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Welch FFT Segment Size Selection Method for FFT Based Wide

Band Spectrum Measurement*

Hiroki IWATA ), Student Member, Kenta UMEBAYASHI™, Janne J. LEHTOMAKI'",

SUMMARY  We introduce a Welch FFT segment size selection method
for FFT-based wide band spectrum measurement in the context of smart
spectrum access (SSA), in which statistical spectrum usage information of
primary users (PUs), such as duty cycle (DC), will be exploited by sec-
ondary users (SUs). Energy detectors (EDs) based on Welch FFT can de-
tect the presence of PU signals in a broadband environment efficiently, and
DC can be estimated properly if a Welch FFT segment size is set suitably.
There is a trade-off between detection performance and frequency resolu-
tion in terms of the Welch FFT segment size. The optimum segment size
depends on signal-to-noise ratio (SNR) which makes practical and opti-
mum segment size setting difficult. For this issue, we previously proposed
a segment size selection method employing a relationship between noise
floor (NF) estimation output and the segment size without SNR informa-
tion. It can achieve accurate spectrum awareness at the expense of relatively
high computational complexity since it employs exhaustive search to select
a proper segment size. In this paper, we propose a segment size selection
method that offers reasonable spectrum awareness performance with low
computational complexity since limited search is used. Numerical evalu-
ations show that the proposed method can match the spectrum awareness
performance of the conventional method with 70% lower complexity or
less.

key words: cognitive radio, duty cycle, dynamic spectrum access, spectrum
measurement, Welch FFT

1. Introduction

To resolve the spectrum scarcity problem, dynamic spec-
trum access (DSA), where secondary user (SU), which has
lower priority to use the spectrum, can use the spectrum
when primary user (PU) does not use the spectrum, is a
promising approach [2]. In time domain DSA, spectrum
sensing is a well-investigated key technique to recognize
instantaneous state of the spectrum [3]. To realize DSA,
spectrum sensing is required to achieve high accuracy, low
latency and reasonably low cost, however it is difficult in
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practice to satisfy all the requirements.

Not only to resolve the issue of spectrum sensing
but also to provide other benefits to DSA, advanced DSA,
known as smart spectrum access (SSA), has been consid-
ered [4]-[6]. SSA is kind of DSA and SSA exploits useful
prior information, such as statistical information of spec-
trum utilization by PUs (DC: duty cycle), to achieve effi-
cient spectrum sharing smartly. It has been shown that using
DC can enhance spectrum sensing performance [7]-[9]. It
can also enhance spectrum management, channel selection,
MAC protocol for DSA [10]-[12]. However, there exists a
key issue that how we can obtain this information as accu-
rately and efficiently as possible in SSA [4], [5].

For this issue, two-layer architecture for SSA was pro-
posed, where the first layer corresponds to a DSA system
consisting of PUs and SUs, and the second layer is a spec-
trum awareness system (SAS) [4]-[6]. For PU, any specific
wireless system is not assumed, but general wireless system
is assumed. On the other hand, the SAS is dedicated for
spectrum measurements, estimation of statistical spectrum
usage information such as duty cycle (DC) over wide band
covering multiple various wireless systems, and provision of
statistical spectrum usage information obtained by the mea-
surements to SUs. Due to the two layers, DSA terminals no
longer suffer from the high implementation cost as statisti-
cal information is provided by the SAS. On the other hand,
two-layer SSA requires the other cost for implementations
of SAS and communication between the SAS and the DSA
system.

In this paper, we focus on SAS corresponding to sec-
ond layer in SSA, especially spectrum measurements and
estimation of statistical spectrum usage information. We fo-
cus on DC since it is useful statistical information. DC is
defined as a probability that the channel is occupied where
we regard the channel as one frequency bin in FFT [13]. DC
has a potential to enhance spectrum sensing and channel se-
lection in DSA [7], [10]. We assume that processes in the
DSA system corresponding to the first layer in SSA such as
spectrum sensing and spectrum sharing take the constraint
for PU protection such as miss detection rate into account.
However, we will investigate impact of errors of DC in spec-
trum sensing and spectrum sharing as our future work since
the protection of PU is very important for DSA.

The assumed SAS consists of three functional blocks
[5]. The first one is time-frequency domain conversion (such
as FFT: fast Fourier transform) to obtain power spectrum
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density (PSD) on a time-frequency grid. The second one is
spectrum usage detection, and the last one is estimation and
modeling of statistical spectrum usage".

Since general wireless system is assumed, we use en-
ergy detector (ED) [14] for the spectrum measurement.
Specifically, ED does not need any specific information
about observed signal, such as modulation scheme. Welch
FFT-based ED is an effective method for achieving proper
spectrum usage detection [15], [16]. Welch FFT consists of
three steps: segmentation of data sequence with a specific
segment size, calculation of multiple power spectra and av-
eraging of the power spectra. The segment size determines
how many segments the averaging is performed and more
averaging provides better usage detection performance but
poorer frequency resolution at the same time. Therefore,
proper segment size for Welch FFT is important as there is a
trade-off between the detection performance and frequency
resolution in terms of segment size. Accurate spectrum us-
age detection and high frequency resolution are required for
accurate DC estimation and accurate recognition of band-
width of spectrum occupied by PUs, i.e., accurate recog-
nition of the vacant spectrum, which is usually denoted by
white space (WS), respectively [16].

For the issue in terms of segment size, we formulated
the optimum segment size in terms of a criterion which is
determined by white space detection ratio (WSDR) perfor-
mance with a constraint determined by sensitivity required
for spectrum usage detection [16]. WSDR is defined by the
ratio of estimated WS and actual WS in time and frequency
domains, therefore WSDR = 1 indicates ideal situation,
WSDR > 1 indicates overestimation of WS, and WSDR < 1
indicates underestimation of WS. The sensitivity in the con-
straint is quantified by root mean square error (RMSE) of
DC estimation. In fact, the optimum segment size depends
on signal-to-noise ratio (SNR) which makes practical and
optimum segment size setting difficult [16].

For this difficulty, we proposed a practical method de-
noted by Exhaustive search based Segment size Selection
(E-SS) to select a proper segment size without SNR infor-
mation [16]. E-SS exploits a relationship between output
of noise floor (NF) estimation based on forward consecutive
mean excision (FCME) algorithm and the segment size for
proper segment size setting. E-SS uses NF estimation out-
puts for all possible segment sizes in Welch FFT, therefore
it requires relatively high computational complexity.

In this paper, we propose a segment size selection
method called Limited search based Segment size Selection
(L-SS) and it also uses NF estimate via FCME algorithm.
L-SS can achieve both reasonable WSDR performance and
low computational complexity since it searches the proper

"Time-frequency conversion and spectrum usage detection in
SAS and spectrum sensing in DSA system are similar in that both
decide spectrum occupancy, i.e., whether PU is active or not. How-
ever, SAS exploits spectrum occupancy result for estimation of sta-
tistical spectrum usage information, but DSA system exploits it for
other processes in DSA such as spectrum management, channel
selection.
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segment size while limiting the searchable segment sizes.

Numerical results show that E-SS and L-SS has com-
parable performances in terms of RMSE of DC estimate and
WSDR, while computational complexity of L-SS has suffi-
ciently lower than that of E-SS.

The remainder of the paper is organized as follows.
The system model used in this paper is presented in Sect. 2.
In Sect. 3, we introduce the Welch FFT segment size design
criterion leading an optimum segment size by considering
the trade-off between detection performance and frequency
resolution. In Sect. 4, we introduce related works regarding
segment size selection. Specifically, we present the rela-
tionship between SNR, segment size and NF estimate, and
the conventional segment size selection method, i.e., E-SS.
After that, we propose L-SS in Sect. 5. Performance evalu-
ation based on computer simulation is presented in Sect. 6.
Finally, conclusions are presented in Sect. 7.

2. System Model

The block diagram of the signal processing used for spec-
trum usage measurement is shown in Fig. 1. The process
consists of several components: Welch FFT with memory
[17], NF estimation consisting of tentative NF estimation
and final NF estimation, threshold setting, spectrum usage
detection, segment size selection, and DC estimation.
Configuration of time frames for the spectrum usage
measurement is shown in Fig. 2. One consecutive spectrum
usage measurement consists of M super frames and each
super frame consists of M time frames. It is desirable to
have sufficiently long measurement duration so that multiple
primary user signals can be observed for accurately estimat-
ing DC. However, practically maximum duration is limited
by the memory size in an observation equipment (OE) such
as spectrum analyzer in SAS. Welch FFT, spectrum usage
detection, and segment size selection are performed to ob-
tain signal usage detection results for every time frame. One
time frame consists of Ny complex samples of received sig-
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Fig.1  Block diagram of the spectrum measurement process.
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Fig.2  The configuration of time frames in the measurement process.

nal with sampling rate f; Hz and this time frame corresponds
to one Welch FFT size. The time frame length determines
time resolution which is an important parameter to under-
stand spectrum activity of PUs. The time frame length is set
so that required time resolution can be met.

The tentative NF estimation using FCME algorithm
[18] is performed in every time frame and the final NF es-
timation is obtained by median filtering the M tentative NF
estimates [19]. The one super frame size M corresponds to
median filter length for final NF estimation. NF estimation
accuracy can be improved by using a median filter for NF
estimation [20]. Optimization of super frame length (me-
dian filter length) is out of our scope and we determine the
length according to [20]. The rationale for using the median
filter for NF estimation is that NF is usually almost static
at least a few minutes [20], [21]. The DC estimation is ob-
tained based on M, X M signal usage detection results.

SAS observes the wide band spectrum in which several
PUs may exist in the observed frequency band and band-
width is denoted by Wy Hz. We assume that PU’s signal
bandwidth can vary with time, but the bandwidth is at most
90% of Wy Hz. The time duration and time interval of PU’s
signals can be also changed in time, but time resolution of
spectrum measurement has to be shorter than the time du-
ration and time interval. The time resolution is determined
by the time frame duration. The maximum signal length is
assumed to be less than one measurement duration.

Now let us focus on the mth time frame (m =
0,1,--- ,M — 1). The nth sample of the complex baseband
signal y[n] (n = mNs,mNg + 1, -+ ,mNg + Ng — 1) in the mth
time frame is given by

yln] = { ]

x[n] + z[n]

(PU is not active) 1)
(PU is active),

where x[n] represents the PU signal component and z[n]
represents the noise component which follows independent
and identically distributed (i.i.d) circular symmetric com-
plex Gaussian distribution with zero mean and variance o-?,
i.e., z[n] ~ CN(O, o-f). We assume quasi static fading chan-

nel in which channel state is constant during one time frame.
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The instantaneous SNR is defined by SNR = 0')26 / o-%, where
o2 and o2 are the instantaneous received PU signal power in
OE and noise power in the observed spectrum, respectively.

In the Welch FFT, N; samples are segmented into L,
segments with an overlap ratio p. In the rest of the paper, we
use p = 0.5 since the signal detection performance atp = 0.5
is appropriate as confirmed in [16]. In L,, v denotes the
index number of segment size (v = Umin, Umin + 1, ** , Umax)
and V denotes the number of all segment sizes as V = vp,x —
Umin + 1.

Without loss of generality, N; and segment size (Ngeg,»)
are assumed to be powers of two, i.e., Ny = 2" and Ngeg, =
2", namely v also indicates the exponent of the segment size.
In this case,

L,= 2Ns/Nseg,v - L (2)

After the segmentation, normal FFT is performed with
respect to each segment and the power spectrum averaged
over L, segments is given by [17]

Pl fo]

2
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where f, is an index number of the frequency bin (f, =
0,1, , Ngeg, — 1), mis the index number of the time frame
and w,[k] is the real-valued window coefficient. The type
of window function also affects the detection performance
[22]. Here, we use Hamming window because it has been
shown that it can achieve slightly better performance com-
pared to other window functions in [19].

Both segment size selection methods, i.e., L-SS and E-
SS perform Welch FFT with segment sizes specified by a set
V5. In the case of E-SS, the elements in Vg are all segment
sizes Vs = {Umins Umin + 1, s Umax} and Welch FFT is per-
formed for each segment in Vg at once, thus, E-SS always
performs Welch FFT V times.

On the other hand, in the case of L-SS, Vg always has
only one element and is updated until a proper segment size
is found. For this reason, the number of Welch FFT opera-
tions can be less than the number in E-SS, i.e, V. The reason
for the less number of Welch FFT operations in L-SS will be
described in Sect. 6.2.

We assume that time resolution At = N/f; for the
duration of a time frame is small enough compared to the
minimum continuous signal length such as packet length
and the minimum time gap between two consecutive sig-
nals, i.e., idle length [5], [23]. On the other hand, the fre-
quency resolution Af, is determined by the segment size as
Afy = fs/Nseg,. We assume the maximum frequency reso-
lution, i.e., Af, . = fs/Nsegun, 18 at least narrower than any
PU signal bandwidth.

In the mth time frame, segment size selection method
(E-SS or L-SS) selects the proper segment size. The back-
ground for performing segment size selection every time
frame is that in spectrum measurement over wide band in-
cluding several primary systems, SNR may be changed by

3
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time frame basis and the optimum segment size depends on
SNR. The segment size selection methods, E-SS and L-SS,
will be presented in detail in Sects.4 and 5, respectively.
The segment size selected is denoted by Ny y,(m), Where
vp(m) denotes the index number of the selected segment size
in the mth time frame.

The vector of the tentative NF estimates with the se-
lected segment size is

2

52 _ 15 52 e g2
02 =107 0y OZupryy z

t
9 O— ,UP(M—I)] 9
where the superscript ¢ denotes the vector transpose. The
final NF estimate, denoted by &%F, is obtained by median

filtering the elements in &7 [19].

Let f,,(m) denote the index number of the frequency bin
in the mth time frame. Detection result at the mth time frame
and the f,,»th frequency bin is obtained by the ED as:

N

Dm,vp(m) [ﬁ)p(m)]

— 1 (lf Pm,vp(m) [fvp(m)] > i]l)p("])) (4)
0 (otherwise).

where 1 and 0O respectively correspond to the decisions of oc-
cupied spectrum () and vacant spectrum (Hp), and 7y, ()
indicates the threshold for ED. H; indicates that PU sig-
nal exists in the frequency bin partially or completely and
Hp otherwise. In general, the detection performance can
be summarized by two probabilities [14]: detection rate
Pp = Pr(Ppypom fooem] > Tupemy|Hi1) and false alarm rate
Pea = Pr(Ppypoom) [ fopem] > Topy| Ho), where Pr(x) indicates
the probability of event x. The threshold 7,,(x) is set based
on é'iF, the selected segment size in the mth time frame,
and a target false alarm rate Ppaage.. In case of Welch
FFT-based ED, proper threshold setting for Pga target OF Pp
is available [22], [24].

In the spectrum usage detection (ﬁm,vp(m)[ Jowem]), the
number of frequency bins varies every time frame due to
the segment size selection. For the DC estimation in each
frequency bin, the number of frequency bins in each time
frame is unified by the maximum number of frequency bins
N = 2 This can be achieved by

A N

Dm,vmux [f] = Dm,u;:(m) [fUp(m)]s (5)
where

A fopm) A fopm)

Af:max f‘UP(m) S f S Af:max (ﬁ)P(m) ’ 1) - 1’ (6)

and Af,,» and Af,  indicate the frequency resolution for
segment size 2™, i.e., Afyom) = fo/Nsegupim and the fre-
quency resolution for largest segment size N, = Ns,
ie., Af, . = fs/Ns, respectively.

DC estimation is performed for each super frame and
each frequency bin and the estimated DC at the fth bin is

. 1°&
¥if1= - D Duan 1. )

m=0

We use mygy, -out-of-M model [24] to define the true DC
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as W[ f1 = mqy, [f1/M, where mqgy, [ f] denotes the number of
H, hypotheses in the fth frequency bin.

3. Segment Size Design Criterion

Larger segment size can achieve high frequency resolution,
however it results in reduced signal detection sensitivity due
to small L, in (2) and vice versa [15]. To achieve proper
segment size, we have formulated in [16] an evaluation cri-
terion for the design of the segment size setting based on
WSDR as

arg min
VE{Vmin,Vmin+ 1, Vmax }

s.t. RMSE(Y[£.]) < 6,

Ppy =P FA target>

VOPT = |L — WSDR(v), ®)

and the optimum segment size is given by Nyeg yopy = 27
and it depends on SNR [15]. WSDR(v), RMSE(¥[/.]), and
0 denote the WSDR, RMSE in terms of DC estimation at the
center frequency f; for the PU signal, and allowable RMSE
for DC estimate, respectively.

In the following subsections, the details of RMSE(W[ £.])
and WSDR(v) are described.

3.1 RMSE in Terms of DC Estimate

The RMSE of DC estimation error in the mg,-out-of-M
model is given by [24]

RMSECP(£]) = yEICVLA] - LA, ©)

where E[-] denotes expectation, f. is set to the center of
the PU signal in frequency domain, W[f.] is the true DC,
and W[ fc] is the estimated DC based on the detection re-
sults. Typically, Ppa target should be set to a small value,
such as 0.01. Therefore, Pp should be high enough to satisfy
RMSEY[f.]) < ¢ with small ¢. Satisfying the constraint (8)
requires accurate enough detection performance in time do-
main, but frequency resolution is not considered. Note that
RMSE in terms of DC can evaluate detection performance,
i.e., detection rate Pp and false alarm rate Pga as well as DC
estimation accuracy [16].

3.2 WSDR

The criterion WSDR with the constraint in (8) indicates a
vacant spectrum detection capability with considering the
frequency resolution. WSDR is defined by

N,

Zfie(g),umaxil(l — E[\?[f]])
e 0w

where the denominator and numerator indicate true WS and
estimated WS, respectively. In this metric, a value closer
to one indicates more accurate detection performance. Note
that in (10), the effect of frequency resolution is determined
by used segment size.

WSDR(@) = (10)
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4. Related Work of Segment Size Selection [16]

In this section, at first we will show a relationship between
SNR, segment size and NF estimate by the tentative NF es-
timation with brief description of FCME algorithm. In fact,
E-SS and L-SS exploit an aspect of the tentative NF esti-
mate. After that, E-SS algorithm will be described.

4.1 Relationship between SNR, Segment Size and NF Es-
timate

FCME algorithm [18] used in the tentative NF estimation is
an iterative method that attempts to recognize clean power
spectrum samples (noise-only samples) which correspond to
H, samples.

More specifically, the process of FCME algorithm is
as follows. It first sorts the power spectrum samples in an
ascending order. After that, it calculates the mean of the /
smallest sorted samples. The NF estimation assumes that at
least I smallest sorted samples are noise-only samples (clean
samples). In general, I = [0.1N], where [-] is the ceiling
function and N is the number of frequency bins (segment
size), and we also use I = [0.1N] throughout the paper ac-
cording to the related works [19], [20]. By assuming that
the calculated mean is correct, the threshold that attains the
target false alarm rate such as 0.01 with the calculated mean
is obtained based on the distribution of noise power sam-
ples, which follows Chi-square distribution with degrees of
freedom 2L, [25]. Obviously, the threshold is more than the
mean value and the clean samples are updated by adding
samples which have value lower than the threshold. Then,
the threshold is updated based on the updated clean samples
and the target false alarm rate. The updating of clean sam-
ples continues as long as new samples are added from the set
of non-clean samples (signal plus noise samples) obtained
with the latest threshold. Finally, the tentative NF estimate
is given by the average power of the estimated clean samples
at the final iteration.

From above process of FCME algorithm, NF estima-
tion accuracy is determined by whether the algorithm can
accurately divide the sorted power spectrum samples into
clean samples and non-clean samples’.

Figure 3 shows the average of tentative NF estimates in
linear scale as a function of segment size for different SNR,
i.e. —3dB, 0dB and 5 dB. The real noise power is set to one.
Throughout the paper, the index number of optimum seg-
ment size vopr is a solution of the optimization problem (8)
in which v is the parameter for the optimization problem.
The optimum segment size can achieve high enough detec-
tion performance while [I — WSDR(v)| is minimized by a

TIf the whole observed band is occupied by PU signals, it may
cause overestimation of NF due to non clean samples. However,
it may be a rare situation that PUs simultaneously occupy all fre-
quency range since we are typically assuming to use a wide band
observation equipment. In addition, median filter can be employed
to suppress the effect of the overestimation [20].
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Fig.4 |1-WSDR(v)| as a function of the index number of segment size v,
SNR = -3,0,5dB.

proper frequency resolution (larger segment size). Figure 4
shows |1-WSDR(v)| as a function of the index number of
segment size v at SNR = -3, SNR = 0 and SNR = 5dB.
From this figure, the index number of optimum segment size
isv=4inSNR =-3dB,v=6inSNR =0dBandv =7 in
SNR = 5dB, respectively as |[I-WSDR(v)| is minimized at
the index number of optimum segment size while the opti-
mum segment sizes meet the constraint of the optimization
problem (8).

FCME algorithm estimates NF by finding a set of clean
samples while power spectrum samples are either clean
samples or non-clean samples. Specifically, FCME algo-
rithm attempts to find a gap between the clean samples and
non-clean samples [26].

In the case of v = 10, FCME algorithm estimates non-
clean samples as clean samples due to no averaging in Welch
FFT leading to large fluctuations of power spectrum and
difficulty to find the gap [26]. Therefore, it leads to the
overestimation of the NF estimate with v = 10 as shown
in Fig. 3. In case of v = 2, NF estimation accuracy is also
poor as shown in Fig. 3. This is reason that some of power
spectrum samples (frequency bins) include signal compo-
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nents partially due to the poor frequency resolution and it
cannot clearly distinguish between clean samples and non-
clean samples. If the segment size is proper (3 < v < 8 in
SNR =5dB,3 <v<6inSNR=0dBand3 <v <5
in SNR = -3 dB in Fig. 3), NF estimation accuracy is suf-
ficiently high since averaging power spectrum can show the
gap accurately.

Both E-SS and L-SS exploit above aspect of the ten-
tative NF estimate, i.e., the slope of tentative NF estimate
against the segment size. In fact, the most appropriate seg-
ment size is such that it can achieve proper NF estimation
with the largest possible segment size to achieve a suffi-
ciently high frequency resolution.

4.2 Exhaustive Search Based Segment Size Selection: E-
SS

In E-SS, at first Welch FFT and the tentative NF esti-
mation are performed with all segment sizes Ny, for
each time frame. This provides V tentative NF esti-
mates for the set Vs = {Umin>Umin + 1, , Umax}, 1.€.,
[a: i (D), * 7 ZUW (m)]. The increment of tentative NF
estimates between adjacent segment sizes with a positive di-
rection is given by

- &2, (m). (11)

Then, the index number of the segment size maximizing the
increment is given by

A2 A2
Aa—z,v(m) = O_z,u+1(m)

vmax(m) = arg max Ad (m) (12)

The tentative NF estimation with the index number vyax (1)
can achieve relatively accurate estimation performance.
However, it does not necessarily satisfy the RMSE con-
straint. Therefore, an adjustable integer parameter S is em-
ployed to achieve the RMSE constraint and the index num-
ber of segment size selected by E-SS is

o33 (m) = vmax(m) + B. (13)

Thus, the segment size selected by E-SS is N,
2omax(m)+f

E-SS
eg.uy > (m)

The parameter 3 can be set based on RMSE constraint,
e.g., B = —1 can satisfy 6 < 0.05 as confirmed by Monte
Carlo simulations in [16].

5. Limited Search Based Segment Size Selection: L-SS

In this section, we present details of L-SS algorithm. A
flowchart of the process of L-SS is shown in Fig. 5. It con-
sists of three decisions: decision-1 (D-1), decision-2 (D-2)
and decision-3 (D-3) to determine appropriate segment size.

At the mth time frame, the initial value of Vg is set by
an index number of segment size selected in the previous
time frame (m — 1): vo(m) = vp(m — 1), where subscript 0
indicates the initial value. In the case of m = 0, we can
employ E-SS to select a proper segment size.

IEICE TRANS. COMMUN,, VOL.E101-B, NO.7 JULY 2018

oo Pt

e

By Foim) )

[ Index number of selected segment size vp(m) = v;(m) ]

Fig.5 Flowchart of L-SS.

Let T}, denote the ratio of the tentative NF estimate
(o“fu_(m) (m)) to the final NF estimate from the previous super

frame (é’ip), ie.,

iy (11D
Tiom) = &™) =01, -1, (14)

O-z,F

where the subscript i indicates the index number of segment
size updating.

Typically, the changing rate of NF is very slow and rel-
atively accurate NF estimate is available by &2 ~p- In fact,
it has been shown that NF is usually almost static at least
a few mlnutes [20], [21]. Considering this aspect in the
case that &2 - (m)(m) is significantly larger than 62 TP e
To00tm) > Tuem)» it 1s considered that the current checked
segment size 2™ is large compared with a proper segment
size. This leads to the fact D-1 is “No”. Then, the thresh-
old Ty,m) is determined by a significance level regarding
whether 6 (M) is too large compared with o2 _p- More
detailed descrlptlon about the threshold setting will be pre-
sented at the end of this subsection.

Specifically, in the case that the decision is “No” in D-
1, the index number of segment size is updated by v;(m) =
vii(m)—=1,i=1,---,V-1,i.e., theset Vg = {v;_1(m)—1}in
D-2. The update is repeated until it achieves an appropriate
segment size so that T;,m) < Ty,m or that it reaches the
smallest segment Size Nyegp,;. -

On the other hand, the decision “Yes” in D-1 indicates
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that the segment size is not too large and proper NF esti-
mation performance may be achievable. However, there is
a possibility that the segment size is too small, for example
due to increase of SNR.

In this case, it goes to D-3 and the segment size is up-
dated in the increasing direction until an inappropriate seg-
ment size is found or that it reaches the largest segment size
Nyegon - Once the inappropriate segment size is found by
the decision “No” in D-3, the index number of selected seg-
ment size is given by vp(m) = v;(m)— 1 since the last updated
segment size is the most appropriate segment size.

We set 7, so that the following probability equals to
a given target probability Py _gs.

a2 2
Pr_ss = Pr(Tiy,om) > Toum)0 g = 07, Ho)

= f p(Ti,ui(m)lé\'ip = 0'5, Ho)dT; pimy,  (15)

To;(m)

where p(T,-,Ui(m)Ié'iF = 02, Hp) is the conditional probability
density function (PDF) of T}, under aA'iF = crf and H,
and it is obtained via Monte Carlo simulations. Pj _ss means
a significance level regarding whether é’iv/_(m) (m) is too large
compared with é'iF, thus whether the current checked seg-
ment size is too large compared with a proper segment size.

6. Numerical Evaluations

In this section, we will evaluate two segment size selection
methods, i.e., L-SS and E-SS. The evaluated metrics are as
follows: RMSE in terms of DC, |1 — WSDR(v)| and com-
putational complexity. In addition, we will also evaluate the
adaptivity of segment size selection with time, i.e., the be-
havior of L-SS and E-SS in case that SNR is varied in time
of L-EE and E-SS.

We assume that the measurement bandwidth (equiva-
lent to complex sampling rate ) is set to Wy = f; = 44 MHz
and the PU signal bandwidth Wg = 22 MHz, such as the
bandwidth in IEEE 802.11g WLAN. In addition, the du-
ration and interval of PU signals are constant and the DC
Y is 0.5. Specifically, the time duration and the time in-
terval are about 230 usec. The time frame size is set to
Ns = 1024 [5], [23] and the time resolution At = N/ fs
is 1024/44 x 10° ~ 23 usec. At is short enough compared
with the time duration and the time interval. Moreover, we
apply 2 as the minimum segment size with minimum fre-
quency resolution, 44 X 106/23 ~ 5.5MHz, which is nar-
row enough compared with the signal bandwidth, 22 MHz.
Common simulation parameters are summarized in Table 1.

6.1 RMSE in Terms of DC and |1 — WSDR(v)|

Figure 6 shows RMSE(Y[f.]) as a function of SNR to con-
firm whether the RMSE constraint is satisfied. In Fig.7,
[T — WSDR(v)| for every time frame as a function of SNR is
shown to confirm the ability to find the WS. |1 — WSDR(v)|
indicates the Mean Absolute Error (MAE) of WSDR and
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Table 1  Simulation parameters.
Parameter [ Value ]

Number of FFT samples: N 210

Segment size: v {omin = 3,4,5,6,

7,8,9, vmax = 10}
Length of median filter: M 100
Noise Floor o-g 1
SNR [-4 10]dB
Window type Hamming window

Allowable RMSE: § 0.05
Target false alarm rate: Pga target 0.01
DC: Y[f], f € H, 0.5
Target probability in L-SS: Pp_sg 1073

—— L-SS (PL—SS:O'OOI)
- W =E-SS
' == Optimum method
: =3
3 T
; —@— =10
" : 8=0.05

: :

";«RMSE constraint = 0.05

RMSE(Y[f 1)

2 4
SNR [dB]
Fig.6 RMSE(¥[f.]) against SNR.

—y— L-SS (PL_SS=0.001)
. - W =E-SS
‘ + == Optimum method
v=3
* L@ T
—@— v=10

[1-WSDR( v)l

-4 -2 0

2 4
SNR [dB]
Fig.7 |1 — WSDR(v)| in time frames against SNR.

|1—=WSDR(v)| closer to zero indicates more accurate WS de-
tection performance. In the results of Figs. 6 (RMSE(Y[f.]))
and 7 (|1 — WSDR(v)|), five methods are evaluated: the re-
sults of L-SS and E-SS, the optimum method where the op-
timum segment size satisfying (8) is always used, and fixed
segment size: v = 3, v =7 and v = 10.
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From the results of v = 3, v = 7 and v = 10 in Figs. 6
and 7, we can see that using constant segment size cannot
achieve proper performance when SNR is changed. When
SNR < 2dB in Fig.6, v = 7 is too large to satisfy 6 =
0.05. In addition, v = 10 no longer satisfy § = 0.05 at
SNR < 10dB. These indicate the detection performance
in low SNR and large segment size is not very good and
v = 7 and v = 10 are not adequate at SNR < 2dB and
SNR < 10dB, respectively. On the other hand, in the case
of v = 3 the RMSE constraint ¢ can be satisfied in any SNR.
However, Fig.7 reveals that [I — WSDR(v)| with v = 3 is
greater than that with v = 7 at SNR > 2dB. This is due
to reduced frequency resolution and indicates that the WS
cannot be found properly compared with v = 7, and at least
v =7 is adequate at SNR > 2 dB.

In Fig. 6, the optimum method, and the results of E-
SS and L-SS can always satisfy the RMSE constraint. In
addition, the results of E-SS is better than that of L-SS. In
Fig.7, we can confirm that || — WSDR(v)| of the optimum
method can achieve the best performance in any SNR. From
the results of E-SS and L-SS in Fig. 7, we can see E-SS can
achieve better |1 — WSDR(v)| performance in any SNR.

We can see that optimum method, E-SS and L-SS have
bumpy properties in terms of RMSE. However the results
of v = 3 and v = 7 have smooth curves. When 2dB <
SNR < 5dB in Fig. 6, the index number of the optimum
segment size is v = 7, therefore the RMSE of v = 7 is equal
to the RMSE of the optimum one. However, at SNR = 6 dB,
the index number of the optimum segment size is v = 8, so
the RMSE is slightly increased in a discontinuous manner.
Specifically, increasing SNR with fixed segment size leads
to a smooth curve, but changing segment size causes the
bumpy properties. Obviously, the three methods, i.e., L-SS,
E-SS and the optimum method would change the segment
size in response to SNR which leads to this behavior.

6.2 Computational Complexity

We only evaluate the computational complexity of segment
size selection process in L-SS and E-SS. As mentioned in
Sect. 4.2 and Sect. 5, E-SS and L-SS consist of Welch FFT
and the tentative NF estimation. Thus, the computational
complexity of L-SS and E-SS is determined by the com-
putational complexity of Welch FFT and the tentative NF
estimation in L-SS and E-SS. Inherently, the computational
complexity of L-SS is lower than E-SS since the numbers
of executions of Welch FFT and the tentative NF estimation
in L-SS are always equal to or less than ones of E-SS. The
reason of this aspect is as follows. In E-SS, Welch FFT and
the tentative NF estimation are performed for all possible
segment sizes. On the other hand, in L-SS, Welch FFT and
the tentative NF estimation are performed for a part of them
and the details of L-SS are shown in Sect. 5.

We quantitatively evaluate the mean computational
time of L-SS and E-SS (Fig. 8). In this evaluation, we use
the same simulation parameters as used in Figs. 6 and 7. We
can confirm the mean computational time of L-SS is lower
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Fig.8 Computational time of L-SS and E-SS. Computer specifications:

Intel Core 17-2600, 3.4 GHz, memory size is 8 GB, and the algorithms were
implemented in MATLAB.

than that of E-SS.
6.3 Adaptivity of Segment Size Selection with Time

Finally, we observe the behavior of L-SS and E-SS in case
that SNR is varied in time. Changes of spectrum occupancy
state and SNR are summarized in Table 2.

Figure 9 shows ED results in time and frequency do-
mains of L-SS (Fig. 9(a)) and E-SS (Fig. 9(b)), respectively.
The spectrum occupancy state and SNR are changed in time
in Fig. 9 and the changes are shown in Table 2. For compar-
ison, the results of v = 3 and v = 10 where segment sizes
Nyegy = 23 and Nyegy = 210 are used during the whole ob-
servation, respectively are also shown. The PU signal exists
between f = 260 to f = 770, where f is the index number
of frequency bin.

In case of v = 3 (Fig. 9(c)), the probability of detection
is high at the expense of less frequency resolution. This
leads to overestimation in terms of the signal bandwidth. In
contrast to the case of v = 3, high frequency resolution is
achieved but detection performance is poor in case of v = 10
(Fig. 9(d)).

On the other hand, we can see both L-SS and E-SS
can achieve enough detection performance and this indicates
both methods can adaptively select a proper segment size,
and detection performance of L-SS and E-SS are compara-
ble in the results of Fig.9(a) and (b). One difference is fre-
quency resolution: bandwidth of false alarm in L-SS is less
than that in E-SS. This indicates that the selected segment
size for E-SS is smaller than that for L-SS. To verify this
fact, Figs. 10 and 11 show the index number of segment size
selected by L-SS and E-SS, respectively. The optimum seg-
ment sizes are also plotted by dashed lines in Figs. 10 and
11. In Figs. 10 and 11, the spectrum occupancy state and
SNR are changed in time as shown in Table 2. From these
figures, both methods can select the segment size around
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Table 2  Spectrum occupancy pattern and SNR change pattern.
Index number of time frame | 1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91 -100
State H, Ho H, Ho H, Ho H, Ho H, Ho
SNR [dB] 5 - 15 - -3 - 9 - 1 -
o R o N L e R B
o 19 R o 19 s ! lo) L-SS
SN | 5 o 1 = = = Optimum method |1
E s TR {550 N
© 4o s B O 40) - = — . . »10r 1
g0l Ha NP TIEIN S D M ) - . y O 9t @HED 00 1
» 70 B ‘ - EEEERaanE . 70 e
L I~ | S e ) o gho® @ame 1
2, - IS - :, = =% 2
100 i oo e 100t . o 7ED® o 1
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Index of frequency bin Index of frequency bin ‘g 6f 1
a) L-SS b) E-SS i
( ) ( ) g 5k B lcsXo) [e) 4
o 10 ) 10‘ LS 4t (3737} 4
§ 20 % 20}, <
& 30 & 30 L 3t lcoXe) d
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57 — g7 10 20 30 40 5 60 70 8 90 100
o 80 < 80} .
R=I I - Index of time frame
10035200 300 400 500 600 700 800 500 1000 10055200 300 400 300600 700 500 ;001000 Fig.10  Index number of selected segment size for L-SS against time
Index of frequency bin Index of frequency bin frames.
(c) v=3 (d)r=10
Fig.9 ED detection results against time frames and frequency bins, (a) 12 T T T T T T - - -
L-SS, (b) E-SS, (¢c) v =3, (d) v = 10. O E-SS
% mr = = = = Optimum method ]
RZIRT |
. . =1
the optimum segment size, but E-SS selects the smaller seg- E ol R J
ment size than that L-SS selects, especially in high SNR, S sl o |
i.e., SNR = 15dB. In both results, we can confirm a biased Q
aspect. Specifically, at a certain time frame, selected seg- g 1
ment may be higher (or lower) than the optimum one. The ‘g 6 D |
reason of this aspect is that the threshold,  (L-SS) and g § 5| : o ©® 00 -
(E-SS) to select a segment size is constant for whole SNR. g Ll ®66 |
In fact, the proper T and 8 slightly depend on SNR. One im- e
portant fact is that the maximum error of the segment size -Qué 3 o 1
L]

selections is one at most. The error is given by the differ-
ence between index number of the optimum segment size
and index number of segment size selected by L-SS/E-SS.

7. Conclusion

We investigated Welch FFT-based ED for FFT-based wide
band spectrum measurement in SAS. We aimed to estimate
the DC and the WS accurately via Welch FFT-based ED as
it is important for SAS to provide accurate statistical infor-
mation, e.g., DC to SUs. In Welch FFT-based ED, time
resolution, frequency resolution and spectrum usage detec-
tion performance determine the WS detection performance
in the time and frequency domains. The optimum segment
size regarding White Space Detection Ratio (WSDR) with
the constraint on RMSE in terms of DC depends on the
SNR which is an unknown parameter in practice. Therefore,
we previously proposed a segment size selection method
denoted by Exhaustive search based Segment size Selec-
tion (E-SS) to select a proper segment size without SNR

H‘IHOIH‘IHOIH‘IHOIHIIHolHIIHO
10 20 30 40 50 60 70 80 90 100
Index of time frame

Fig. 11
frames.

Index number of selected segment size for E-SS against time

information, but this method requires relatively high com-
putational complexity. For this issue, we proposed Limited
search based Segment size Selection (L-SS), which attempts
to select the proper segment size with high-computational
efficiency. Numerical evaluations showed that L-SS can
match the performance of E-SS in terms of MAE of WSDR,
i.e., |l — WSDR(v)| with sufficient DC estimation accuracy.
On the other hand, we showed L-SS has much lower com-
putational complexity than E-SS.
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