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Oscillation Model for Describing Network Dynamics Caused by

Asymmetric Node Interaction

Masaki AIDA®, Chisa TAKANO'™, Members, and Masayuki MURATA 79, Fellow

SUMMARY  This paper proposes an oscillation model for analyzing the
dynamics of activity propagation across social media networks. In order to
analyze such dynamics, we generally need to model asymmetric interac-
tions between nodes. In matrix-based network models, asymmetric inter-
action is frequently modeled by a directed graph expressed as an asym-
metric matrix. Unfortunately, the dynamics of an asymmetric matrix-based
model is difficult to analyze. This paper, first of all, discusses a symmetric
matrix-based model that can describe some types of link asymmetry, and
then proposes an oscillation model on networks. Next, the proposed oscil-
lation model is generalized to arbitrary link asymmetry. We describe the
outlines of four important research topics derived from the proposed oscil-
lation model. First, we show that the oscillation energy of each node gives
a generalized notion of node centrality. Second, we introduce a frame-
work that uses resonance to estimate the natural frequency of networks.
Natural frequency is important information for recognizing network struc-
ture. Third, by generalizing the oscillation model on directed networks,
we create a dynamical model that can describe flaming on social media
networks. Finally, we show the fundamental equation of oscillation on
networks, which provides an important breakthrough for generalizing the
spectral graph theory applicable to directed graphs.

key words: spectral graph theory, coupled oscillators, node centrality,
resonance, flaming, quantum theory

1. Introduction

Since the recent development and dissemination of infor-
mation network technologies have activated information ex-
change on social networks, complex dynamics for describ-
ing propagation of activities on social media networks has
become a rich source of research topics. In complex net-
work analysis, there are many indices that can be used to
describe the characteristics of networks, including degree
distribution, clustering coeflicient, and many kinds of node
centralities [1]-[3]. Spectral graph theory is one of the
key approaches for investigating the structure of networks
and/or dynamics on networks, and the eigenvalues and the
eigenvectors of the Laplacian matrix play important roles
in investigating network structure and/or dynamics. Spec-
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tral graph theory is applicable to many problems including
clustering of networks, graph drawing, graph cut, node col-
oring, and image segmentation [4]-[6]. The Laplacian ma-
trix is also important for describing the diffusion process on
networks and the Markov process; the spectral graph the-
ory has been applied to the consensus problem [7], [8]. One
of the most significant properties of spectral graph theory
is the fact that we can introduce graph Fourier transforma-
tion [9], [10], which is the diagonalization of the Laplacian
matrix. The advantage of graph Fourier transformation can
be found in its ability to decompose network dynamics into
scales appropriate for the network’s structure. As a result,
complex network dynamics can be understood as the super-
position of simple dynamics for each Fourier mode, and net-
work dynamics can be completely understood algebraically.

However, the decomposition of dynamics into Fourier
modes is effective only if the Laplacian matrix is symmet-
ric. Moreover, almost all results of the spectral graph theory
are effective only for symmetric Laplacian matrices. User
dynamics on social or information networks is generated by
the interaction between nodes on the networks. This inter-
action is generally asymmetric, that is, the strength of ac-
tions between nodes depends on link direction. To represent
asymmetric actions on links, directed graphs are frequently
used. Since the structure of a directed graph is normally
expressed by an asymmetric matrix, graph Fourier transfor-
mation cannot be applied.

One proposal that uses spectral graph theory for di-
rected graphs transforms asymmetric Laplacian matrixes in
Jordan canonical form via elementary transformation [11],
[12]. However, since asymmetric Laplacian matrices do
not have the same convenient properties that the symmet-
ric Laplacian matrices have, decomposition of the dynamics
into simple Fourier modes remains unavailable.

This position paper proposes and introduces an oscil-
lation model on networks in order to describe the dynamics
of activity propagation on social media networks. In addi-
tion, we outline the following research topics derived from
the proposed oscillation model.

First of all, we classify link asymmetry of networks
into two types depending on whether it can be represented
using node characteristics or not. For the first type, we show
that the structure of a directed graph can be represented by a
symmetric scaled Laplacian matrix. In addition, we analyze
oscillation dynamics on networks to describe the propaga-
tion of activities on directed networks by using symmetric
scaled Laplacian matrices. Next, we show the importance
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of the proposed oscillation model by explaining its relation
to node centrality. The oscillation model described by the
symmetric scaled Laplacian matrix can derive the general-
ized notion of node centrality, and it reduces to well-known
indices of node centrality in simple cases. This makes it pos-
sible to associate the proposed oscillation model to actual
dynamics on real networks. After that, as an application
of oscillation model, we propose a framework to estimate
eigenvalues of the scaled Laplacian matrix by observing the
resonance of oscillation of the networks. This makes it pos-
sible to connect the theoretical link weight that describes the
strength of interaction between nodes to observations of the
dynamics demonstrated by real networks.

Second, we generalize the oscillation model to cover
general link asymmetry. In the generalized oscillation
model, the strength of node centrality derived from the os-
cillation model diverges under certain conditions. This phe-
nomenon is generated from the network system itself and we
propose that the phenomenon corresponds to the ‘flaming’
common in social media networks. We also introduce the
direction of technology that may prevent or suppress flam-
ing.

Finally, to describe the effect from asymmetric link
causally, we propose the fundamental equation of network
oscillation. The proposed equation has essentially the same
form as the wave equation in relativistic quantum mechan-
ics. This approach provides a significant breakthrough in
generalizing the conventional spectral graph theory to gen-
eral directed networks.

This paper is organized as follows. In Sect.2, after
defining the Laplacian matrix for directed networks, we
classify the link asymmetry and introduce the scaled Lapla-
cian matrix. In Sect.3, we analyze oscillation models to
describe the propagation of node activity on networks by
using the symmetric scaled Laplacian matrix. In Sect.4,
we propose the oscillation energy of each node as an ex-
tended metric of node centrality and discuss the relationship
to conventional node centralities. In Sect. 5, we propose the
network resonance method to estimate eigenvalues of the
scaled Laplacian matrix. In Sect. 6, we generalize the os-
cillation model to general asymmetric networks, and show
a dynamical model for the flaming common in social media
networks. In Sect. 7, we propose the fundamental equation
of oscillation on general asymmetric networks In Sect. 8,
we show comprehensive discussion to compare our research
with related work. Finally, we conclude this paper in Sect. 9.

2. Scaled Laplacian Matrix for Describing Asymmetric
Link Direction

2.1 Definition of the Laplacian Matrix

Network structure is frequently expressed as a matrix. Let
us consider loop-free directed graph G(V, E) with n nodes,
where V = {1, 2, ..., n} is the set of nodes and E is the
set of directed links. In addition, let the link weight for link
(i — j) € Ebew;; > 0. We define the following n X n square
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This matrix represents link presence and weights, and is
called the (weighted) adjacency matrix.

Next, we define the weighted out-degree, d;, of node i
(i=1,2,...,n)as

di = Zw,-j, (2)

jeoi

where 0i denotes the set of nodes adjacent from node i.
Also, weighted out-degree matrix P is defined as

P :=diagd,, ..., d,).

If all link weights are w;; = 1 for Y(i — j) € E, d; is reduced

to out-degree, i.e. the number of outgoing links from node i.
Based on the above preparation, we define the Lapla-

cian matrix £ of directed graph G(V, E) as follows [4], [5]

(Fig. 1).
L=D-A. 3)

The Laplacian matrix is also called the graph Laplacian.
Note that since the row sum of the Laplacian matrix L is
0, £ has 0 as an eigenvalue. In addition, it is known that
the multiplicity of the eigenvalue O is equal to the number
of connected components of the corresponding graph. So,
for a connected graph, the multiplicity is 1. Hereafter, we
consider a connected graph without loss of generality.

2.2 Symmetrization of Laplacian Matrix and the Scaled
Laplacian Matrix

Although the Laplacian matrix £ for a directed graph is gen-
erally an asymmetric matrix, we can classify the link asym-
metry into two types: symmetrizable and unsymmetrizable.
Figure 2 shows typical examples of link asymmetry. Fig-
ure 2(a) shows a hub type relation typical of the relation of a
major blogger and the followers, and (b) shows a cyclic rela-
tion like rock-paper-scissors. Note that the link asymmetry
in (a) can be expressed by node characteristic, while that
in (b) is a pure link characteristic. That is, the hub node is
strong and the other nodes are weak, in (a). This means that
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weak link

strong link

(a) hub type relation

(b) cyclic relation

Fig.2  Typical example of link asymmetry.

the link asymmetry in directed network like (a) can be ex-
pressed by using node characteristics in an undirected graph
(i.e. symmetrizable). Let us consider the conditions yielding
the asymmetric relation classified as this type.

The asymmetric Laplacian matrix £ has the left eigen-
vector ‘m associated with the eigenvalue 0, that is,

‘mL="0, “4)

where ‘0 := (0, ..., 0). Note that the multiplicity of the
eigenvalue O is 1 for a connected graph. For each component
m; > 0 of the left eigenvector 'm = (my, ..., m,), we assume
the following condition:

mwi; = mjwj; (= kij). (5)
The physical meaning of this condition will be discussed in
Sect.3.1. The oscillation model described in the next sec-
tion satisfies this condition. Incidentally, the condition (5)
is known as the detailed balance condition in the theory of
Markov chains (see Sect. 8).

Hereafter, we call the Laplacian matrix that satisfies (5)
symmetrizable and denote it by L. The procedure used to
represent Ly by a symmetric matrix is shown as follows.
First, we consider an undirected graph and introduce its
Laplacian matrix L as L := D — A, where A = [A;;] is
defined as

k,“ i,j) € E),

AW:{d (i, ) € E)

(. }) ¢ E). ©

and

D:diag[zn:AU,Zn:AZ,,...,Zn:Anj : )
=1 =1 =1

Since k;; = kj; from (5), L is a symmetric Laplacian matrix
for a certain undirected graph. By using L, the asymmetric
(but symmetrizable) Laplacian matrix £ is expressed as

Lo=M"L, (8)

where M := diag(m,, ..., m,) means the scaling factors of
nodes. That is, we define a directed graph as symmetrizable
iff all its links satisfy (5). Figure 3 shows a simple example
of the procedure that leads to (8).

Here, we introduce the scaled Laplacian matrix that is
defined as

So:=M'"PLM = M2 LoM, ©)
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~ symmetrization
4 -3 -1 0
-2 4 -1 -1
-2 -3 6 -1
|0 -3 -1 4

Lo=

asymmetrization
[ 4 —-6/2-2/2 0 1/2 0 0 0 8 —6 -2 0
_|-6/3 4 =3/3-3/3] _ |0 1/30 0| -6 12 -3 -3
-2/1-3/1 6 -1/1 0 0 1 0]|-2-3 6 -1
L 0 =3/1-1/1 4 0 0 0 1 0 -3 -1 4

Fig.3  An example of symmetrization of the Laplacian matrix for a di-
rected graph.

Note that Sy is a symmetric matrix. Let x = "(xq, ..., x,) be
a (right) eigenvector associated with an eigenvalue A of L,
that is,

Lox =Ax. (10)

By multiplying M*'/? to this equation from the left, we ob-
tain

M2 Lox =So (M2 x) =AM x). (11)

This means the scaled Laplacian matrix Sy has the same
eigenvalues as Lo, and its eigenvector is y = M*'/?x.
Since the quadratic form of S is

2

¢ Yi Yj

ySw= Y ke ] 20
@pee AN N

the eigenvalues of S (also L) are nonnegative. Let us con-

sider sorting the eigenvalues in ascending order,

O=A << <Ay (12)

We can choose eigenvector v, (u = 0, 1, ..., n — 1) as the
orthonormal eigenvector associated with A,,. That is,

Sov, = A0y, U, 0, =6y, (13)

where 6, denotes the Kronecker delta.
3. Oscillation Models on Networks

3.1 Oscillation Model on Symmetrizable Directed Net-
works

To describe the propagation of the activity of a node across
anetwork, let us consider oscillation dynamics on networks.
The reason why we consider oscillation dynamics lies in
the relationship between the oscillating phenomena and the
well-known indices of node centrality. Details of the rela-
tionship are discussed in Sect. 4.

Let variable x; of node i be displacement from equilib-
rium, and let its restoring force be proportional to the differ-
ence in the displacements of adjacent nodes. Figure 4 is a
representative image of our oscillation model. Although the
figure shows a 1-dimensional network, it is easily extended
to general networks. To represent diverse oscillating behav-
ior, we allow the spring constant of each link to be different
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equilibrium

i J

Fig.4  Oscillation model on networks.

weak in/teraction

Fig.5 Kuramoto model.

and the mass of each node to also be different.

Here, it is worthwhile discussing the validity of the
oscillation model whose restoring force is proportional to
the difference of displacements. Let the restoring force of
node i from node j be a function f(Ax) of the difference
Ax := x; — x; of the displacements of adjacent nodes i and j.
It is natural to assume f(Ax) = 0 if Ax = 0. For small Ax,
we can expand f(Ax) as

f(Ax) = —kij Ax + O(AX?), (14)

where k;; is a positive constant corresponding to the spring
constant. So, our oscillation model can be considered as
the basic and universal model if nonlinear effects in O(Ax?)
are relatively small. A typical example that satisfies (14)
is interaction between users on social media networks. Al-
gorithmic trading in finance is likely to be an example of
interaction between non-human objects. In future, an intel-
ligent non-human node supported by artificial intelligence
might participate as an interacting object.

Incidentally, the Kuramoto model is a well-known os-
cillation model on networks, see Fig.5 [13]. Since this
model consists of the same (or similar) oscillators coupled
by weak interaction, and mainly describes the synchroniza-
tion of these oscillators, it differs from our oscillation model.

We assign a spring constant to each link and express
it as link weight k;; > 0. In addition, we assign mass
m; > 0 to each node i. The equation of motion of the node
displacement vector x(z) := ‘(x1(¢), ..., x,(¢)) for the non-
damped oscillation on networks is obtained as follows (see
Appendix):

d*x(t)

M —5= = ~Lx(0).

or, by multiplying M~! from the left,

d2x(f)
7 = —Lox(), (15)
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where M is the mass matrix M := diag(my, ..., m,). Note
that the equation of motion (15) reflects the asymmetric
characteristics of links described by the asymmetric Lapla-
cian matrix (8). Note that L is, in this case, a Laplacian
matrix for the symmetrizable directed graph. The node char-
acteristic m; in (5) corresponds to the mass of node 7 in the
oscillation model. In addition the condition (5) represents
Newton’s third law (the law of action and reaction). To sym-
metrize the equation of motion, we introduce vector y which
is defined by

y(1) = M2 x(),
where the equation of motion is written as

d2
20— S0y, (16)

It follows that the equation of motion will yield the eigen-
value problem of the symmetric scaled Laplacian matrix.
Let y(7) be expanded by the eigenbasis v, of Sy as

n—1

Yy = Y aunu,

u=0
and solve the equation of motion for the Fourier mode a,(¢)
w=0,1,...,n-1),
dzaﬂ(t)
dr?

= A, a,(0). (17)

The procedure of expansion by eigenbasis is known as graph
Fourier transformation [9], [10]. The solution is given by

a,(t) = a,(0) e, (18)

where w, = f4,, 1 = V=1. The initial condition a,(0) =
a,(0)] e (- < 6, < ) gives the amplitude |a,(0)| and
phase 6, of the corresponding Fourier mode, p.

The solution (18) means that the oscillation dynamics
on symmetrizable directed networks can be expressed by us-
ing decomposition into the equation of motion of the har-
monic oscillator (17) for each Fourier mode. The solution
of oscillation on networks (the solution of (15)) is expressed
as

n—1
x(t) = M~'? [Z a,(0) e+i“""vﬂ]. (19)

u=0

Note that the appearance of oscillation behavior (19) varies
widely with phase 6, even if amplitude |a,(0)| is fixed. Con-
sequently, to understand the universal aspect of oscillation
dynamics, a kind of phase-free index is required. This issue
is discussed in Sect. 4.

3.2 Damped Oscillation Model

In actual situations, any oscillation is damped with time.
This subsection introduces a model for damped oscillation
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on networks.

Let us consider the equation of motion for damped os-
cillation
d2x(r) dx(@)
+yM = —-Lx(1), 20
o tYM = o 20)
where 7y is a constant. Here yM means the viscous damp-
ing coeflicient, where it is important to note that the viscous
damping coefficient is assumed to be proportional to node
mass. By using vector y(f) = M*'/? x(1), we can symmetrize
the equation of motion as

ey | dy®
a2 TV ar

The equation of motion for Fourier mode a,(#) is expressed
as

M

==Soy®.

d2a,(t) da,(n)
Ty
dr? dr
To analyze the solution of this equation, we assume the so-

lution takes the form of a,(f) oc ¢, By substituting this into
the equation of motion, we obtain the characteristic equation

+ A, a,(t) = 0. 1)

@ +vya+ A, =0. (22)

There are three different solutions to the equation of
motion according to the solution of the characteristic equa-

tion, @ = —(y/2) £ /(y/2)? — A,,. In the case of (y/2)* < 4,

the solution describes damped oscillations,

(1) = 4,(0) exp [—% txind, - (/27 t] . @)

In the case of (y/2)* = Ay, the solution describes critical
damping,

a,(t) = (a,(0) + ¢, 1) e 21, (24)

where ¢, is a constant. Finally, in the case of (y/ 2)? > Ays
the solution describes overdamping. Let a; and a_ (both
values are negative) denote the solutions of the characteristic
equation, the solution of the equation of motion is

o+ aat - a_t
a,(t) = c, € et (25)
where c;; and ¢, are constants.

3.3 Forced Oscillation Model

This subsection introduces a forced oscillation model on
networks. Let us consider the situation that we impose
forced oscillation with angular frequency w on a certain
node, j, as an external force. The equation of motion of
the forced oscillation is

d2x(f) dx(p)
t

M
dr?

yM + Lx(t) = (F coswt) 13, (26)

where F is a constant and 1, is only the j-th component
that is 1, all other components are 0, that is,
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Y
1, ="0,...,0,1,0,...,0).

By using vector y = M*!/? x, the equation of motion can be
symmetrized as

d*y () dy(®) F cos wt
+y 2 L Soy(t) = ——— 1, 4. 27
2 Y a4 0y(®) N 27
Since y(¢) depends on w, we redefine y(w,r) := y(1).

By expanding y(w,?) and 1;; using the eigenbasis of the
scaled Laplacian matrix Sy, we introduce the Fourier modes
a,(w, ) and b, as

n—1 n—1
Yw,0) =Y aw v, 1= buv,. (28)
#=0 u=0

The equation of motion of Fourier mode a,(w, ?) is written
as

Hzaﬂ(w, 1) day,(w, )
> Y
or ot

F coswt

el

+ A ay(w, 1) = by,

(29)

The solution of the inhomogeneous equation (29) is
the sum of the solutions of the corresponding homogeneous
equation (21) and the particular solution of (29). Since the
solution of the homogeneous equation (21) is dampened
with time, only the oscillation of the particular solution of
(29) remains after some long time. Since the angular fre-
quency of the particular solution should be w, the particular
solution can be expressed as

a,(w, 1) = Ay(w) cos(wt + 6,)
= Ay(w)(cos wt cos B, — sinwt sinf,).  (30)
By substituting it into the equation of motion (29), the am-

plitude A, (w) and phase 6, of the particular solution are
given by

Fb, 1
Aw) = —2 : (31)
VI @} - 02 + (ywp
Y w
taIlGﬂ = —-Z;Z—:TZJE. (32)

4. Node Centrality and Oscillation Energy

As shown in Sect. 3.1, the equation of motion (the wave
equation) (15) cannot describe the phase of oscillations.
Since the appearance of the behavior of the oscillating phe-
nomenon strongly depends on the phase, it is hard to extract
useful information from direct observation of oscillating as-
pects. Of course, since a, () of (18) is a complex-valued
function, the value of a,(¢) cannot be observed in actual net-
works. This section introduces the oscillation energy of each
node as a non-negative-valued phase-free index, and shows
that it can reproduce the well-known indices of node cen-
trality. This means that our oscillation model can give a
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Fig.6  Network model.
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node ID

(a) oscillation energy
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2 4 6 81012141618
node ID

(b) degree centrality

Fig.7 Comparison between oscillation energy of each node and degree
centrality.

generalization of node centrality.

For the oscillation model described in Sect. 3.1, we de-
fine node activity as the oscillation energy of the node. From
(18), oscillation behavior is decomposed into n independent
harmonic oscillators. Since the oscillation energy of a har-
monic oscillator with mass m, natural frequency w, and am-
plitude A is given by 1 mw?A?, the oscillation energy E;
of node i is obtained by summing the oscillation energy for
each Fourier mode, as

Ei=3 i (o 22 2
i=zm; wy ay(t) —
2 s T \/ﬁl
1 n—1 )
= Z |wp a0 v, (33)
u=0

where v,(i) denotes the i-th component of the eigenbasis v,
associated with the eigenvalue A, of the scaled Laplacian
matrix So, that is,

v, = (v, (1), ..., v,(n)).

The oscillation energy of each node gives a generaliza-
tion of node centrality [16], [17]. To demonstrate the rela-
tionship, we use the network model shown in Fig. 6, where
all link weights and node masses are set at 1. As the initial
condition of the wave equation (15), we set the displacement
of only one node. We call this node the source node of ac-
tivity. Let us consider the situation that the source node of
activity is chosen at random. In this case, all Fourier modes
contribute at the same strength, so we set |a,(0)] = 1 for
all u. Figure 7(a) shows the oscillation energy of each node
and (b) shows the degree centrality (the number of links for
each node). This comparison shows the oscillation energy
of each node is proportional to degree centrality.

Next, let us consider the betweenness centrality, which
is another well-known index of node centrality. Let the num-
ber of shortest paths between node j and node k be o j,
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-
_—
normalized betweenness centrality

Fig.8 Comparison between the difference in oscillation energy and the
betweenness centrality.

and the number of those paths passing through the node i
be o j(i). The betweenness centrality g(i) for node i is de-
fined as

g(i) = Z O—L(l)

jkewiy
The normalized betweenness centrality g(7) is defined as

29(i)

90 = D=2

The physical meaning of g(i) is the ratio of the number of
shortest paths associated with node i to the number of com-
bination of node pairs in V\{i}, thatis (n — 1) (n — 2)/2.

Let the link weight w;; (= wj;) of the network model
shown in Fig. 6 be set as the number of the shortest paths
passing through link (i, j). Figure 8(a) shows the difference
between the oscillation energy for each node, E;, and the
minimum energy Ey;, defined as

Ein := min E;.
i€V

Figure 8(b) shows the normalized betweenness centrality
g(i) for each node. We can recognize that the difference
of the oscillation energ E; — Ep, is proportional to the be-
tweenness centrality.

The relationships between the oscillation energy of
each node and these node centralities can be proved math-
ematically [16], [17]. Assigning link weights and node
masses flexibly yields a generalized node centrality. The os-
cillation energy can be defined even for damped oscillation
on networks. Detailed discussion is presented in [16], [17].

5. Network Resonance Method for Investigating the
Eigenvalues of Network Dynamics

Since the actual structure of social networks is difficult to
know, it is almost impossible to measure components of the
scaled Laplacian matrix Sy, directly. For example, in so-
cial networks, the strength and/or significance of friendships
(links) between two users is, in general, not proportional to
the volume of traffic they exchange, and it is hard to observe.
Thus the eigenvalues of Sy, which is the key to describing
the oscillation dynamics on networks, cannot be calculated
from Sy. However, since the oscillation energy is related to
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o peak A(VE )

freqency of a peak

7 JwR =22 w,

observed amplitude A(w)

W |

angular frequency of the forced oscillation w

Fig.9  Concept of network resonance.

the node centrality that is the strength of activity of node on
networks, we expect that the observed node centrality can
give a clue of the underlying structure of oscillation dynam-
ics. The oscillation energy is related to the natural frequency
and the amplitude of the oscillation. In this section, by ap-
plying the forced oscillation on networks, we examine how
to estimate natural frequency (square root of eigenvalue) of
So from observations of the amplitude that is obtained from
observation of the oscillation energy.

As recognized from the discussion in Sect. 3.3, ampli-
tude A, (w) of (31) takes maximal value at

w= Jwi—y*/2.

This phenomenon is called resonance. When we observe the
oscillation of a node under forced oscillation, the mixture of
oscillation (30) for each y, that is, y(w, t) of the first equa-
tion of (28) is observed. We propose a method to estimate
eigenvalue A, (or w, = \//I_,J) and damping factor y from
observations of the amplitude

Alw) = y(w, 1|

of the response oscillation (Fig.9). In practice, amplitude
A(w) is indirectly obtained from observations of oscillation
energy.

The Q-factor represents the sharpness of amplitude
A, (w) with respect to w. On both sides of the peak of am-
plitude A,(w), we define frequencies w; and w,; that give

the amplitudes Aﬂ(w;) and Aﬂ(w;) that are 1/ V2 times the
peak value of A,(w) (w;j > w;). Since oscillation energy is
proportional to the square of the amplitude, w,, — w, means
the half width of energy. The Q-factor is defined as

NG

T -
Wy — Wy

Qu =

We assume y < w, and approximate A,(w) around
w = wy. By using w? — o} = 2w, (w — w,),

Fb, 1
Ap(w) = 2 2
Vi QR w, (0= w))? + (ywy)
Fb 1
= K . (34)
VI Wp A (w — w, )2 + 92
Therefore,
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Fig.10  Examples of network resonance: the amplitude of oscillation as
a response to input oscillation with w.

Fb, 1
Aﬂ(a)ﬂ) = TM, Ay(a),u + 7/2) = %A,u(a)y)’
JYH

and we have w;f = w, * y/2 (double-sign indicates corre-
spondence). Consequently, we have
Wy

Y

Oy = (35
These relations enable us to estimate natural frequency w,
(or the eigenvalue 4, = wﬁ) and damping factor y.

We use the network model shown in Fig. 6, i.e. all link
weights and node masses equal 1. Figures 10(a) and (b)
show examples of network resonance for external force in-
puts by node 1 and 12, respectively: the amplitude A(w) =
|y(w, )] is observed at node 1 (red line) and node 10 (blue
line) as the response of the external force with angular fre-
quency w. Amplitude A(w) exhibits a different aspect de-
pending on which pair of input and observed nodes are se-
lected. Therefore, we expect that eigenvalues of the scaled
Laplacian matrix can be estimated from appropriate pairs of
input and observed nodes.

Figure 11 compares the actual values of natural fre-
quencies wj, wy, ..., We and their estimated values obtained
from Fig. 10(a) and (b). For example, “Estimation 01-10” in
Fig. 11 means the input node is 1 and the observed node is
10. The estimated natural frequencies are close to the actual
values. Depending on the positions of both the input node
of forced oscillation and the observed node, there are nat-
ural frequencies that cannot be observed. For example, the
values of w,, w3, ws and w5 cannot be estimated from the
node pair of input node 1 and observed node 1. Selecting
the appropriate pair of input and observed nodes avoids this
problem.

The above estimation method is called the network res-
onance method. The network resonance method can esti-
mate all the eigenvalues of the scaled Laplacian matrix So
with high accuracy [18]. In addition, by analyzing peak
height at resonance, it is expected that the absolute value
of a component of eigenvector can be estimated by the net-
work resonance method [19]. If we have all the eigenvalues
and eigenvectors of Sy, we can reproduce Sy algebraically.
Therefore, the network resonance method can associate the
Laplacian matrix that describes interaction between nodes
and the observation of actual network dynamics, and pro-
vide viable explanations of the abstract interaction between
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nodes. Thus, the network resonance method suggests a way
of estimating the significance of friendship.

6. Dynamical Model of Flaming on Social Media Net-
works

In Sect. 3—Sect. 5, we focused on just symmetrizable graphs.
Hereafter, we consider unsymmetrizable graphs (general di-
rected graphs) and generalize the oscillation model to un-
symmetrizable graphs. In addition, we discuss a dynamical
model of flaming on social media networks, where we de-
fine that the flaming is the phenomenon that the node activ-
ity (oscillation energy) diverges with time.

Although Laplacian matrix £ of a general directed
graph G(V, E) is unsymmetrizable in general and (5) is not
always satisfied, £ can be decomposed into two parts as

L=Ly+ 1L, (36)

where L is the Laplacian matrix for a symmetrizable net-
work, and £ is a Laplacian matrix for the network having at
most only one-way directed link between nodes. Note that
the decomposition (36) is not unique, but we can choose ap-
propriate decomposition for easy to analyze. The flexibility
of this decomposition is advantageous for controlling and
modeling network dynamics. Details are discussed at the
end of this section, and Sects. 7-8.

Next, similar to the discussion in Sect. 2.2, we define
the scaled Laplacian matrix S for general directed graphs
as follows. Same as Sect. 2.2, let us consider the mass ma-
trix My := diag(mi,..., m,), which is a diagonal matrix
and whose diagonal components are components of the left
eigenvector m := ‘(my,..., m,) associated with the eigen-
value O of the symmetrizable Laplacian matrix Ly,

‘mLy="0. 37
Then the scaled Laplacian matrix S is defined as
S =M\ LM (38)

By defining the scaled Laplacian matrix for symmetriz-
able portion L of the Laplacian matrix L as Sy :=
Mg 12 Ly M, 1/ 2, we have a decomposition of the scaled
Laplacian matrix S as
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S =580+S1, (39)

where Sy is a symmetric matrix. The decomposition (39)
depends on the decomposition (36).

Next, we extend the oscillation model described in
Sect. 3.1 to a general directed graph. Let x;(¢) be the dis-
placement of node i at time ¢ on a directed graph G(V, E),
and the restoring force that the node i receives from the ad-
jacent node j be —wj; (x;(t) — x;()) [20]. Note that since
w;; # wj;, the strength of restoring forces between nodes i—j
are asymmetric, in general.

Then, the equation of motion of the displacement vec-

tor x(7) = "(x1(1), ..., x,(¢)) can be written as
2
ddty) =-Lx(t) = —(Lo+ L) x(0), (40)

and the equation of motion of the vector y(¢) = M(J; 12 x(1)
is obtained as

d2
dytﬁt) = ~Sy(t) = ~(So + SD Y. (41)

Here, it is worthwhile to note that if the oscillation occurs
on an unsymmetrizable graph i.e. £; # O (O is the null ma-
trix), Newton’s third law does not hold. This means that the
generalized oscillation model cannot be depicted by a dy-
namical model like Fig.4. In other words, the generalized
oscillation model does not corresponds to dynamical phe-
nomena in the real world, but to a kind of virtual phenomena
in cyber space.

Following the discussion in Sect. 3.2, the equation of
motion of damped oscillation can be written as

Py __dy®
—y——==Sy) = —(So + Sy, 42
2 Y a4 y(@) = =(So + S y() (42)
where y > 0 (it includes (41) for y = 0).
Since S is no longer a real symmetric matrix, we should
consider the following situations when solving the equation
of motion (42):

e S is not always diagonalizable.
o Eigenvectors of S cannot always be orthogonalized.
o Eigenvalues of S are, in general, complex numbers.

Let us consider the impact of these situations on the solution
of equation of motion (42) and the oscillation energy.

Let the eigenvalues of S be /_l,, (u=0,...,n—1)andthe
eigenvector associated with A, be ,. The necessary condi-
tion that S is not diagonalizable is that S has multiple eigen-
values. In other words, the characteristic equation

det(S— A1) =0, (43)

has repeated roots, where I is the unit matrix. In engi-
neering, the value of link weights of actual networks is de-
termined to the accuracy level of the significant digits ex-
pected. Therefore, the mathematical condition for repeated
roots of (43) is easily avoided by changing the link weights
only very slightly. This allows us to assume that S has n
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distinct eigenvalues.

The fact that the eigenvectors are not orthogonal means
that the total oscillation energy is not obtained as the simple
summation of oscillation energy of each oscillation mode,
and thus that different oscillation modes are coupled. The
coupling of different oscillation modes is discussed in the
next section. In this section, we consider the impact of the
fact that the eigenvalue is a complex number.

The eigenvectors associated with the different eigen-
values are generally not orthogonal, but it is guaranteed that
they are linearly independent. Therefore, by using the fol-
lowing n X n square matrices

A :=diag(dy, ..., A,_1), and P := (D, ..., D,_1),
S can be diagonalized as follows:
A=P'sSP, (44)

where the existence of P~ arises from the linear indepen-
dence of v,. Incidentally, the eigenvalues of Sy are non-
negative and all the components of the eigenvectors have
real values. However, the eigenvalues of S are generally
complex numbers, and the components of the eigenvectors
are also generally complex numbers.

Let us expand the solution y(¢) of (42) by the eigenvec-
tors of S, as

n—1

Y = Y @i,

u=0

By substituting this into the equation of motion (42), and
applying a similar procedure to that described in Sect. 3.2,
the characteristic function for Ansatz a,(r) o ¢ is obtained
as

a*+ya+2,=0.
Since 4, is a complex number, we define
ret =2, - (y/2° = ~@+v/2),

where r > 0 and -7 < 6 < mn. Then, the solution of the
characteristic function is obtained as

_ Y .. i6/2
a=—-=x1Vre’-.
2

This yields the oscillating solution of a, () as

a,(1) = a,(0) exp [—% r+i (x/7ei"/2) t] . (45)
Since
i0/2 AT (0
\re”? = +fr cos 3 +1 Vr sin 5) (46)
we have

a,(0) = a,(0) exp[— (% + \r sin(g)) t
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+iF cos(g) r]. 47)

From the structure of (47), we can recognize that a,(t) di-
verges exponentially if

ln(2)

This phenomena can be considered as the flaming prevalent
on social networks [20].

In order to prevent and/or suppress flaming, an effec-
tive control strategy is to make the networks symmetrizable.
This approach makes £L; = O based on the decomposition
(36). At this time, the diversity of the decomposition (36)
leads to control flexibility. More details are discussed in
Sect. 8. An actual solution has been investigated [21].

>7
2

7. Fundamental Equation of Oscillation on Networks

In this section, based on the decomposition (39), we con-
sider a theoretical framework that ties the existence of Sy to
the behavior of oscillation dynamics. That is, we consider a
model that describes how independent oscillation modes un-
der the condition S; = O change when S| # O, and clarifies
how different oscillation modes are coupled. This consider-
ation is a significant breakthrough in applying the spectral
graph theory to directed graphs.

In order to understand how S triggers coupling be-
tween different oscillation modes, systematically, we de-
scribe the effect of S1 on the oscillation dynamics based on
the eigenbasis of Sy. This is because the eigenbasis of Sy
describes independent oscillation modes under Sy = O.

Let the eigenvalues of Sobe 4, (u =0,1,...,n—-1)
as per (12), and eigenvector v, associated with 4, be chosen
as per (13). In addition, let the diagonalized matrix of Sy by
the orthogonal matrix P := (vg, vy, ..., U,—1) be

A() = tPS()P,

where Ay = diag(Ay, ..., A1)
By using ¢(¢) := 'Py and A; := 'P Sy P, the equation
of motion (41) can be rewritten as

d2
IO~ —(ho + Ay (48)

If S; = A; = O (i.e. symmetrizable graph), the solution
of (48) is obtained as

Y1) = exp (i Ay 1) Y(0). (49)

This means that the oscillation dynamics on networks can be
decomposed into n independent harmonic oscillators (eigen-
frequencies w, = \//l_#). Since the decomposition into inde-
pendent oscillation modes fails if A; # O, it is necessary to
evaluate the effect of Aj appropriately.

In order to evaluate the effect of A; causally, the solu-
tion ¥(¢) of the equation of motion (48) should be given by
a product-form solution of effects from Ay and Ay [22].
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As the first trial, let us consider a simple product-form
solution. Let us consider the following equations:

gy (0)
= Ad®, (50)
2

: :f;z(t) = —(Do(=1) A; Po(1)) Py (1), (51)

where ¢,(¢) and ¢;(¢) are the solutions of these equation,
respectively. In addition, we define diagonal matrix ®(7)
whose diagonal components are the components of the vec-
tor go(1), that is, for '$y(1) = (@o(L; 1), ... do(ns 1)),

do(liy O ... 0
oun=| O H@D
0 00 g

Then, we assume that the solution, ¥(?), is given in product-
form as

Y (1) = @o(1) ¢r(0). (52)
That is, for '¢;(¢) = (¢1(152), ..., 1(n; 1)),
do(1;1) 1(1; 1)
$0(2;1) $1(2; 1)
Y(t) = @o(1) §y(0) = : .
do(n; 1) gi(n; 1)

By substituting (52) into the equation of motion (48), we
have

& &
dfz(f) =~ (@) $1(2)
Ay A+ 2 4B 4O

dt dt
# —(Ao + AD Y(1).

This means the trial to make a product-form solution (52)
does not succeed.

The reason for this failure of the product-form solution
is the existence of the cross term in (53). Moreover, the
existence of the cross term is caused by the fact that (48)
is a second-order differential equation. So, to obtain a first-
order differential equation, we consider a linear operator H
that satisfies

I{2 =Ag+ AL (54)

By choosing H appropriately, we propose the fundamental
equation of oscillation dynamics on networks [22] as
dy(z
AU (55)
dt

Note that this equation is formally equivalent to the
Schrddinger equation (in a broad sense, see Sect. 8) in quan-
tum theory (physical constant 7 is ignored). Since the solu-
tion of (55) satisfies
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d? d
dll:z(t) = -iH # = ~HY() = ~(Ao + ADY(2),
(56)

the solution of (55) is the solution of the original equation
(48).

Next, we consider solution ¥(#) in product-form. By
using Hy := A(l)/ 2, the decomposition of H is given as

H=H,+H,. (57
We assume that solution ¥(¢) is given in product-form as

Y1) = Yo ¥y (1), (58)

where the functions appearing in (58) are given by the vec-
tors ¥ (¢) and y(7) that satisfy

d

i T o) = Ho (D), (59)
d

i& Y (1) = (Wo(=1) Hy Wo(1)) Yy (1) (60)

and the diagonal matrix ¥y(¢#) whose diagonal components
are the components of ¥ (f).

Substituting (58) into the fundamental equation (55)
yields

dy@ _.d
o g Yo®¥®)

= Ho ¥o() Yy (1) + Wo(1) (Wo(=1) Hy Wo () ¥1(1)
=(Ho+H)y(r) = HY(1).

i

This means that the trial, attempting to make a product-form
solution, (58) has succeeded.

The representations of (55) is called the Scrodinger pic-
ture, while that of (60) is called the interaction picture (or the
Dirac picture) (see Sect. 8).

Using (58)—(60), for the initial condition Wy(#y) = I at
t = 1y, the solution Wy (¢) is obtained from (59), as

Wo(r) = exp(—i Hy (t — 1))). (61)
So, the solution ¥(¢) of (55) is obtained as
Y1) = exp(=i Hy (t — 19)) Y1 (2). (62)

For analyzing this solution, we can apply the perturbation
theory developed and used in quantum theory, which sug-
gests that the effect of L] can be understood causally.

Although method of determining H from (54) is not
unique, there is a degree of freedom that permits the more
convenient choice to made. With regard to this issue, a sim-
ple method based on the algebraic structure of the special
unitary group SU(2) has been investigated [22].

8. Related Work

Almost all research on the dynamics on networks based on
the spectral graph theory focuses on the diffusion process,
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Markov chain, or random walk on networks. For example, if
kij of the symmetric Laplacian matrix L shown in Sect.2.2
is taken to be the diffusion coefficient of the link between
nodes i and j, the diffusion equation on networks can be
written as

dx(n
~— = ~Lx0. (63)

As another example, if w;; of the asymmetric Laplacian ma-
trix L is taken to be the transition rate from state i to state j,
the temporal evolution equation describing the correspond-
ing continuous-time Markov chain can be written as

dx()
dr

A comparison to the equation of motion for the oscillation
on networks (15) or (40), shows that (63) and (64) are the
first-order differential equations with respect to time, while
(15) and (40) are second-order equations.

The condition (5) means Newton’s third law in the os-
cillation model, but another interpretation is also possible.
This condition is known as the detailed balance condition or
the local balance equation, and this guarantees the existence
of the equilibrium solution of the corresponding Markov
chain. In addition, the Markov chain that satisfies the con-
dition (5) is called the reversible Markov chain.

Next, let us consider the discrete-time Markov chain.
The probability transition matrix = [p;;] is defined as

@ L. (64)

P=D"A

Here, p;; denotes the transition probability from state i
to state j in one unit of time, and the row sum of P is
Z'}:] pij = 1. Then, the relationship between two states at
discrete time #; and at #; is given as

X(tr1) = %(0) P.
Rewriting this using the Laplacian matrix yields

%(ti1) = %(1) = =%(0) (I = P) = =%(1) (D' L).
(65)

As in this example, in order to make the row sum of transi-
tion probability matrix equal 1 in the discrete-time Markov
chain, the Laplacian matrix is often normalized by using the
node degree, and

N =D LD™'?

is called the normalized Laplacian matrix.

Let us consider that we apply a scaling procedure sim-
ilar to that in Sect. 2.2 for the scaled Laplacian matrix to the
matrix (D' £) (asymmetric matrix, in general) of (65). If
m = (m, ..., my,)is the left eigenvector associated with the
eigenvalue 0, that is

m(D'L)="0,

the (normalized) the digraph Laplacian matrix (or called
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Diplacian [24]) I' is defined as
r.=M"?®O'LyM ">,

where M = diag(my, ..., m,). Similarly, for the Laplacian
matrix L of a directed graph, I is defined as

=M"LM'? (66)

where M = diag(my, ..., m,) and ‘m = (my, ..., m,) satis-
fies (4).

Here, we discuss the difference between the scaled
Laplacian matrix S in (38) and the Diplacian I" in (66). The
difference is in the scaling matrices M, and M. In the Dipla-
cian, m; of M satisfies (4). On the other hand, in the scaled
Laplacian matrix, m; of M is chosen by using (37), where
Ly is a symmetrizable Laplacian matrix included in £, and
S is defined using My as (38). Thus S and I" are, in gen-
eral, different, but § = I' when the Laplacian matrix L is
symmetrizable.

Note that the Diplacian is uniquely determined for a
given directed graph. The decomposition of the Diplacian is
discussed in [24] as,
_r+T r-T
T2 YT
If T is a symmetric matrix (directed graph is symmetriz-
able), the second term of the right hand side vanishes.
Therefore, the second term denotes a certain degree of
asymmetry. The decomposition (67) is also unique for a
given directed graph.

On the other hand, the scaled Laplacian matrix S de-
pends on the choice of the symmetrizable Laplacian matrix
Ly, that is, it depends on the decomposition (36). For exam-
ple, Fig. 12 shows three decompositions into a symmetriz-
able graph and a one-way link graph. Note that, for a sym-
metrizable graph, the products of link weights around each
closed loop are the same in both directions. The strength of
the degree of freedom of the decomposition lies in the flexi-
bility of choosing which link should be controlled to reduce
flaming. By controlling one-way links in any of possible
decomposition, we can make the directed graph symmetriz-
able. In addition, selecting an appropriate symmetrizable
graph means selecting an appropriate basis (the eigenbasis
of Sy) of an n-dimensional state space to more simply de-
scribe the dynamics on the directed graph.

To highlight this strength, let us compare the decom-
position with the Diplacian. The Diplacian for the directed
graph shown in Fig. 12 is uniquely obtained as

r

(67)

7
71
_\/; 5

Therefore, the anti-symmetric graph given by the decom-
position (67) includes all the links in the original directed
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symmetrizable graph

one-way link graph

Fig.12  Examples of decompositions of a directed graph into symmetriz-
able and one-way link graphs.

graph. This is too complicated to control corresponding
links.

Next, we discuss the relationship between our os-
cillation model and the quantum walk, in particular, the
continuous-time quantum walk (CTQW) [27]. First, we
briefly summarize some equations that appear in quantum
theory. To simplify the discussion, we adopt the natural unit
system, that is, the speed of light ¢ = 1 and the reduced
Planck constant 7z = 1.

The temporal evolution equation in quantum theory
consists of the state vector and the linear operator that acts
the state vector. Depending on whether the time dependency
lies in the state vector or the linear operator, there are typi-
cally two (precisely three as is discussed later) different rep-
resentations of the temporal evolution equation. The formu-
lation in which the state vector is time dependent is called
the Schrodinger picture, whereas that in which the linear
operator is time dependent is called the Heisenberg picture.
Here, we adopt the Schrédinger picture; its temporal evolu-
tion equation is

.0 -
IE w(x’ t) - Hl,b(x, t)’

where ¥(x, ) is a wave function that describes the system
state and H is a linear operator (called the Hamiltonian in
quantum theory) that generates temporal evolution. This
equation is called Schrodinger equation (in a broad sense).

In quantum theory, a different temporal evolution equa-
tion appears depending on whether special relativity is sat-
isfied or not. In non-relativistic quantum theory, the tempo-
ral evolution equation (wave equation) for a free particle of
mass m is written as

0 -1
i— (1) = — V2 y(x,0),
i WD) = = VR ulx )
and this is called the Schrédinger equation. On the other

hand, in relativistic quantum theory, the wave equation for a
free particle of mass m is written as

82 2 2
ﬁw(x’ t) = (V —-—m )w(xst),
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and this is called the Klein-Gordon equation [25]. In or-
der to derive a first-order differential equation with respect
to time from the Klein-Gordon equation, by choosing some
quantities for e, S that satisfy (=i - V +gm)* = =V? + m?,
we have

i% Yx,t)=(—ia-V+Bm)y(x,t).

This is the Dirac equation [25]. In particular, the Dirac equa-
tion for massless particle m = 0 is called the Weyl equation.

Since the Laplacian matrix gives the second order dif-
ference on the network, we can recognize that (40) and (48)
correspond to the Klein-Gordon equation for massless parti-
cles, and (55) corresponds to the Weyl equation (or the Dirac
equation for massless particle).

The representation of (55) corresponds to the
Scrodinger picture, while that of (60) corresponds to the in-
teraction picture (or the Dirac picture) of quantum theory.
The interaction picture is an intermediate picture between
the Schrodinger and Heisenberg pictures, that is, both the
state vector and linear operator have time dependency. In
addition, (60) is called the Tomonaga-Schwinger equation.
The temporal evolution equation (60) in the interaction pic-
ture is convenient for calculating perturbation that is a key
element of quantum field theory. Since the relativistic quan-
tum theory is closely related to the quantum field theory
[26], our oscillation model, described by (60), is expected
to introduce the quantum field theory to network analysis.

On the other hand, CTQW is a generalization of the
Markov chain by introducing an imaginary unit to (64), the
temporal evolution equation is given by

dx(®)
dr

This equation corresponds to the Schrodinger equation for
non-relativistic quantum theory.

It goes without saying that it differs in that the object
being considered by the oscillation model on networks and
the random walk on networks, but the key difference is in the
relation between the Hamiltonian and the Laplacian matrix.
In CTQW, the generator of temporal evolution (the Hamil-
tonian in quantum theory) directly corresponds to the Lapla-
cian matrix, whereas in our oscillation model, the square of
the Hamiltonian corresponds to the Laplacian matrix.

—-i%@) L.

9. Conclusions

This paper has proposed an oscillation model on networks
for analyzing that complex dynamics of activity on social
media networks, and shown the significance of and progress
in four research topics derived from the proposed oscillation
model.

First of all, we have categorized link asymmetries into
two types: symmetrizable and unsymmetrizable. For sym-
metrizable directed graphs, the oscillation dynamics can be
analyzed by using the symmetric scaled Laplacian matrix.
The significance of the oscillation model on symmetrizable
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directed graphs is the relationship between the oscillation
energy of each node and node centrality. The oscillation
energy gives a generalized notion of the conventional node
centrality (the degree and between centralities). Currently,
various generalizations of node centralities are under inves-
tigation [16], [17].

Conversely, as a method for determining the structure
of the Laplacian matrix from observations of generalized
node centrality, the network resonance method has been
proposed. This method enables us to estimate informa-
tion about eigenvalues and eigenvectors of the scaled Lapla-
cian matrix based on resonance. Currently, we aim to es-
tablish a technique to reproduce the Laplacian matrix of
social media networks by applying the network resonance
method [19], [28], if this is realized, the strength of the ef-
fective influence among users can be estimated.

Next, we have generalized the oscillation model for ap-
plication to general directed graphs including unsymmetriz-
able graphs. In this case, eigenvalues might become com-
plex numbers, and we have shown that the oscillation en-
ergy diverges in a certain condition. This model can be con-
sidered as a dynamical model of the flaming phenomenon
on social media networks. Currently, based on this model,
countermeasures to are being investigated [21].

Finally, we have proposed the fundamental equation of
oscillation dynamics on a general directed graphs. In or-
der to understand the behavior of unsymmetrizable graphs,
the solution of the oscillation should be given in product-
form that involves the effects of both the symmetrizable part
and the other parts of the graphs. As a result of postulating
the product-form solution, we derived a fundamental equa-
tion that mirrors a quantum theoretical equation. Therefore,
it can be recognized that quantization is more than a spe-
cialized procedure for describing the physical behavior of
electrons, photons, and other small particles, in that it can
be seen as a framework for understanding the causality of
oscillation dynamics.

On the other hand, there are two the essential differ-
ences between quantum theory and the proposed oscillation
model. The first is the degree of freedom. Although quan-
tum field theory has an infinite degree of freedom, the degree
of freedom of the oscillation model is n, that is the number
of nodes. The second is the characteristics of the linear oper-
ators. The linear operators corresponding to physical quan-
tity appearing in quantum theory are Hermitian, and always
have real-valued eigenvalues. This is a major premise used
in describing the physical world. On the other hand, for the
proposed oscillation model, S and H for a general directed
graph are not, in general, Hermitian. This causes the flaming
phenomenon which violates the energy conservation law.

The fundamental equation (55) or (60) provides a sig-
nificant breakthrough in establishing spectral graph theory
for directed graphs; this is our current research topic [22],
[23].
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Appendix: Canonical Equation of Motion Non-Damped

Oscillation Model on Networks

We use Hamilton’s canonical formalism to derive the equa-
tion of motion for the non-damped oscillation model shown
in Sect. 3.1.

Let the spring constant for the link between node i and
node j be the link weight k;; > 0. In addition, we assign
mass m; > 0 to each node i. Let x; = x;(¢) be the displace-
ment of node i and p; = p;(¢) be its conjugate momentum.
Then, Hamiltonian H of our coupled oscillator system is
expressed as

o () kij oo
H = ; Tt (i%;E 5 (a0 = %)

By following the canonical formalism, the canonical equa-
tions of motion are obtained as

dpi(t) OH
—_— = — L::x;:
i ; i X(0),
a)_oH _p,
dr - Bp, - m,"

and by eliminating p; from the equations of motion, we have
the following wave equation as the equation of motion:

Ex(0)

M 7 = —Lx(t),
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where x(¢) is the node displacement vector

x() :="(x1(), ..., xa(0)),

and M is the mass matrix M := diag(my, ..., my).
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