dl.acm.org/citation.cfm?id=1267552
https://dl.acm.org/citation.cfm?id=1267552
http://dx.doi.org/10.1016/s1389-1286(99)00112-7
http://dx.doi.org/10.1016/s1389-1286(99)00112-7


118
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

[35] “Snort,” http://www.snort.org/
[36] M. Roesch, “Snort - lightweight intrusion detection for networks,”

Proc. 13th USENIX Conference on System Administration, LISA
’99, pp.229–238, USENIX Association, Berkeley, CA, USA, 1999.

[37] “Palo alto networks,” http://www.paloaltonetworks.com/
[38] “Openvpn,” http://www.openvpn.com/
[39] “Passive real-time asset detectoin system,” http://gamelinux.git

hub.io/prads/
[40] Y.Wang, E. Keller, B. Biskeborn, J. van derMerwe, and J. Rexford,

“Virtual routers on the move: Live router migration as a network-
management primitive,” Proc. ACM SIGCOMM 2008 Conference
onData Communication, SIGCOMM’08, pp.231–242, ACM,New
York, NY, USA, 2008.

[41] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford, “Virtual routers on the move: Live router migration as a
network-management primitive,” SIGCOMM Comput. Commun.
Rev., vol.38, no.4, pp.231–242, Aug. 2008.

[42] “Brocade vrouter,” http://www.brocade.com/en/products-services/
software-networking/network-functions-virtualization/vrouter.html

[43] N.T. Spring and D. Wetherall, “A protocol-independent technique
for eliminating redundant network traffic,” Proc. Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’00, pp.87–95, ACM, New
York, NY, USA, 2000.

[44] N.T. Spring and D. Wetherall, “A protocol-independent technique
for eliminating redundant network traffic,” SIGCOMM Comput.
Commun. Rev., vol.30, no.4, pp.87–95, Aug. 2000.

[45] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: The implications of universal redundant traffic
elimination,” Proc. ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM ’08, pp.219–230, ACM, New York,
NY, USA, 2008.

[46] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: The implications of universal redundant traffic
elimination,” SIGCOMM Comput. Commun. Rev., vol.38, no.4,
pp.219–230, Aug. 2008.

[47] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architec-
ture for coordinated network-wide redundancy elimination,” Proc.
ACM SIGCOMM2009 Conference on Data Communication, SIG-
COMM ’09, pp.87–98, ACM, New York, NY, USA, 2009.

[48] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for
coordinated network-wide redundancy elimination,” SIGCOMM
Comput. Commun. Rev., vol.39, no.4, pp.87–98, Aug. 2009.

[49] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Re-
dundancy in network traffic: Findings and implications,” Proc.
Eleventh International Joint Conference onMeasurement andMod-
eling of Computer Systems, SIGMETRICS ’09, pp.37–48, ACM,
New York, NY, USA, 2009.

[50] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redun-
dancy in network traffic: Findings and implications,” SIGMET-
RICS Perform. Eval. Rev., vol.37, no.1, pp.37–48, June 2009.

[51] “Bluecoat, wan optimization - mach5,” https://www.bluecoat.com/
products-and-solutions/wan-optimization-mach5

[52] S. Song, D. Kim, H. Park, B.Y. Choi, and T. Choi, “CO-REDUCE:
Collaborative redundancy reduction service in software-defined
networks,” Proc. 2015 ACM SIGCOMMWorkshop on Hot Topics
in Middleboxes and Network Function Virtualization, HotMiddle-
box ’15, pp.61–66, ACM, New York, NY, USA, 2015.

[53] “Riverbed networks,” http://www.riverbed.com/
[54] “Aryaka,” http://www.aryaka.com/
[55] “Cisco, wide area application services,” http://www.cisco.com/c/

en/us/products/routers/wide-area-application-services/index.html
[56] “Citrix, wan optimization with netscaler sd-wan,” https://www.

citrix.com/content/dam/citrix/en_us/documents/products-solution
s/wan-optimization-with-netscaler-sdwan.pdf

[57] “3gpp ts 23.002: Network architecture.”
[58] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, K. Van der

Merwe, and S. Rangarajan, “Scaling the lte control-plane for future
mobile access,” Proc. 11thACMConference onEmergingNetwork-
ing Experiments and Technologies, CoNEXT ’15, pp.19:1–19:13,
ACM, New York, NY, USA, 2015.

[59] “Cisco asr 9000 series aggregation services router broadband
network gateway,” http://www.cisco.com/c/en/us/td/docs/routers/
asr9000/software/asr9k_r6-0/bng/configuration/guide/b-bng-cg60
xasr9k/b-bng-cg60xasr9k_chapter_010.html

[60] “Juniper broadband network gateway solution – juniper networks,”
https://www.juniper.net/us/en/solutions/bng/

[61] Z.A. Qazi, C.C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” Proc.
ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13, pp.27–38, ACM, New York, NY, USA, 2013.

[62] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” Techni-
cal Report, UCB/EECS-2011-110, EECS Department, University
of California, Berkeley, Oct. 2011.

[63] V. Sekar, N. Egi, S. Ratnasamy, M.K. Reiter, and G. Shi, “De-
sign and implementation of a consolidated middlebox architec-
ture,” Presented as part of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), pp.323–
336, USENIX, San Jose, CA, 2012.

[64] J.W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat,
“xOMB: Extensible open middleboxes with commodity servers,”
Proc. EighthACM/IEEESymposiumonArchitectures forNetwork-
ing and Communications Systems, ANCS ’12, pp.49–60, ACM,
New York, NY, USA, 2012.

[65] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity net-
work hardware,” SIGCOMMComput. Commun. Rev., vol.39, no.2,
pp.20–26, March 2009.

[66] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol.18,
no.3, pp.263–297, Aug. 2000.

[67] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet
processing,” 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pp.5–16, May
2015.

[68] R. Laufer, M. Gallo, D. Perino, and A. Nandugudi, “CliMB:
Enabling network function composition with click middleboxes,”
Proc. 2016 Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, HotMiddlebox ’16, pp.50–55, ACM, New
York, NY, USA, 2016.

[69] A. Panda, S. Han, K. Jang, M.Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), GA,
pp.203–216, USENIX Association, Nov. 2016.

[70] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis transformation,” International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004.,
pp.75–86, March 2004.

[71] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L.
Rizzo, and S. Shenker, “E2: A framework for nfv applications,”
Proc. 25th Symposium on Operating Systems Principles, SOSP
’15, pp.121–136, ACM, New York, NY, USA, 2015.

[72] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Technical Re-
port, UCB/EECS-2015-155, EECS Department, University of Cal-
ifornia, Berkeley, May 2015.

[73] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming
slick network functions,” Proc. 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR ’15, pp.14:1–
14:13, ACM, New York, NY, USA, 2015.

[74] M. Bezahaf, A. Alim, and L. Mathy, “FlowOS: A flow-based plat-
form for middleboxes,” Proc. 2013 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMiddlebox

http://www.snort.org/
https://dl.acm.org/citation.cfm?id=1039864
https://dl.acm.org/citation.cfm?id=1039864
https://dl.acm.org/citation.cfm?id=1039864
http://www.paloaltonetworks.com/
http://www.openvpn.com/
http://gamelinux.github.io/prads/
http://gamelinux.github.io/prads/
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://dx.doi.org/10.1145/1402958.1402985
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vrouter.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization/vrouter.html
http://dx.doi.org/10.1145/347059.347408
http://dx.doi.org/10.1145/347059.347408
http://dx.doi.org/10.1145/347059.347408
http://dx.doi.org/10.1145/347059.347408
http://dx.doi.org/10.1145/347059.347408
http://dx.doi.org/10.1145/347057.347408
http://dx.doi.org/10.1145/347057.347408
http://dx.doi.org/10.1145/347057.347408
http://dx.doi.org/10.1145/1402958.1402984
http://dx.doi.org/10.1145/1402958.1402984
http://dx.doi.org/10.1145/1402958.1402984
http://dx.doi.org/10.1145/1402958.1402984
http://dx.doi.org/10.1145/1402958.1402984
http://dx.doi.org/10.1145/1402946.1402984
http://dx.doi.org/10.1145/1402946.1402984
http://dx.doi.org/10.1145/1402946.1402984
http://dx.doi.org/10.1145/1402946.1402984
http://dx.doi.org/10.1145/1592568.1592580
http://dx.doi.org/10.1145/1592568.1592580
http://dx.doi.org/10.1145/1592568.1592580
http://dx.doi.org/10.1145/1592568.1592580
http://dx.doi.org/10.1145/1594977.1592580
http://dx.doi.org/10.1145/1594977.1592580
http://dx.doi.org/10.1145/1594977.1592580
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
http://dx.doi.org/10.1145/1555349.1555355
https://www.bluecoat.com/products-and-solutions/wan-optimization-mach5
https://www.bluecoat.com/products-and-solutions/wan-optimization-mach5
http://dx.doi.org/10.1145/2785989.2786001
http://dx.doi.org/10.1145/2785989.2786001
http://dx.doi.org/10.1145/2785989.2786001
http://dx.doi.org/10.1145/2785989.2786001
http://dx.doi.org/10.1145/2785989.2786001
http://www.riverbed.com/
http://www.aryaka.com/
http://www.cisco.com/c/en/us/products/routers/wide-area-application-services/index.html
http://www.cisco.com/c/en/us/products/routers/wide-area-application-services/index.html
https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/wan-optimization-with-netscaler-sdwan.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/wan-optimization-with-netscaler-sdwan.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/products-solutions/wan-optimization-with-netscaler-sdwan.pdf
http://dx.doi.org/10.1145/2716281.2836104
http://dx.doi.org/10.1145/2716281.2836104
http://dx.doi.org/10.1145/2716281.2836104
http://dx.doi.org/10.1145/2716281.2836104
http://dx.doi.org/10.1145/2716281.2836104
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r6-0/bng/configuration/guide/b-bng-cg60xasr9k/b-bng-cg60xasr9k_chapter_010.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r6-0/bng/configuration/guide/b-bng-cg60xasr9k/b-bng-cg60xasr9k_chapter_010.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r6-0/bng/configuration/guide/b-bng-cg60xasr9k/b-bng-cg60xasr9k_chapter_010.html
http://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r6-0/bng/configuration/guide/b-bng-cg60xasr9k/b-bng-cg60xasr9k_chapter_010.html
https://www.juniper.net/us/en/solutions/bng/
https://www.juniper.net/us/en/solutions/bng/
http://dx.doi.org/10.1145/2486001.2486022
http://dx.doi.org/10.1145/2486001.2486022
http://dx.doi.org/10.1145/2486001.2486022
http://dx.doi.org/10.1145/2486001.2486022
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://dl.acm.org/citation.cfm?id=2228331
https://dl.acm.org/citation.cfm?id=2228331
https://dl.acm.org/citation.cfm?id=2228331
https://dl.acm.org/citation.cfm?id=2228331
https://dl.acm.org/citation.cfm?id=2228331
http://dx.doi.org/10.1145/2396556.2396566
http://dx.doi.org/10.1145/2396556.2396566
http://dx.doi.org/10.1145/2396556.2396566
http://dx.doi.org/10.1145/2396556.2396566
http://dx.doi.org/10.1145/2396556.2396566
http://dx.doi.org/10.1145/1517480.1517484
http://dx.doi.org/10.1145/1517480.1517484
http://dx.doi.org/10.1145/1517480.1517484
http://dx.doi.org/10.1145/1517480.1517484
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1109/ancs.2015.7110116
http://dx.doi.org/10.1109/ancs.2015.7110116
http://dx.doi.org/10.1109/ancs.2015.7110116
http://dx.doi.org/10.1109/ancs.2015.7110116
http://dx.doi.org/10.1145/2940147.2940152
http://dx.doi.org/10.1145/2940147.2940152
http://dx.doi.org/10.1145/2940147.2940152
http://dx.doi.org/10.1145/2940147.2940152
http://dx.doi.org/10.1145/2940147.2940152
https://dl.acm.org/citation.cfm?id=3026894
https://dl.acm.org/citation.cfm?id=3026894
https://dl.acm.org/citation.cfm?id=3026894
https://dl.acm.org/citation.cfm?id=3026894
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dx.doi.org/10.1109/cgo.2004.1281665
http://dx.doi.org/10.1145/2815400.2815423
http://dx.doi.org/10.1145/2815400.2815423
http://dx.doi.org/10.1145/2815400.2815423
http://dx.doi.org/10.1145/2815400.2815423
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://dx.doi.org/10.1145/2774993.2774998
http://dx.doi.org/10.1145/2774993.2774998
http://dx.doi.org/10.1145/2774993.2774998
http://dx.doi.org/10.1145/2774993.2774998
http://dx.doi.org/10.1145/2535828.2535836
http://dx.doi.org/10.1145/2535828.2535836
http://dx.doi.org/10.1145/2535828.2535836


SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
119

’13, pp.19–24, ACM, New York, NY, USA, 2013.
[75] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The click

modular router,” SIGOPS Oper. Syst. Rev., vol.33, no.5, pp.217–
231, Dec. 1999.

[76] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The click
modular router,” Proc. Seventeenth ACMSymposium onOperating
Systems Principles, SOSP ’99, pp.217–231, ACM, New York, NY,
USA, 1999.

[77] P. Bosshart, G. Gibb, H.S. Kim, G. Varghese, N. McKeown, M.
Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for
sdn,” Proc. ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, pp.99–110, ACM, New York, NY, USA, 2013.

[78] P. Bosshart, G. Gibb, H.S. Kim, G. Varghese, N. McKeown, M.
Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for
sdn,” SIGCOMM Comput. Commun. Rev., vol.43, no.4, pp.99–
110, Aug. 2013.

[79] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D.Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol.44, no.3, pp.87–95, July
2014.

[80] H. Song, “Protocol-oblivious forwarding: Unleash the power of
sdn through a future-proof forwarding plane,” Proc. Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, HotSDN ’13, pp.127–132, ACM, New York, NY, USA,
2013.

[81] “Barefoot: The world’s fastest and most programmable networks,”
https://barefootnetworks.com/media/white_papers/Barefoot-World
s-Fastest-Most-Programmable-Networks.pdf

[82] “Intel flexpipe,” http://www.intel.com/content/dam/www/public/
us/en/documents/product-bri
efs/ethernet-switchfm6000-series-brief.pdf

[83] “Xpliant ethernet switch product family,” http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html

[84] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H.
Balakrishnan, G. Varghese, N. McKeown, and S. Licking, “Packet
transactions: High-level programming for line-rate switches,” Proc.
2016 Conference on ACM SIGCOMM 2016 Conference, SIG-
COMM ’16, pp.15–28, ACM, New York, NY, USA, 2016.

[85] B. Li, K. Tan, L.L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “ClickNP: Highly flexible and high performance net-
work processing with reconfigurable hardware,” Proc. 2016 Con-
ference on ACM SIGCOMM 2016 Conference, SIGCOMM ’16,
pp.1–14, ACM, New York, NY, USA, 2016.

[86] B. Veal and A. Foong, “Performance scalability of a multi-core
web server,” Proc. 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems, ANCS ’07, pp.57–66,
ACM, New York, NY, USA, 2007.

[87] R. Bolla and R. Bruschi, “Pc-based software routers: High per-
formance and application service support,” Proc. ACM Workshop
on Programmable Routers for Extensible Services of Tomorrow,
PRESTO ’08, pp.27–32, ACM, New York, NY, USA, 2008.

[88] J.R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging
the gap between software and hardware techniques for I/O virtu-
alization,” USENIX 2008 Annual Technical Conference, ATC’08,
pp.29–42, USENIX Association, Berkeley, CA, USA, 2008.

[89] M. Dobrescu, N. Egi, K. Argyraki, B.G. Chun, K. Fall, G. Iannac-
cone, A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Ex-
ploiting parallelism to scale software routers,” Proc. ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09,
pp.15–28, ACM, New York, NY, USA, 2009.

[90] H. Liu and R. Zhang-Shen, “On direct routing in the valiant load-
balancing architecture,” GLOBECOM ’05. IEEE Global Telecom-
munications Conference, 2005., pp.6 pp.–726, Dec. 2005.

[91] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-

ancing without packet reordering,” SIGCOMMComput. Commun.
Rev., vol.37, no.2, pp.51–62, March 2007.

[92] K.K.Ram, J.R. Santos, Y. Turner, A.L. Cox, and S. Rixner, “Achiev-
ing 10 Gb/s using safe and transparent network interface virtual-
ization,” Proc. 2009 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’09, pp.61–70,
ACM, New York, NY, USA, 2009.

[93] G. Wang and T.S.E. Ng, “The impact of virtualization on network
performance of amazon EC2 data center,” INFOCOM, 2010 Pro-
ceedings IEEE, pp.1–9, March 2010.

[94] “Data plane development kit,” http://dpdk.org
[95] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy,

and P. Papadimitriou, “Forwarding path architectures for multicore
software routers,” Proc. Workshop on Programmable Routers for
Extensible Services of Tomorrow, PRESTO ’10, pp.3:1–3:6, ACM,
New York, NY, USA, 2010.

[96] L. Rizzo, “Netmap: A novel framework for fast packet I/O,”
2012 USENIX Annual Technical Conference (USENIX ATC 12),
Boston, MA, pp.101–112, USENIX Association, June 2012.

[97] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, “The power of
batching in the click modular router,” Proc. Asia-Pacific Workshop
on Systems, APSYS ’12, pp.14:1–14:6, ACM, New York, NY,
USA, 2012.

[98] J.Martins,M.Ahmed, C. Raiciu, V.Olteanu,M.Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualiza-
tion,” 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pp.459–473, USENIX Associa-
tion, Seattle, WA, April 2014.

[99] J. Hwang, K.K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pp.445–458, USENIX As-
sociation, Seattle, WA, April 2014.

[100] J.Hwang, K.K.Ramakrishnan, andT.Wood, “NetVM:High perfor-
mance and flexible networking using virtualization on commodity
platforms,” IEEE Trans. Netw. Serv. Manage., vol.12, no.1, pp.34–
47, March 2015.

[101] L. Rizzo and G. Lettieri, “VALE, a switched ethernet for virtual
machines,” Proc. 8th International Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’12, pp.61–72,
ACM, New York, NY, USA, 2012.

[102] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K.
Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high
performance network service chains,” Proc. 2016 Workshop on
Hot Topics in Middleboxes and Network Function Virtualization,
HotMiddlebox ’16, pp.26–31, ACM, New York, NY, USA, 2016.

[103] B. Hirschman, P. Mehta, K.B. Ramia, A.S. Rajan, E. Dylag, A.
Singh, and M. Mcdonald, “High-performance evolved packet core
signaling and bearer processing on general-purpose processors,”
IEEE Netw., vol.29, no.3, pp.6–14, May 2015.

[104] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling
and abstraction ofNFVhardware accelerators,” IEEENetw., vol.29,
no.3, pp.22–29, May 2015.

[105] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” Proc. 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI’14, pp.49–
65, USENIX Association, Berkeley, CA, USA, 2014.

[106] S. Peter, J. Li, I. Zhang, D.R.K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is
the control plane,” 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), pp.1–16, USENIX
Association, CO, 2014.

[107] D. Touitou and E. Roch, “Accelerating NFV with fast path offload-
ing,” 2014 IEEE 11th Consumer Communications and Networking
Conference (CCNC), pp.893–898, Jan. 2014.

[108] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and

http://dx.doi.org/10.1145/2535828.2535836
http://dx.doi.org/10.1145/2535828.2535836
http://dx.doi.org/10.1145/319344.319166
http://dx.doi.org/10.1145/319344.319166
http://dx.doi.org/10.1145/319344.319166
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/319151.319166
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1145/2486001.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2534169.2486011
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2491185.2491190
http://dx.doi.org/10.1145/2491185.2491190
http://dx.doi.org/10.1145/2491185.2491190
http://dx.doi.org/10.1145/2491185.2491190
http://dx.doi.org/10.1145/2491185.2491190
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934897
http://dx.doi.org/10.1145/2934872.2934897
http://dx.doi.org/10.1145/2934872.2934897
http://dx.doi.org/10.1145/2934872.2934897
http://dx.doi.org/10.1145/2934872.2934897
http://dx.doi.org/10.1145/1323548.1323562
http://dx.doi.org/10.1145/1323548.1323562
http://dx.doi.org/10.1145/1323548.1323562
http://dx.doi.org/10.1145/1323548.1323562
http://dx.doi.org/10.1145/1397718.1397725
http://dx.doi.org/10.1145/1397718.1397725
http://dx.doi.org/10.1145/1397718.1397725
http://dx.doi.org/10.1145/1397718.1397725
http://dx.doi.org/10.1145/1462735
http://dx.doi.org/10.1145/1462735
http://dx.doi.org/10.1145/1462735
http://dx.doi.org/10.1145/1462735
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1109/glocom.2005.1577735
http://dx.doi.org/10.1109/glocom.2005.1577735
http://dx.doi.org/10.1109/glocom.2005.1577735
http://dx.doi.org/10.1145/1232919.1232925
http://dx.doi.org/10.1145/1232919.1232925
http://dx.doi.org/10.1145/1232919.1232925
http://dx.doi.org/10.1145/1508293.1508303
http://dx.doi.org/10.1145/1508293.1508303
http://dx.doi.org/10.1145/1508293.1508303
http://dx.doi.org/10.1145/1508293.1508303
http://dx.doi.org/10.1145/1508293.1508303
http://dx.doi.org/10.1109/infcom.2010.5461931
http://dx.doi.org/10.1109/infcom.2010.5461931
http://dx.doi.org/10.1109/infcom.2010.5461931
http://dpdk.org
http://dx.doi.org/10.1145/1921151.1921155
http://dx.doi.org/10.1145/1921151.1921155
http://dx.doi.org/10.1145/1921151.1921155
http://dx.doi.org/10.1145/1921151.1921155
http://dx.doi.org/10.1145/1921151.1921155
https://dl.acm.org/citation.cfm?id=2342830
https://dl.acm.org/citation.cfm?id=2342830
https://dl.acm.org/citation.cfm?id=2342830
http://dx.doi.org/10.1145/2349896.2349910
http://dx.doi.org/10.1145/2349896.2349910
http://dx.doi.org/10.1145/2349896.2349910
http://dx.doi.org/10.1145/2349896.2349910
https://dl.acm.org/citation.cfm?id=2616491
https://dl.acm.org/citation.cfm?id=2616491
https://dl.acm.org/citation.cfm?id=2616491
https://dl.acm.org/citation.cfm?id=2616491
https://dl.acm.org/citation.cfm?id=2616491
https://dl.acm.org/citation.cfm?id=2616490
https://dl.acm.org/citation.cfm?id=2616490
https://dl.acm.org/citation.cfm?id=2616490
https://dl.acm.org/citation.cfm?id=2616490
https://dl.acm.org/citation.cfm?id=2616490
http://dx.doi.org/10.1109/tnsm.2015.2401568
http://dx.doi.org/10.1109/tnsm.2015.2401568
http://dx.doi.org/10.1109/tnsm.2015.2401568
http://dx.doi.org/10.1109/tnsm.2015.2401568
http://dx.doi.org/10.1145/2413176.2413185
http://dx.doi.org/10.1145/2413176.2413185
http://dx.doi.org/10.1145/2413176.2413185
http://dx.doi.org/10.1145/2413176.2413185
http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1109/mnet.2015.7113219
http://dx.doi.org/10.1109/mnet.2015.7113219
http://dx.doi.org/10.1109/mnet.2015.7113219
http://dx.doi.org/10.1109/mnet.2015.7113219
http://dx.doi.org/10.1109/mnet.2015.7113221
http://dx.doi.org/10.1109/mnet.2015.7113221
http://dx.doi.org/10.1109/mnet.2015.7113221
https://dl.acm.org/citation.cfm?id=2685053
https://dl.acm.org/citation.cfm?id=2685053
https://dl.acm.org/citation.cfm?id=2685053
https://dl.acm.org/citation.cfm?id=2685053
https://dl.acm.org/citation.cfm?id=2685053
https://dl.acm.org/citation.cfm?id=2685050
https://dl.acm.org/citation.cfm?id=2685050
https://dl.acm.org/citation.cfm?id=2685050
https://dl.acm.org/citation.cfm?id=2685050
https://dl.acm.org/citation.cfm?id=2685050
http://dx.doi.org/10.1109/ccnc.2014.6994407
http://dx.doi.org/10.1109/ccnc.2014.6994407
http://dx.doi.org/10.1109/ccnc.2014.6994407
https://dl.acm.org/citation.cfm?id=2616493


120
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

K. Park, “mTCP: A highly scalable user-level tcp stack for multi-
core systems,” 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pp.489–502, USENIX As-
sociation, Seattle, WA, 2014.

[109] I. Marinos, R.N. Watson, and M. Handley, “Network stack spe-
cialization for performance,” Proc. 2014 ACMConference on SIG-
COMM, SIGCOMM’14, pp.175–186, ACM,NewYork, NY,USA,
2014.

[110] I. Marinos, R.N. Watson, and M. Handley, “Network stack spe-
cialization for performance,” SIGCOMMComput. Commun. Rev.,
vol.44, no.4, pp.175–186, Aug. 2014.

[111] “Cavium networks octeon ii processors,” http://www.caviumnet
works.com/OCTEON_II_MIPS64.html

[112] “Cisco quantumflow processors,” http://www.cisco.com/en/US/
prod/collateral/routers/ps9343/solution_overview_c22-448936.ht
ml

[113] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated software router,” Proc. ACM SIGCOMM 2010 Confer-
ence, SIGCOMM ’10, pp.195–206, ACM, New York, NY, USA,
2010.

[114] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing
with gpus and click,” Architectures for Networking and Communi-
cations Systems, pp.25–35, Oct. 2013.

[115] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA
(network balancing act): A high-performance packet processing
framework for heterogeneous processors,” Proc. Tenth European
Conference on Computer Systems, EuroSys ’15, pp.22:1–22:14,
ACM, New York, NY, USA, 2015.

[116] A. Kalia, D. Zhou, M. Kaminsky, and D.G. Andersen, “Raising the
bar for using gpus in software packet processing,” 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15), pp.409–423, USENIX Association, Oakland, CA, May
2015.

[117] K. Jang, S. Han, S. Han, S.Moon, andK. Park, “SSLShader: Cheap
SSL acceleration with commodity processors,” Proc. 8th USENIX
Conference on Networked Systems Design and Implementation,
NSDI’11, pp.1–14, USENIX Association, Berkeley, CA, USA,
2011.

[118] M.A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi,
and K. Park, “Kargus: A highly-scalable software-based intrusion
detection system,” Proc. 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pp.317–328, ACM,NewYork,
NY, USA, 2012.

[119] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A GPU-accelerated stateful packet processing frame-
work,” 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp.321–332, USENIX Association, Philadelphia, PA,
2014.

[120] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “MIDeA: A
multi-parallel intrusion detection architecture,” Proc. 18th ACM
Conference on Computer and Communications Security, CCS ’11,
pp.297–308, ACM, New York, NY, USA, 2011.

[121] W. Sun, R. Ricci, and M.L. Curry, “GPUstore: Harnessing gpu
computing for storage systems in the OS kernel,” Proc. 5th An-
nual International Systems and Storage Conference, SYSTOR ’12,
pp.9:1–9:12, ACM, New York, NY, USA, 2012.

[122] G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion de-
tection using graphics processors,” Proc. 11th International Sym-
posium on Recent Advances in Intrusion Detection, RAID ’08,
pp.116–134, Springer-Verlag, Berlin, Heidelberg, 2008.

[123] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H.
Dai, X. Tian, Z.Xu, H.Wu, andD.Yang, “Wire speed name lookup:
A GPU-based approach,” Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 13), pp.199–212, USENIX, Lombard, IL, 2013.

[124] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-

accelerated software router,” SIGCOMM Comput. Commun. Rev.,
vol.40, no.4, pp.195–206, Aug. 2010.

[125] A.V. Aho and M.J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol.18, no.6, pp.333–340,
June 1975.

[126] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual mid-
dleboxes,” Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13),
pp.227–240, USENIX, Lombard, IL, 2013.

[127] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J.
Khalid, S. Das, and A. Akella, “OpenNF: Enabling innovation in
network function control,” Proc. 2014 ACM Conference on SIG-
COMM, SIGCOMM’14, pp.163–174, ACM,NewYork, NY,USA,
2014.

[128] A. Gember, A. Krishnamurthy, S.S. John, R. Grandl, X. Gao, A.
Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR,
vol.abs/1305.0209, 2013.

[129] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication:
A high availability framework for middleboxes,” Proc. 4th Annual
Symposium on Cloud Computing, SOCC ’13, pp.1:1–1:15, ACM,
New York, NY, USA, 2013.

[130] J. Sherry, P.X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C.
Maciocco, M. Manesh, J.a. Martins, S. Ratnasamy, L. Rizzo, and
S. Shenker, “Rollback-recovery for middleboxes,” Proc. 2015 ACM
Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, pp.227–240, ACM, New York, NY, USA, 2015.

[131] J. Sherry, P.X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C.
Maciocco, M.Manesh, J.a. Martins, S. Ratnasamy, L. Rizzo, and S.
Shenker, “Rollback-recovery for middleboxes,” SIGCOMM Com-
put. Commun. Rev., vol.45, no.4, pp.227–240, Aug. 2015.

[132] M.Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “State-
less network functions,” Proc. 2015 ACM SIGCOMM Workshop
on Hot Topics in Middleboxes and Network Function Virtualiza-
tion, HotMiddlebox ’15, pp.49–54, ACM, New York, NY, USA,
2015.

[133] D. Ongaro, S.M. Rumble, R. Stutsman, J. Ousterhout, and M.
Rosenblum, “Fast crash recovery in RAMCloud,” Proc. Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP
’11, pp.29–41, ACM, New York, NY, USA, 2011.

[134] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B.
Montazeri, D. Ongaro, S.J. Park, H. Qin, M. Rosenblum, S. Rum-
ble, R. Stutsman, and S. Yang, “The RAMCloud storage system,”
ACM Trans. Comput. Syst., vol.33, no.3, pp.7:1–7:55, Aug. 2015.

[135] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM:
Fast remote memory,” Proc. 11th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’14, pp.401–
414, USENIX Association, Berkeley, CA, USA, 2014.

[136] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar,
and A. Akella, “Paving the way for NFV: Simplifying middle-
box modifications using StateAlyzr,” 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16),
pp.239–253, USENIX Association, Santa Clara, CA, March 2016.

[137] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J.
Khalid, S. Das, and A. Akella, “OpenNF: Enabling innovation in
network function control,” Proc. 2014 ACM Conference on SIG-
COMM, SIGCOMM’14, pp.163–174, ACM,NewYork, NY,USA,
2014.

[138] A. Gember-Jacobson and A. Akella, “Improving the safety, scal-
ability, and efficiency of network function state transfers,” Proc.
2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, HotMiddlebox ’15, pp.43–
48, ACM, New York, NY, USA, 2015.

[139] S.K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J.C. Mogul,
“Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions using flowtags,” Proc. 11th USENIX Conference

https://dl.acm.org/citation.cfm?id=2616493
https://dl.acm.org/citation.cfm?id=2616493
https://dl.acm.org/citation.cfm?id=2616493
https://dl.acm.org/citation.cfm?id=2616493
https://dl.acm.org/citation.cfm?id=2616493
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1145/2619239.2626311
http://dx.doi.org/10.1145/2740070.2626311
http://dx.doi.org/10.1145/2740070.2626311
http://dx.doi.org/10.1145/2740070.2626311
http://www.caviumnetworks.com/OCTEON_II_MIPS64.html
http://www.caviumnetworks.com/OCTEON_II_MIPS64.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://dx.doi.org/10.1145/1851182.1851207
http://dx.doi.org/10.1145/1851182.1851207
http://dx.doi.org/10.1145/1851182.1851207
http://dx.doi.org/10.1145/1851182.1851207
http://dx.doi.org/10.1109/ancs.2013.6665173
http://dx.doi.org/10.1109/ancs.2013.6665173
http://dx.doi.org/10.1109/ancs.2013.6665173
http://dx.doi.org/10.1145/2741948.2741969
http://dx.doi.org/10.1145/2741948.2741969
http://dx.doi.org/10.1145/2741948.2741969
http://dx.doi.org/10.1145/2741948.2741969
http://dx.doi.org/10.1145/2741948.2741969
https://dl.acm.org/citation.cfm?id=2789799
https://dl.acm.org/citation.cfm?id=2789799
https://dl.acm.org/citation.cfm?id=2789799
https://dl.acm.org/citation.cfm?id=2789799
https://dl.acm.org/citation.cfm?id=2789799
https://dl.acm.org/citation.cfm?id=1972459
https://dl.acm.org/citation.cfm?id=1972459
https://dl.acm.org/citation.cfm?id=1972459
https://dl.acm.org/citation.cfm?id=1972459
https://dl.acm.org/citation.cfm?id=1972459
http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
http://dx.doi.org/10.1145/2382196.2382232
https://dl.acm.org/citation.cfm?id=2643668
https://dl.acm.org/citation.cfm?id=2643668
https://dl.acm.org/citation.cfm?id=2643668
https://dl.acm.org/citation.cfm?id=2643668
https://dl.acm.org/citation.cfm?id=2643668
http://dx.doi.org/10.1145/2046707.2046741
http://dx.doi.org/10.1145/2046707.2046741
http://dx.doi.org/10.1145/2046707.2046741
http://dx.doi.org/10.1145/2046707.2046741
http://dx.doi.org/10.1145/2367589.2367595
http://dx.doi.org/10.1145/2367589.2367595
http://dx.doi.org/10.1145/2367589.2367595
http://dx.doi.org/10.1145/2367589.2367595
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1145/2370036.2145833
http://dx.doi.org/10.1145/2370036.2145833
http://dx.doi.org/10.1145/2370036.2145833
http://dx.doi.org/10.1145/2370036.2145833
http://dx.doi.org/10.1145/2370036.2145833
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
https://dl.acm.org/citation.cfm?id=2482626.2482649
https://dl.acm.org/citation.cfm?id=2482626.2482649
https://dl.acm.org/citation.cfm?id=2482626.2482649
https://dl.acm.org/citation.cfm?id=2482626.2482649
https://dl.acm.org/citation.cfm?id=2482626.2482649
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
https://arxiv.org/abs/1305.0209
https://arxiv.org/abs/1305.0209
https://arxiv.org/abs/1305.0209
https://arxiv.org/abs/1305.0209
http://dx.doi.org/10.1145/2523616.2523635
http://dx.doi.org/10.1145/2523616.2523635
http://dx.doi.org/10.1145/2523616.2523635
http://dx.doi.org/10.1145/2523616.2523635
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2785956.2787501
http://dx.doi.org/10.1145/2829988.2787501
http://dx.doi.org/10.1145/2829988.2787501
http://dx.doi.org/10.1145/2829988.2787501
http://dx.doi.org/10.1145/2829988.2787501
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1145/2785989.2785993
http://dx.doi.org/10.1145/2043556.2043560
http://dx.doi.org/10.1145/2043556.2043560
http://dx.doi.org/10.1145/2043556.2043560
http://dx.doi.org/10.1145/2043556.2043560
https://dl.acm.org/citation.cfm?id=2818727.2806887
https://dl.acm.org/citation.cfm?id=2818727.2806887
https://dl.acm.org/citation.cfm?id=2818727.2806887
https://dl.acm.org/citation.cfm?id=2818727.2806887
https://dl.acm.org/citation.cfm?id=2616486
https://dl.acm.org/citation.cfm?id=2616486
https://dl.acm.org/citation.cfm?id=2616486
https://dl.acm.org/citation.cfm?id=2616486
https://dl.acm.org/citation.cfm?id=2930628
https://dl.acm.org/citation.cfm?id=2930628
https://dl.acm.org/citation.cfm?id=2930628
https://dl.acm.org/citation.cfm?id=2930628
https://dl.acm.org/citation.cfm?id=2930628
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2619239.2626313
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
http://dx.doi.org/10.1145/2785989.2785997
https://dl.acm.org/citation.cfm?id=2616497
https://dl.acm.org/citation.cfm?id=2616497
https://dl.acm.org/citation.cfm?id=2616497


SHIOMOTO: RESEARCH CHALLENGES FOR NETWORK FUNCTION VIRTUALIZATION
121

on Networked Systems Design and Implementation, NSDI’14,
pp.533–546, USENIX Association, Berkeley, CA, USA, 2014.

[140] J. Khalid, M. Coatsworth, A. Gember-Jacobson, and A. Akella, “A
standardized southbound API for VNF management,” Proc. 2016
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization, HotMiddlebox ’16, pp.38–43, ACM, New York,
NY, USA, 2016.

[141] D.A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” SIGCOMMComput. Commun. Rev., vol.38,
no.4, pp.51–62, Aug. 2008.

[142] I. Stoica, D.Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” Proc. 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Commu-
nications, SIGCOMM ’02, pp.73–86, ACM, New York, NY, USA,
2002.

[143] I. Stoica, D.Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” SIGCOMM Comput. Commun. Rev.,
vol.32, no.4, pp.73–86, Aug. 2002.

[144] I. Stoica, D.Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” IEEE/ACM Trans. Netw., vol.12, no.2,
pp.205–218, April 2004.

[145] R. Gold, P. Gunningberg, and C. Tschudin, “A virtualized link layer
with support for indirection,” Proc. ACMSIGCOMMWorkshop on
Future Directions in Network Architecture, FDNA ’04, pp.28–34,
ACM, New York, NY, USA, 2004.

[146] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker, “Middleboxes no longer considered harmful,” Proc.
6th Conference on Symposium on Opearting Systems Design Im-
plementation - Volume 6, OSDI’04, p.15, USENIX Association,
Berkeley, CA, USA, 2004.

[147] S.K. Fayazbakhsh, V. Sekar, M. Yu, and J.C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions,” Proc. Second ACM SIGCOMMWorkshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pp.19–24,
ACM, New York, NY, USA, 2013.

[148] Z.A. Qazi, C.C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” SIG-
COMM Comput. Commun. Rev., vol.43, no.4, pp.27–38, Aug.
2013.

[149] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: An open
service chain as a service platform toward the integration of SDN
and NFV,” IEEE Netw., vol.29, no.3, pp.30–35, May 2015.

[150] Y.D. Lin, P.C. Lin, C.H. Yeh, Y.C. Wang, and Y.C. Lai, “An ex-
tended SDN architecture for network function virtualization with
a case study on intrusion prevention,” IEEE Netw., vol.29, no.3,
pp.48–53, May 2015.

[151] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and migra-
tion,” SIGCOMMComput. Commun. Rev., vol.38, no.2, pp.17–29,
March 2008.

[152] M. Chowdhury, M.R. Rahman, and R. Boutaba, “ViNEYard: Vir-
tual network embedding algorithms with coordinated node and link
mapping,” IEEE/ACMTrans.Netw., vol.20, no.1, pp.206–219, Feb.
2012.

[153] A. Fischer, J.F. Botero, M.T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys
Tuts., vol.15, no.4, pp.1888–1906, Fourth 2013.

[154] M.C. Luizelli, L.R. Bays, L.S. Buriol, M.P. Barcellos, and L.P.
Gaspary, “Piecing together the NFV provisioning puzzle: Effi-
cient placement and chaining of virtual network functions,” 2015
IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM), pp.98–106, May 2015.

[155] R. Cohen, L. Lewin-Eytan, J.S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” 2015 IEEE Conference
on Computer Communications (INFOCOM), pp.1346–1354, April
2015.

[156] A. Basta, W. Kellerer, M. Hoffmann, H.J. Morper, and K.

Hoffmann, “Applying NFV and SDN to LTE mobile core gate-
ways, the functions placement problem,” Proc. 4th Workshop on
All Things Cellular: Operations, Applications, Challenges, AllTh-
ingsCellular ’14, pp.33–38, ACM, New York, NY, USA, 2014.

[157] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for vir-
tual network functions in software-defined networks,” Proc. 2016
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization, HotMiddlebox ’16, pp.32–37, ACM, New York,
NY, USA, 2016.

[158] M.F. Bari, S.R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” 2015 11th International
Conference on Network and ServiceManagement (CNSM), pp.50–
56, Nov. 2015.

[159] H. Pirkul and V. Jayaraman, “A multi-commodity, multi-plant,
capacitated facility location problem: Formulation and efficient
heuristic solution,” Computers Operations Research, vol.25, no.10,
pp.869–878, 1998.

[160] G.D. Forney, “The viterbi algorithm,” Proc. IEEE, vol.61, no.3,
pp.268–278, March 1973.

[161] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” 2014 IEEE
Network Operations andManagement Symposium (NOMS), pp.1–
9, May 2014.

[162] H.Moens and F.D. Turck, “VNF-P: Amodel for efficient placement
of virtualized network functions,” 10th International Conference
on Network and Service Management (CNSM) and Workshop,
pp.418–423, Nov. 2014.

[163] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), pp.7–13, Oct. 2014.

[164] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K.K.
Ramakrishnan, and T. Wood, “Virtual function placement and traf-
fic steering in flexible and dynamic software defined networks,”
The 21st IEEE International Workshop on Local and Metropolitan
Area Networks, pp.1–6, April 2015.

[165] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Network
service chaining with efficient network function mapping based
on service decompositions,” Proc. 2015 1st IEEE Conference on
Network Softwarization (NetSoft), pp.1–5, April 2015.

[166] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R.
Boutaba, “Elastic virtual network function placement,” 2015 IEEE
4th International Conference on Cloud Networking (CloudNet),
pp.255–260, Oct. 2015.

[167] T.S. Buda, H. Assem, L. Xu, D. Raz, U. Margolin, E. Rosensweig,
D.R. Lopez, M.I. Corici, M. Smirnov, R. Mullins, O. Uryupina,
A. Mozo, B. Ordozgoiti, A. Martin, A. Alloush, P. O’Sullivan,
and I.G.B. Yahia, “Can machine learning aid in delivering new
use cases and scenarios in 5G?,” NOMS 2016 - 2016 IEEE/IFIP
Network Operations andManagement Symposium, pp.1279–1284,
April 2016.

[168] G. Gardikis, I. Koutras, G. Mavroudis, S. Costicoglou, G. Xilouris,
C. Sakkas, and A. Kourtis, “An integrating framework for efficient
nfv monitoring,” 2016 IEEE NetSoft Conference and Workshops
(NetSoft), pp.1–5, June 2016.

[169] M. Miyazawa, M. Hayashi, and R. Stadler, “vNMF: Distributed
fault detection using clustering approach for network function virtu-
alization,” 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp.640–645, May 2015.

[170] J.M. Sánchez, I.G.B. Yahia, and N. Crespi, “Self-modeling based
diagnosis of services over programmable networks,” 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pp.277–285, June
2016.

[171] D. Kushnir and M. Goldstein, “Causality inference for failures
in NFV,” 2016 IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), pp.929–934, April 2016.

https://dl.acm.org/citation.cfm?id=2616497
https://dl.acm.org/citation.cfm?id=2616497
https://dl.acm.org/citation.cfm?id=2616497
http://dx.doi.org/10.1145/2940147.2940156
http://dx.doi.org/10.1145/2940147.2940156
http://dx.doi.org/10.1145/2940147.2940156
http://dx.doi.org/10.1145/2940147.2940156
http://dx.doi.org/10.1145/2940147.2940156
http://dx.doi.org/10.1145/1402946.1402966
http://dx.doi.org/10.1145/1402946.1402966
http://dx.doi.org/10.1145/1402946.1402966
http://dx.doi.org/10.1145/633030.633033
http://dx.doi.org/10.1145/633030.633033
http://dx.doi.org/10.1145/633030.633033
http://dx.doi.org/10.1145/633030.633033
http://dx.doi.org/10.1145/633030.633033
http://dx.doi.org/10.1145/964725.633033
http://dx.doi.org/10.1145/964725.633033
http://dx.doi.org/10.1145/964725.633033
http://dx.doi.org/10.1109/tnet.2004.826279
http://dx.doi.org/10.1109/tnet.2004.826279
http://dx.doi.org/10.1109/tnet.2004.826279
http://dx.doi.org/10.1145/1016707.1016713
http://dx.doi.org/10.1145/1016707.1016713
http://dx.doi.org/10.1145/1016707.1016713
http://dx.doi.org/10.1145/1016707.1016713
https://dl.acm.org/citation.cfm?id=1251269
https://dl.acm.org/citation.cfm?id=1251269
https://dl.acm.org/citation.cfm?id=1251269
https://dl.acm.org/citation.cfm?id=1251269
https://dl.acm.org/citation.cfm?id=1251269
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2491185.2491203
http://dx.doi.org/10.1145/2534169.2486022
http://dx.doi.org/10.1145/2534169.2486022
http://dx.doi.org/10.1145/2534169.2486022
http://dx.doi.org/10.1145/2534169.2486022
http://dx.doi.org/10.1109/mnet.2015.7113222
http://dx.doi.org/10.1109/mnet.2015.7113222
http://dx.doi.org/10.1109/mnet.2015.7113222
http://dx.doi.org/10.1109/mnet.2015.7113225
http://dx.doi.org/10.1109/mnet.2015.7113225
http://dx.doi.org/10.1109/mnet.2015.7113225
http://dx.doi.org/10.1109/mnet.2015.7113225
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tnet.2011.2159308
http://dx.doi.org/10.1109/tnet.2011.2159308
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1109/inm.2015.7140281
http://dx.doi.org/10.1109/inm.2015.7140281
http://dx.doi.org/10.1109/inm.2015.7140281
http://dx.doi.org/10.1109/inm.2015.7140281
http://dx.doi.org/10.1109/inm.2015.7140281
http://dx.doi.org/10.1109/infocom.2015.7218511
http://dx.doi.org/10.1109/infocom.2015.7218511
http://dx.doi.org/10.1109/infocom.2015.7218511
http://dx.doi.org/10.1109/infocom.2015.7218511
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2627585.2627592
http://dx.doi.org/10.1145/2940147.2940148
http://dx.doi.org/10.1145/2940147.2940148
http://dx.doi.org/10.1145/2940147.2940148
http://dx.doi.org/10.1145/2940147.2940148
http://dx.doi.org/10.1145/2940147.2940148
http://dx.doi.org/10.1109/cnsm.2015.7367338
http://dx.doi.org/10.1109/cnsm.2015.7367338
http://dx.doi.org/10.1109/cnsm.2015.7367338
http://dx.doi.org/10.1109/cnsm.2015.7367338
http://dx.doi.org/10.1016/s0305-0548(97)00096-8
http://dx.doi.org/10.1016/s0305-0548(97)00096-8
http://dx.doi.org/10.1016/s0305-0548(97)00096-8
http://dx.doi.org/10.1016/s0305-0548(97)00096-8
http://dx.doi.org/10.1109/proc.1973.9030
http://dx.doi.org/10.1109/proc.1973.9030
http://dx.doi.org/10.1109/noms.2014.6838412
http://dx.doi.org/10.1109/noms.2014.6838412
http://dx.doi.org/10.1109/noms.2014.6838412
http://dx.doi.org/10.1109/noms.2014.6838412
http://dx.doi.org/10.1109/cnsm.2014.7014205
http://dx.doi.org/10.1109/cnsm.2014.7014205
http://dx.doi.org/10.1109/cnsm.2014.7014205
http://dx.doi.org/10.1109/cnsm.2014.7014205
http://dx.doi.org/10.1109/cloudnet.2014.6968961
http://dx.doi.org/10.1109/cloudnet.2014.6968961
http://dx.doi.org/10.1109/cloudnet.2014.6968961
http://dx.doi.org/10.1109/lanman.2015.7114738
http://dx.doi.org/10.1109/lanman.2015.7114738
http://dx.doi.org/10.1109/lanman.2015.7114738
http://dx.doi.org/10.1109/lanman.2015.7114738
http://dx.doi.org/10.1109/lanman.2015.7114738
http://dx.doi.org/10.1109/netsoft.2015.7116126
http://dx.doi.org/10.1109/netsoft.2015.7116126
http://dx.doi.org/10.1109/netsoft.2015.7116126
http://dx.doi.org/10.1109/netsoft.2015.7116126
http://dx.doi.org/10.1109/cloudnet.2015.7335318
http://dx.doi.org/10.1109/cloudnet.2015.7335318
http://dx.doi.org/10.1109/cloudnet.2015.7335318
http://dx.doi.org/10.1109/cloudnet.2015.7335318
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/noms.2016.7503003
http://dx.doi.org/10.1109/netsoft.2016.7502431
http://dx.doi.org/10.1109/netsoft.2016.7502431
http://dx.doi.org/10.1109/netsoft.2016.7502431
http://dx.doi.org/10.1109/netsoft.2016.7502431
http://dx.doi.org/10.1109/inm.2015.7140349
http://dx.doi.org/10.1109/inm.2015.7140349
http://dx.doi.org/10.1109/inm.2015.7140349
http://dx.doi.org/10.1109/inm.2015.7140349
http://dx.doi.org/10.1109/netsoft.2016.7502423
http://dx.doi.org/10.1109/netsoft.2016.7502423
http://dx.doi.org/10.1109/netsoft.2016.7502423
http://dx.doi.org/10.1109/netsoft.2016.7502423
http://dx.doi.org/10.1109/infcomw.2016.7562212
http://dx.doi.org/10.1109/infcomw.2016.7562212
http://dx.doi.org/10.1109/infcomw.2016.7562212


122
IEICE TRANS. COMMUN., VOL.E101–B, NO.1 JANUARY 2018

Kohei Shiomoto is a Professor of TokyoCity
University, Tokyo Japan. His current interest re-
search areas include software-defined network-
ing, network function virtualization, machine-
learning, and network management. From 1989
to 2017, in NTT Laboratories, he was en-
gaged in research and development of high-speed
networks including ATM networks, IP/MPLS
networks, GMPLS networks, network virtual-
ization, traffic management, network analytics.
From 1996 to 1997 he was engaged in research

in high-speed networking as a visiting scholar at Washington University
in St. Louis, MO, USA. He received his B.E., M.E., and Ph.D. degrees in
information and computer sciences from Osaka University, Osaka in 1987
1989, and 1998. He is a Fellow of IEICE, a Senior Member of IEEE, and a
member of ACM.


