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PAPER

Weyl Spreading Sequence Optimizing CDMA

Hirofumi TSUDA†a), Nonmember and Ken UMENO†b), Member

SUMMARY This paper shows an optimal spreading sequence in the
Weyl sequence class, which is similar to the set of the Oppermann sequences
for asynchronous CDMA systems. Sequences in Weyl sequence class have
the desired property that the order of cross-correlation is low. Therefore,
sequences in the Weyl sequence class are expected to minimize the inter-
symbol interference. We evaluate the upper bound of cross-correlation
and odd cross-correlation of spreading sequences in the Weyl sequence
class and construct the optimization problem: minimize the upper bound
of the absolute values of cross-correlation and odd cross-correlation. Since
our optimization problem is convex, we can derive the optimal spreading
sequences as the global solution of the problem. We show their signal to
interference plus noise ratio (SINR) in a special case. From this result,
we propose how the initial elements are assigned, that is, how spreading
sequences are assigned to each users. In an asynchronous CDMA system,
we also numerically compare our spreading sequences with other ones, the
Gold codes, the Oppermann sequences, the optimal Chebyshev spreading
sequences and the SP sequences in Bit Error Rate. Our spreading sequence,
which yields the global solution, has the highest performance among the
other spreading sequences tested.
key words: Asynchronous CDMA, Nonlinear programming, Spreading

sequence, Signal to Interference plus Noise Ratio, Bit error rate

1. Introduction

Signal to Interference plus Noise Ratio (SINR) is an impor-
tant index for wireless communication systems. In wireless
communication systems, it is the most significant parameter
in achieving high capacity [1]. In general, it is necessary
and sufficient for achieving high capacity to increase SINR
under the condition that the width of the frequency band is
constant when the inter-symbol interference is approximated
as Additive White Gaussian Noise (AWGN)[2]. Similarly,
the performance of wireless communication is evaluated in
Bit Error Rate (BER). However, these two are not indepen-
dent, and it is known that BER decreases as SINR increases
since inter-symbol interference is the most important factor
relating to the system performance in CDMA systems.

As a wireless communication system, we focus on a
code division multiple access (CDMA) system [3], in par-
ticular, an asynchronous CDMA system. It is one of the
multiple access systems with which many people can com-
municate each other at the same time [4]. In CDMA systems,
spreading sequences are utilized as codes to multiplex. Each
user is assigned a different code and uses it to modulate and
demodulate his signal.
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In CDMA systems, many methods have been proposed
to increase SINR. One such method is based on the blind
multi-user detection [5]. On the other hand, improving the
receiver [6] with the application of digital implementation
of ICA [7] and Maximum Likelihood (ML) estimation [8] is
also efficient. However, in particular, ML estimation method
needs a large amount of computation.

In general, the value of SINR depends on the spreading
sequences. In synchronous CDMA systems, it is known
that the Welch bound equality (WBE) sequences realize
the maximal capacity [9]. The Welch bound represents the
lower bound of the maximum value of cross-correlation [10].
When the time delays are given and fixed, the way to find the
optimal spreading sequence has been suggested [11]. How-
ever, in general asynchronous CDMA systems, the optimal
spreading sequences have not been found, and asynchronous
CDMA systems have been investigated [12].

In uplink of W-CDMA systems, the current spreading
sequence is the Gold code [13]. It is known [14] that the
Gold code is optimal in all the binary spreading sequences as
well as the Kasami sequence [15] in a sense of the maximum
value among all periodic autocorrelation and periodic cross-
correlation. To explore a better sequence for asynchronous
CDMA systems, in [16] and [17], the use of chaotic spread-
ing sequences has been proposed. These chaotic spreading
sequences are multivalued sequences, not binary ones, and
are obtained from chaotic maps. Examples of such spread-
ing sequences have been given in [18]-[22]. In [23], the
approach to obtain the capacity of spreading sequences has
been proposed.

In [24], Sarwate has shown two kinds of characterized
sequences on his limitation. One kind is a set of sequences
whose periodic cross-correlation is always zero. We call
them Sarwate sequences. The other kind is a set of se-
quences whose periodic autocorrelation is always zero ex-
cept for only one point, that is, Frank-Zadoff-Chu (FZC)
sequences [25] [26]. In [27], the extended set of the FZC
sequences, the Oppermann sequences are proposed. They
have three parameters and their SINR, autocorrelation and
cross-correlation have been investigated.

In this paper, we define the Weyl sequence class, which
is a set of sequences generated by the Weyl transformation
[28]. This class is similar to the set of Oppermann sequences
and includes the Sarwate sequences. Sequence in the Weyl
sequence class have a desired property that the order of
cross-correlation is low. We evaluate the upper bound of
cross-correlation and construct the optimization problem:
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minimize the upper bound of cross-correlation. From the
problem, we derive optimal spreading sequences in the Weyl
sequence class. We show their SINR in a special case and
compare them with other sequences in a sense of BER.

2. Weyl Sequence Class

In this section, we define the Weyl sequence class and show
their properties. Let N be the length of spreading sequences.
We define the Weyl sequence (xn) as the following formula
[28]

xn = (nρ + ∆) mod 1 (n = 1, 2, . . . , N), (1)

where ρ and ∆ are real parameters. From the above defi-
nition, we can assume that the parameters ρ and ∆ satisfy
0 ≤ ∆ < 1 and 0 ≤ ρ < 1. The sequences whose ρ is an
irrational number are used in a Quasi-Monte Carlo method
[29]. We apply this sequence to a spreading sequence. Then,
the Weyl spreading sequence (wk,n) is defined as [30]

xk,n = (nρk + ∆k) mod 1,

wk,n = exp(2π j xk,n) (n = 1, 2, . . . , N),
(2)

where k is the number of the user, j is the unit imaginary
number, and ρk is a real-valued initial point assigned to
the user k. In CDMA systems, the value of ∆k has no
effects to Signal to Interference plus Noise Ratio (SINR)
since exp(2π j∆k) is united to the phase term of the signal.
Thus, we set∆k = 0. We call the class which consists of Weyl
spreading sequences the Weyl sequence class. Note that this
class is similar to the set of Oppermann sequences [27]. The
n-th element of the Oppermann sequences is defined as

uk,n = (−1)nMk exp

(
jπ(M

p

k
nq
+ nr )

N

)

(n = 1, 2, . . . , N),

(3)

where Mk is an integer that is relatively prime to N such
that 1 ≤ Mk < N and p, q and r are any real numbers.
The triple {p, q, r} specifies the set of sequences. When the
triple {p, q, r} is {2, 1,−∞}, we obtain the element of the
FZC sequence [25][26]

uk,n = (−1)nMk exp

(
jπ(M2

k
n)

N

)

. (4)

The Weyl sequence class is obtained when the triple is
{1, 1,−∞} and Mk = ρk · 2N/(N + 1). The number −1
is written as exp( jπ). Substituting {p, q, r} = {1, 1,−∞} and
Mk = ρk · 2N/(N + 1) into Eq. (3), we have

uk,n = exp( jπ)nMk exp

(
jπ(M

p

k
nq
+ nr )

N

)

= exp

(
2π jn

N

N + 1
ρk

)
exp

(
2π jn

1

N + 1
ρk

)

= exp (2π jnρk) .

(5)

Note that Mk is not always an integer. Thus, the Weyl
sequence class is similar to the set of Oppermann sequences.

The element of the Weyl sequence class, (wk,n) has a
desired property that cross-correlation is low. We define
the periodic correlation function θi,k (l) and odd periodic
correlation function θ̂i,k (l) as

θi,k (l) = Ci,k (l) + Ci,k (l − N), (6)

θ̂i,k (l) = Ci,k (l) − Ci,k (l − N), (7)

where

Ci,k (l) =




N−l∑

n=1

wi,n+lwk,n 0 ≤ l ≤ N − 1,

N+l∑

n=1

wi,nwk,n−l 1 − N ≤ l < 0,

0 |l | ≥ N

(8)

and z is the conjugate of z. The correlation functions θi,k (l)
and θ̂i,k (l) have been studied in [10] [24] [31]. When i , k,
θi,k (l) and θ̂i,k (l) are the periodic function and the odd pe-
riodic cross-correlation function, respectively. It is nec-
essary for achieving high SINR to keep the value of the
cross-correlation functions, |θi,k (l)| and |θ̂i,k (l)| low for all
0 ≤ l < N . The absolute values of cross-correlation func-
tions |θi,k (l)| and |θ̂i,k (l)| have the common upper bound
that

|θi,k (l)| ≤ |Ci,k (l)| + |Ci,k (l − N)|, (9)

|θ̂i,k (l)| ≤ |Ci,k (l)| + |Ci,k (l − N)|. (10)

With the sequences in the Weyl sequence class, we evaluate
the absolute value of Ci,k (l) as

|Ci,k (l)| =

����
1 − exp(2π j(N − l)(ρk − ρi))

1 − exp(2π j(ρk − ρi))

����

=

√
1 − cos(2π(N − l)(ρk − ρi))

1 − cos(2π(ρk − ρi))

=

����
sin(π(N − l)(ρk − ρi))

sin(π(ρk − ρi))

����

≤
1

| sin(π(ρk − ρi))|

=

1

| sin(π(ρi − ρk))|
.

(11)

The equality is attained if and only if

(N − l)(ρk − ρi) =
1

2
+ m, (12)

where m ∈ Z. From the above result, |Ci,k (l)| obeys

|Ci,k (l)| = O (1) , (13)

with O being an order function. Similarly, |Ci,k (l − N)|

obeys O (1). Thus, the common upper bound of |θi,k (l)|

and |θ̂i,k (l)| is independent of N . For general spreading
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sequences, due to the central limit theorem (CLT), the cross-
correlations |θi,k (l)| and |θ̂i,k (l)| become large as N becomes
large. For this reason, compared to general spreading se-
quences, the Weyl spreading sequence is expected to have
low cross-correlation.

3. Optimal Spreading Sequence in Weyl Sequence Class

In this section, we consider an asynchronous binary phase
shift keying (BPSK) CDMA system. Our goal is to derive
the spreading sequences whose inter-symbol interference is
the smallest in the Weyl sequence class. Let K , T and Tc be
the number of users, the durations of the symbol and each
chip, respectively. In this situation, the user i despreads the
spreading sequences (wk,n) with the spreading sequence of
the user i, (wi,n). The symbols bk,−1, bk,0 ∈ {−1, 1} denote
bits which the user k send. The transmitted signal of the user
k has time delay τk . From [32], we assume that time delay
τk is distributed in [0,T ) and satisfies lkTc ≤ τk ≤ (lk +1)Tc,
where lk ∈ {0, 1, . . . , N − 1} is an integer. Then, the inter-
symbol interference between the user i and the user k, Ii,k(τk)

is obtained as

Ii,k(τk) = exp( jφk)
[
(τk − lkTc)

(
bk,−1Ci,k (lk )

+bk,0Ci,k (lk − N)
)
+ ((lk + 1)Tc − τk )

·
{
bk,−1Ci,k (lk + 1) + bk,0Ci,k (lk + 1 − N)

}]
,

(14)

where φk ∈ [0, 2π) is the phase of user k’s carrier. With
Eq. (11), the absolute value of the inter-symbol interference
Ii,k(τk) is evaluated as

|Ii,k (τk)| ≤(τk − lkTc){|Ci,k (lk )| + |Ci,k (lk − N)|}

+((lk + 1)Tc − τk )

·{|Ci,k (lk + 1)| + |Ci,k (lk + 1 − N)|}

≤
2Tc

| sin(π(ρi − ρk))|
.

(15)

Thus, we have shown that the upper bound of inter-symbol
interference between two sequences is inversely proportional
to | sin(πd(ρi−ρk))|. To reduce the inter-symbol interference
Ii,k(τk), it is necessary to reduce 2Tc/| sin(π(ρi − ρk))|. To
eliminate the absolute value function, we introduce the dis-
tance between the phases ρi and ρk . The distance d(ρi, ρk)

we propose here is given by

d(ρi, ρk ) = min{|ρi − ρk |, 1 − |ρi − ρk |}. (16)

Note that this d satisfies the axiom of distance, and

| sin(π(ρi − ρk))| = sin(πd(ρi, ρk)), (17)

0 ≤ d(ρi, ρk) ≤
1

2
(18)

if we regard ρ = 1 in the same light as ρ = 0. From Eq.
(16), we rewrite Eq. (15) without any absolute value as

|Ii,k (τk)| ≤
2Tc

sin(πd(ρi, ρk))
. (19)

We should take into account the whole inter-symbol inter-
ference in the users. The whole inter-symbol interference I

is written as

I =

K∑

i=1

K∑

k=1
k,i

Ii,k . (20)

With Eq. (19), it is clear that |I | has the upper bound:

|I | ≤

K∑

i=1

K∑

k=1
k,i

2Tc

sin(πd(ρi, ρk))
. (21)

Thus, we minimize Eq. (21) and obtain the problem (P̃)

(P̃) min
∑

i=1

∑

k=1
k,i

1

sin(πd(ρi, ρk))

subject to ρk ∈ [0, 1) (1 ≤ k ≤ K).

(22)

This problem is equivalent to that we minimize the sum of the
upper bound of Ci,k (l). Thus, the cross-correlation among
all the users is expected to be always low when we solve this
problem. From Eq. (17), it is clear that d(ρi, ρk ) = d(ρk, ρi).
Then, in the problem (P̃), we count two times the same
distance. Thus, we obtain the equivalent problem (P̃′)

(P̃′) min
∑

i<k

1

sin(πd(ρi, ρk))

subject to ρk ∈ [0, 1) (1 ≤ k ≤ K).

(23)

It is not clear whether the objective function of the problem
(P̃′) is convex or not since the form of function d is com-
plicated. To eliminate the function d, we introduce slack
variables ti,k for (P). Then, the problem (P̃′) is rewritten as

(P̃′′) min
∑

i<k

1

sin(πti,k)
,

subject to ρk ∈ [0, 1) (1 ≤ k ≤ K),

|ρi − ρk | ≥ ti,k (i < k),

1 − |ρi − ρk | ≥ ti,k (i < k),

ti,k ≥ 0 (i < k).

(24)

Without loss of generality, we assume ρk ≤ ρk+1. Then, the
problem (P̃′′) can be rewritten as

(P) min
∑

i<k

1

sin(πti,k)
,

subject to ρk − ρi ≥ ti,k (i < k),

1 − ρk + ρi ≥ ti,k (i < k),

ρi+1 ≥ ρi (1 ≤ i ≤ K − 1),

ρ1 ≥ 0, ρK ≤ 1,

ti,k ≥ 0 (i < k).

(25)

Notice that the objective function and the inequality con-
straints of the problem (P) are convex. It has been known
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that convex programming can be solved with the KKT con-
ditions [33]. To write such conditions, we define the variable
vector x as

ρ =(ρ1, ρ2, . . . , ρK )
T,

t =(t1,2, t1,3, . . . , t1,K, t2,3, . . . , tK−1,K )
T,

x =

(
ρ

t

)
,

(26)

where ρ ∈ RK , t ∈ RK(K−1)/2, x ∈ RK(K+1)/2 and zT is the
transpose of z. From the KKT conditions, the solution x∗ is
a global solution of (P) if x∗ satisfies the following equation:

∇ f (x∗) +
∑

i<k

λi,k∇ci,k(x
∗) +

∑

i<k

µi,k∇di,k (x
∗)

+

K−1∑

i=1

νi∇ei(x
∗) + ξ1∇g1(x

∗)

+ξK∇gK (x
∗) +

∑

i<k

oi,k∇hi,k (x
∗) = 0,

(27)

where

f (x) =
∑

i<k

1

sin(πti,k)
,

ci,k(x) = ti,k + ρi − ρk,

di,k(x) = ti,k − 1 − ρi + ρk,

ei(x) = ρi − ρi+1,

g1(x) = −x1,

gK (x) = xK − 1,

hi,k(x) = −ti,k,

(28)

and the Lagrange multipliers λi,k, µi,k, νi, ξ1, ξK and oi,k are
non-negative real numbers. They have to satisfy the follow-
ing conditions:

ci,k(x) < 0 ⇒ λi,k = 0,

di,k(x) < 0 ⇒ µi,k = 0,

ei(x) < 0 ⇒ νi = 0,

g1(x) < 0 ⇒ ξ1 = 0,

gK (x) < 0 ⇒ ξK = 0,

hi,k(x) < 0 ⇒ oi,k = 0.

(29)

In the appendix A, we prove that the global optimal solutions
ρ∗
i

and t∗
i,k

are given by

ρ∗i = γ +
i − 1

K
(i = 1, 2, . . . ,K),

t∗i,k = min

{
|k − i |

K
, 1 −

|k − i |

K

}
,

(30)

where γ is a real number. From the above result, the optimal
spreading sequence of the user k, (w̃k,n) is given by

w̃k,n = exp

(
2π jn

(
γ +

k − 1

K

))
(31)

for a real number γ. This is equivalent to the following
spreading sequences:

w̃k,n = exp
(
2π jn

(
γ +
σk

K

))
, (32)

whereσk ∈ {0, 1, 2, . . . ,K−1}which satisfiesσk , σi when
k , i. This sequence belongs to the Weyl sequence class.
Therefore, similar to Eq. (5), this sequence is obtained from
the triple {1, 1,−∞} and Mk = 2N(γ + σk/K)/(N + 1) in
the Oppermann sequences. If N = 2(L + 1), K = L + 1
and γ = 1

2 , where L is an even number, then our sequences
are equivalent to the Song-Park (SP) sequences (σk = L + 1
is not used) [34]. If K = N and γ = 0, our sequences are
equivalent to the Sarwate sequences [24].

4. SINR with the Optimal Spreading Sequence

In the previous section, we fix the number of users K and
derive optimal spreading sequences in the Weyl spreading
sequence class. This spreading sequence is expected to be
useful when the number of the users K is fixed. However, the
number of users in a channel changes as time passes. Thus,
in this section, we fix the maximum number of users in a
channel, Kmax and assign the σk ∈ {0, 1, 2, . . . ,Kmax − 1} to
K users.

The spreading sequences assigned to the user k is ex-
pressed as

w̃k,n(Kmax, γ) = exp

(
2π jn

(
γ +

σk

Kmax

))
(n = 1, 2, . . . , N).

(33)

Note that the optimal spreading sequence of the problem (P)
is expressed as

w̃k,n(K, γ) = exp
(
2π jn

(
γ +
σk

K

))
(n = 1, 2, . . . , N).

(34)

In particular, when Kmax = N and γ = 0, this spreading
sequence is equivalent to the Sarwate’s sequence [24]. The
Sarwate’s sequence has the feature that the periodic cross-
correlation function is always 0, that is,

θi,k (l) = Ci,k (l) + Ci,k (l − N) = 0 (35)

for all l and k , i.
When we set Kmax = N , θi,k (0) = 0 for all the γ and k ,

i. Thus, the sequence w̃k,n(N, γ) is the WBE sequence since
the orthogonal condition is satisfied. From the above reason,
we define Kmax as N , that is, we consider the following
sequences

w̃k,n(N, γ) = exp
(
2π jn

(
γ +
σk

N

))
(n = 1, 2, . . . , N). (36)

In this section, we assume that σk is a random variable
and is uniformly distributed in {0, 1, 2, . . . , N − 1}. In the
next section, we consider how to assign σk in a systematic
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approach.
The expression of SINR of the user i is obtained in [32]

[22] as

SINRi =





(6N3)−1
K∑

k=1
k,i

ri,k +
N0

2E





−1/2

, (37)

where

ri,k =

N−1∑

l=0

{|Ci,k (l − N)|2 + Re[Ci,k(l − N)Ci,k (l − N − 1)]

+ |Ci,k (l − N + 1)|2 + |Ci,k (l)|
2

+ Re[Ci,k (l)Ci,k (l + 1)] + |Ci,k (l + 1)|2},

(38)

E is the energy per data bit and N0 is the power of Gaussian
noise. SINR is the ratio between the variance of a desired
signal and the one of a noise signal. In the appendix B, with
the spreading sequence {w̃k,n(N, γ)}, we prove that SINR of
the user i is given by

SINRi =

{
Ri +

N0

2E

}−1/2

, (39)

where

Ri =
(K − 1)

18N2

{
2(N + 1) + (N − 2) cos

(
2π

(
γ +
σi

N

))}
.

(40)

Equation (39) is obtained when the ratio K/N is close to 1,
that is, the number of users K is sufficiently large. From
Eqs. (39) and (40), the spreading sequence {w̃i,n(N, γ)} has
different SINR in σi . Thus, some users have high SINR and
other users have low SINR. The lower bound of SINRi is

SINR
i
=

{
K − 1

6N
+

N0

2E

}− 1
2

. (41)

5. How to Assign σk

In this section, we consider how to assign σk to the each
users. Let us consider the spreading sequences

w̃k,n(N, γ) = exp
(
2π jn

(
γ +
σk

N

))
,

whereσk ∈ {0, 1, . . . , N−1}. From Eq. (30), it is demanded
that we assign σk at regular interval. However, these se-
quences cannot be used if the number of users changes.
Thus, we have to make the rule to assign σk when the num-
ber of users changes.

We give the rule to assign σk in the situation that the
number of users monotonic increases. From the demand of
the problem (P), it is desirable that we assignσk to each users
at regular interval. Thus, it is appropriate to assign them at

nearly regular interval in every number of users. We apply
the Van der Corput sequence [36] to the method to assign
σk since the sequence is a regular interval sequence in some
situations. For example, the Van der Corput sequence (vn)

is obtained as

(vn) =

{
0,

1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,

1

16
, . . .

}
. (42)

In particular, when we take the first eight elements out from
(vn) and sort them, we obtain the sequence

{
0,

1

8
,
2

8
,
3

8
,
4

8
,
5

8
,
6

8
,
7

8

}
. (43)

This sequence is a regular interval sequence. We can con-
sider (vn) as a nearly regular interval sequence.

When the length of spreading sequences N equals 2m,
where m > 1 is an integer, (vn) is rewritten in terms of 1/N .
For example, when N = 16, the sequence (vn) is obtained as

(vn) =

{
0,

8

16
,

4

16
,
12

16
,

2

16
,
10

16
,

6

16
,
14

16
,

1

16
, . . .

}
. (44)

Thus, we propose that we use the k-th element of (vn) as
σk/N , that is, the spreading sequences are expressed as

w̃k,n(N) = exp (2π jn (γ + vk)) , (45)

where vk is the k-th element of (vn).

6. Simulation Results

In this section, we simulate an asynchronous CDMA sys-
tem and discuss the performance of the spreading sequences
obtained by Eqs. (32) (36) (45). We use two parameters
γ = 1/(2N) and γ = 1/(2K). Choosing the parameter
γ = 0, we have a spreading sequence whose elements are 1.
This sequence is trivial. Therefore, to avoid such a sequence,
we use the two cases for γ, γ = 1

2N and γ = 1
2K . We focus

on BPSK and QPSK systems with AWGN channel and no
fading signals. In this simulation, we make the following
assumptions about the receivers and the channel

1. the receiver has the perfect synchronization with the
desired signal and no knowledge about the time delay
of the other signals.

2. there are no fading effects.
3. the time delay τk , the symbols bk,−1 and bk,0, and the

phase θk are normally distributed in [0,T ), {−1, 1}, and
[0, 2π), where T is the duration of each symbol.

4. the spreading sequences are uniformly and randomly
chosen. With the Weyl spreading sequences, the pa-
rameter σk is uniformly and randomly chosen.

5. the matched filter is used in the correlation receiver.

The detail of transmitters and receivers are described in
[19] [22] [32].

We measure the averaged BER
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BER =
1

K

1

U

K∑

k=1

U∑

u=1

BERk,u, (46)

where U is the trial numbers, u is the u-th trial number and
BERk,u is the BER of the user k at the u-th trial. This
section consists of three subsections. In the first subsec-
tion, we compare the spreading sequences obtained by Eq.
(32) and (36) with other sequences, the Gold codes [13], the
optimal Chebyshev spreading sequences [19] and the Op-
permann sequences [27]. In particular, we choose the triple
{p, q, r} = {1.0, 1.0, 1.275} as the parameters of the Opper-
mann sequences. This triple is shown in [27] as the optimal
parameters when N = 31 with N being the length. In the
second subsection, we compare the spreading sequences ob-
tained by Eq. (32) and (36) with one obtained by Eq. (45).
We compare the random assigning approach with the sys-
tematic approach. In the final subsection, we compare the
spreading sequences obtained by Eq. (32) and (36) with the
SP sequences [34].

6.1 Comparison with Other Sequences

We consider the following spreading sequences:

w̃k,n(N, γ) = exp
(
2π jn

(
γ +
σk

N

))
(n = 1, 2, . . . , N),

w̃k,n(K, γ) = exp
(
2π jn

(
γ +
σk

K

))
(n = 1, 2, . . . , N).

The former sequence is obtained from Eq. (36) and the latter
sequence is obtained from Eq. (32). In this section, the
“Weyl” spreading sequence is

{
w̃k,n(N, γ)

}
and the “Opti-

mal” one is
{
w̃k,n(K, γ)

}
. Note that the optimal spreading

sequences are different in the number of users K . The “Upper
Bound” is obtained from Eq. (41).

Figure 1 shows the relation between the number of users
and BER when N = 31 and E/N0 = 25(db), where E is the
energy per data bit. In this figure, we set γ = 1

2N . The
BER of the Weyl spreading sequences is lower than the one
of the Gold codes and the optimal Chebyshev spreading
sequences. However, it is higher than one of the Oppermann
sequences. The upper bound is established when the number
of the users K is larger than 20. On the other hands, the
BER of the global solution of the problem (P), the Optimal
Weyl sequences

{
w̃k,n(K, γ)

}
have the lowest BER. These

sequences are dramatically efficient when the number of the
users K is fixed.

Figure 2 shows the relation between the E/N0(db) and
BER in K = 7. In this figure, the BER of the Weyl spreading
sequences

{
w̃k,n(N,

1
2K )

}
is lower than one of the Opper-

mann sequences. This result shows that BER of the Weyl
spreading sequences is changed when the value of γ is varied.

As a modulation technique, a Quadrature Phase-Shift
Keying (QPSK) modulation is often used. In AWGN chan-
nels, the relation of BER between BPSK and QPSK systems
is known with a given Signal to Noise Ratio (SNR) [35].
Figure 3 shows the relation between the E/N0(db) and BER
in QPSK systems and K = 7. Similar to BPSK systems,

the optimal sequences have the lowest BER in QPSK sys-
tems and the BER of the optimal sequences is independent
of the parameter γ. Further, the BER of Weyl spreading
sequences does not depend on the parameter γ while BER
depends on γ in BPSK systems. This result implies that
the distribution of the inter-symbol interference of the Weyl
spreading sequences is not Gaussian. The reason for this is
stated as follows. In BPSK and QPSK systems, the BER is
known when the SINR is given and inter-symbol interference
obeys Gaussian. As seen in Fig. 2, with the Weyl spreading
sequences, the BER curves depend on γ in BPSK systems.
Therefore, if the distribution of the inter-symbol interference
of the Weyl spreading sequences is Gaussian, then the BER
curves should depend on the parameter γ in QPSK systems.
However, as seen in Fig 3, the BER curves are independent
of the parameter γ in QPSK systems. Thus, we conclude that
the distribution of inter-symbol interference is not Gaussian.

In Section 3, we have shown that the optimal sequences
have an arbitrary parameter γ. It is unknown whether the
BER of the optimal sequences is independent of γ or not
since we minimize the upper bound of inter-symbol interfer-
ence. We numerically verify whether the BER of the opti-
mal sequences is independent of γ or not. We choose the
parameters N = 31 and K = 7 and a system is a BPSK sys-
tem. Figure 4 shows the BER curves in various parameters
γ = {0, 1/(8K), . . . , 7/(8K)}. As seen in Fig 4, each BER of
the optimal sequences is the same. Therefore, we conclude
that the BER of the optimal sequences is independent of the
parameter γ.

6.2 Comparison with Systematic Approaches

In Section 5, we have discussed how to assign the elementσk
to the user k and proposed the method to assign. We set the
length N = 32 and the parameter γ = 1

2N . We compare two
types of Weyl spreading sequences, whose σk is randomly
assigned to user k and whose σk

N
is orderly assigned as the

k-th element of the Van der Corput sequence. Note that
the first K elements of the Van der Corput sequence are
used as σk

N
when the number of the users is K . Figure 5

shows the relation between the number of users and BER
when E/N0 = 25(db). The BER of the spreading sequences
obtained by Eq. (45) is lower than one of the spreading
sequences to which we randomly assign σk . The BER curve
of sequences obtained by Eq. (45) is not smooth. This result
is caused by systematic assignment of σk . From Fig. 5, we
conclude that the Weyl spreading sequences will have better
performance if we successfully assign σk .

6.3 Comparison with SP Sequence

The Song-Park (SP) sequences have been proposed in
[34]. We set the length N = 30 and the number of
the users K = 7. Then, the maximum number of
the users of the SP sequences is 14. Thus, we com-
pare them with four types of the Weyl spreading se-
quences. We choose the parameters as (Kmax, γ) =
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{(30, 1/(2N)), (30, 1/(2K)), (14, 1/(2N)), (14, 1/(2K))}. The
parameter Kmax = 14 represents the situation where the max-
imum number of the users is 14. Thus, the Weyl spreading
sequences

{
w̃k,n(14, γ)

}
have the same feature to the SP se-

quences. Figure 6 shows the relation between the E/N0(db)
and BER. The BER of the Weyl spreading sequences whose
Kmax = 30 is higher than one of the SP sequences. However,
the BER of the Weyl spreading sequences whose Kmax = 14

and one of the SP sequences are the same. Further, the BER
of the Weyl spreading sequences whose Kmax = 14 is the
same BER in different γ. These results could suggest that
the optimal parameter γ will depend on N , K and Kmax. The
BER of the global solutions is lowest and each BER of them
is the same in γ = 1

2N and 1
2K . This result corresponds

to our conclusion that the BER of the optimal sequences is
independent of γ.
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7. Conclusion

In this paper, we have defined the Weyl sequence class and
shown the features of the sequences in the class. We have
constructed the optimization problem: minimize the upper
bound of the absolute value of the whole inter-symbol inter-
ference and derived the global solutions. From this solution,
we can derive other sequences, the Sarwate’s sequences, and
the SP sequences. We also have evaluated their SINR in a
special case and shown the simulation results for an asyn-
chronous CDMA system. From these results, the global
solution is significantly efficient when the number of the
users K is fixed. Moreover, the performance of the global
solution is independent of the parameter γ.

In the global solution of the problem (P), the parameter
γ is any real number. However, its BER depends on γ when
we let the maximum number of users Kmax be N or any
number other than K . The remained issue is to investigate
the optimal γ and how to assign σk successfully to the user
k.

Appendix A

In this appendix, we prove that the global optimal solutions
of (P), ρ∗

i
and t∗

i,k
are given by

ρ∗i = γ +
i − 1

K
(i = 1, 2, . . . ,K),

t∗i,k = min

{
|k − i |

K
, 1 −

|k − i |

K

}
,

(A· 1)

where γ is a real number.

Since the problem (P) is a convex, it is necessary and
sufficient for the global solution to satisfy the KKT condi-
tions, Eqs. (27)-(29).
From Eq. (29), when ρ∗

i
satisfies Eq. (A· 1), it is clearly that

νi = 0 (i = 1, 2, . . . ,K − 1),

oi,k = 0 (i < k)
(A· 2)

since ei(x
∗) < 0 and hi,k(x

∗) < 0. We let ξ1 = ξK = 0. Thus,
it is sufficient to consider only two kinds of the Lagrange
multipliers, λi,k and µi,k . They satisfy the following equation
which is obtained from Eq. (27):

−
∑

i<k

π cos(πt∗
i,k
)

sin2(πt∗
i,k
)

(
0

ei,k

)
+

∑

i<k

λi,k

(
ei − ek

ei,k

)

+

∑

i<k

µi,k

(
−ei + ek

ei,k

)
= 0,

(A· 3)

where ei ∈ R
K have 1 in the i-th element and 0

in the others and ei,k ∈ R
K(K−1)/2 have 1 in the

{i(2K − i − 1)/2 + k − K}-th element and 0 in the others.

From Eq. (A· 3), we consider two vector equations. One
is the first K-dimensional vector equation of Eq. (A· 3) and
the other is the last K(K −1)/2-dimensional vector equation.
They are expressed as

∑

i<k

(λi,k − µi,k )(ei − ek) = 0, (A· 4)

∑

i<k

(
π cos(πt∗

i,k
)

sin2(πt∗
i,k
)
− λi,k − µi,k

)

ei,k = 0. (A· 5)

Then, we define α(t∗
i,k
) as

α(t∗i,k) =
π cos(πt∗

i,k
)

sin2(πt∗
i,k
)
. (A· 6)

Note that α(t∗
i,k
) ≥ 0 since 0 < t∗

i,k
≤ 1

2 . From the defi-
nition of t∗

i,k
, α(t∗

i,k
) only depends on the absolute value of

difference, |k − i |. We therefore rewrite α(t∗
i,k
) as

α(t∗i,k) = α̃(|k − i |). (A· 7)

The variable α̃(|k − i |) has the property that

α̃(k) = α̃(K − k) (1 ≤ k ≤ K). (A· 8)

This result is obtained from the definition of t∗
i,k

. We consider
the two types of K: K is an odd number or K is an even
number.

A.1 K is an odd number

For all i and k (i < k), ρ∗
i
, ρ∗

k
and t∗

i,k
satisfy either only

ci,k(x
∗) = 0 or di,k(x

∗) = 0. They satisfy

ci,k (x
∗) = 0, di,k (x

∗) < 0, (k − i < K/2),

di,k (x
∗) = 0, ci,k(x

∗) < 0, (k − i > K/2),

λi,k =

{
α̃(k − i) (k − i < K/2)

0 (k − i > K/2)
,

µi,k =

{
0 (k − i < K/2)

α̃(k − i) (k − i > K/2)
.

(A· 9)

We consider the n-th element of the left side of Eq. (A· 4).
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∑

n<k

(λn,k − µn,k ) −
∑

i<n

(λi,n − µi,n)

=

∑

n<k
k−n<K/2

λn,k +
∑

i<n
n−i>K/2

µi,n −
∑

i<n
n−i<K/2

λi,n −
∑

n<k
k−n>K/2

µn,k

=

∑

n<k
k−n<K/2

α̃(k − n) +
∑

i<n
n−i>K/2

α̃(n − i)

−
∑

i<n
n−i<K/2

α̃(n − i) −
∑

n<k
k−n>K/2

α̃(k − n)

=

∑

n<k
k−n<K/2

α̃(k − n) +
∑

i<n
n−i>K/2

α̃(K + i − n)

−
∑

i<n
n−i<K/2

α̃(n − i) −
∑

n<k
k−n>K/2

α̃(K + n − k)

=

∑

n<k
k−n<K/2

α̃(k − n) +
∑

i<n
n−i<K/2

α̃(n − i)

−
∑

i<n
n−i<K/2

α̃(n − i) −
∑

n<k
k−n<K/2

α̃(k − n) = 0.

(A· 10)

From Eq. (A· 9), for all the integers i and k, the term in
summation of the left side of Eq. (A· 5) equals 0. From the
above proof, all the Lagrange multipliers satisfy Eq. (29).

A.2 K is an even number

The Lagrange multipliers ρ∗
i
, ρ∗

k
and t∗

i,k
satisfy

ci,k (x
∗) = 0, di,k (x

∗) < 0, (k − i < K/2),

di,k (x
∗) = 0, ci,k(x

∗) < 0, (k − i > K/2),

di,k (x
∗) = 0, ci,k(x

∗) = 0, (k − i = K/2).

(A· 11)

When k − i = K/2, they satisfy ci,k(x
∗) = 0 and di,k(x

∗) = 0.
Thus, we set

λi,k =




α̃(k − i) (k − i < K/2),
α̃(k − i)/2 (k − i = K/2),

0 (k − i > K/2)

µi,k =





0 (k − i < K/2),
α̃(k − i)/2 (k − i = K/2),
α̃(k − i) (k − i > K/2)

(A· 12)

Similar to the case that K is an odd number, we consider the
n-th element of left side of Eq. (A· 4).

∑

n<k

(λn,k − µn,k ) −
∑

i<n

(λi,n − µi,n)

=

∑

n<k
k−n<K/2

λn,k −
∑

n<k
k−n>K/2

µn,k −
∑

i<n
n−i<K/2

λi,n +
∑

i<n
n−i>K/2

µi,n

+

∑

n<k
k−n=K/2

λn,k −
∑

n<k
k−n=K/2

µn,k −
∑

i<n
n−i=K/2

λi,n +
∑

i<n
n−i=K/2

µi,n .

(A· 13)

The terms of the difference equaling K/2 vanish. Therefore,
we obtain

∑

n<k

(λn,k − µn,k ) −
∑

i<n

(λi,n − µi,n)

=

∑

n<k
k−n<K/2

λn,k −
∑

n<k
k−n>K/2

µn,k −
∑

i<n
n−i<K/2

λi,n +
∑

i<n
n−i>K/2

µi,n

=

∑

n<k
k−n<K/2

α̃(k − n) −
∑

n<k
k−n>K/2

α̃(k − n)

−
∑

i<n
n−i<K/2

α̃(n − i) +
∑

i<n
n−i>K/2

α̃(n − i)

=

∑

n<k
k−n<K/2

α̃(k − n) −
∑

n<k
k−n>K/2

α̃(K − k + n)

−
∑

i<n
n−i<K/2

α̃(n − i) +
∑

i<n
n−i>K/2

α̃(K − n + i)

=

∑

n<k
k−n<K/2

α̃(k − n) −
∑

n<k
k−n<K/2

α̃(k − n)

−
∑

i<n
n−i<K/2

α̃(n − i) +
∑

i<n
n−i<K/2

α̃(n − i) = 0.

(A· 14)

Thus, we have proven that Eq. (A· 14) equals to 0. It is clearly
that the left side of Eq. (A· 5) equals 0 when k − i , K/2.
When k − i = K/2, it follows that

α̃(K/2) −
α̃(K/2)

2
−
α̃(K/2)

2
= 0. (A· 15)

Thus, for all the integer i and k, Eq. (A· 5) is satisfied.

From the proofs A and B, we have proven that the
existence of the Lagrange multipliers which satisfy Eq. (29).
Therefore, ρ∗

i
and t∗

i,k
are the global solutions of the problem

(P).

Appendix B

In this appendix, with the spreading sequences {w̃k,n(N, γ)},
we prove that SINR of the user i is given by

SINRi =

{
Ri +

N0

2E

}−1/2

, (A· 16)

where

Ri =
(K − 1)

18N2

{
2(N + 1) + (N − 2) cos

(
2π

(
γ +
σi

N

))}
.

(A· 17)

We assume that the element σk is a random variable uni-
formly distributed in {0, 1, 2, . . . , N −1}. This assumption is
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fulfilled when the ratio K/N is close to 1, that is, the number
of users is sufficiently large since SINR is not the recipro-
cal of the average of the inter-symbol interference over the
users. However, with the spreading sequences {w̃k,n(N, γ)},
they are the same when the number of users K equals N (see
Eq. (A· 28)). Thus, it is conceivable that the assumption is
established when the ratio K/N is close to 1.

The correlation function Ci,k (l) of the spreading se-
quences in Eq. (32) is

Ci,k (l) =




−Zσi,σk
Φγ,σi,σk

(l) 0 ≤ l ≤ N − 1,
Zσi,σk

Φγ,σi,σk
(l) 1 − N ≤ l < 0,

0 |l | ≥ N,

,

(A· 18)

where

Zσi,σk
=

exp
(
2π j

σk−σi

N

)

1 − exp
(
2π j

σk−σi

N

) (A· 19)

and

Φγ,σi,σk
(l) = exp

(
−2π jl

(
γ +
σk

N

))
−exp

(
−2π jl

(
γ +
σi

N

))
.

(A· 20)

Thus, we obtain the squared absolute value of Ci,k (l):

|Ci,k (l)|
2
=

1 − cos
(
2πl

σk−σi

N

)

1 − cos
(
2π σk−σi

N

) . (A· 21)

On the other hand, the following relations are satisfied:

N−1∑

l=0

|Ci,k (l − N)|2 =

N−1∑

l=0

|Ci,k (l − N + 1)|2 =
N−1∑

l=0

|Ci,k (l) |
2

=

N−1∑

l=0

|Ci,k (l + 1) |2 =
N

1 − cos
(
2π σk−σi

N

) ,

(A· 22)

N−1∑

l=0

Re[Ci,k (l − N)Ci,k (l − N + 1)]

=

N
{
cos

(
2π

(
γ +

σk

N

) )
+ cos

(
2π

(
γ +

σi

N

) )}

2
(
1 − cos

(
2π σk−σi

N

) ) ,

(A· 23)

and

N−1∑

l=0

Re
[
Ci,k (l − N)Ci,k (l − N + 1)

]

=

N−1∑

l=0

Re
[
Ci,k (l)Ci,k (l + 1)

]
.

(A· 24)

In the above equations, we used the assumption σi , σk .
From Eqs. (A· 22)-(A·24), ri,k in Eq. (38) is given by

ri,k =
N

1 − cos
(
2π σk−σi

N

)

·
{
4 + cos

(
2π

(
γ +
σk

N

))
+ cos

(
2π

(
γ +
σi

N

))}
.

(A· 25)

When we calculate the sum of Eq. (A· 25), the first term of
it is given by

∑

k=1
k,i

4N

1 − cos
(
2π σk−σi

N

) =
∑

k=1
k,i

2N

sin2
(
π
σk−σi

N

) . (A· 26)

The integer σk ∈ {0, 1, 2, . . . , N − 1} is a random variable
and satisfies σk , σi when k , i. Thus, σk is expressed as

σk = (σi + q) mod N, q ∈ {1, 2, . . . , N − 1}. (A· 27)

and we can treat q as a random variable instead of σk . The
integer q is uniformly distributed in {1, 2, . . . , N − 1}. Thus,
the average of Eq. (A· 26) is

E





∑

k=1
k,i

2N

sin2
(
π
σk−σi

N

)





=

∑

k=1
k,i

E

{
2N

sin2
(
π
σk−σi

N

)

}

=

∑

k=1
k,i

1

N − 1

N−1∑

q=1

2N

sin2(π
q

N
)

=

K − 1

N − 1

N−1∑

q=1

2N

sin2
(
π

q

N

) ,

(A· 28)

where E is the average over σk .
In [37], it is shown that

n−1∑

k=1

1

sin2(π k
n
)
=

n2 − 1

3
=

(n − 1)(n + 1)

3
. (A· 29)

Thus, Eq. (A· 28) is equivalent to

K − 1

N − 1

N−1∑

q=1

2N

sin2
(
π

q

N

) =
2N (N + 1) (K − 1)

3
. (A· 30)

From the above result, we obtain the following relation

E





∑

k=1
k,i

4N

1 − cos
(
2π σk−σi

N

)





=

2N (N + 1) (K − 1)

3
.

(A· 31)

The average of the second term of the sum of Eq. (A· 25) is
given by
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∑

k=1
k,i

E

{
N cos

(
2π

(
γ +

σk

N

) )

1 − cos
(
2π σk−σi

N

)

}

=

K − 1

N − 1

N−1∑

q=1

N

2 sin2
(
π

q

N

) cos
(
2π

(
γ +
σi + q

N

))

=

N(K − 1)

N − 1

N−1∑

q=1

{
cos

(
2π

(
γ +

σi

N

) )
cos

(
2π q

N

)

2 sin2
(
π

q

N

)

−
sin

(
2π

(
γ +

σi

N

) )
sin

(
2π q

N

)

2 sin2
(
π

q

N

)

}

=

N(K − 1)

N − 1

N−1∑

q=1

{
cos

(
2π

(
γ +

σi

N

) ) (
1 − 2 sin2

(
π

q

N

) )

2 sin2
(
π

q

N

)

−
sin

(
2π

(
γ +

σi

N

) )
cos

(
π

q

N

)

sin
(
π

q

N

)

}

.

(A· 32)

Note that it is clear that

N−1∑

q=1

cos
(
π

q

N

)

sin
(
π

q

N

) = 0. (A· 33)

Therefore, Eq. (A· 32) is rewritten as

N(K − 1)

N − 1
cos

(
2π

(
γ +
σi

N

)) N−1∑

q=1

{
1

2 sin2
(
π

q

N

) − 1

}

=N(K − 1)

(
N + 1

6
− 1

)
cos

(
2π

(
γ +
σi

N

))

=

N(N − 5)(K − 1)

6
cos

(
2π

(
γ +
σi

N

))
.

(A· 34)

Thus, the sum of the average of the second term in Eq.
(A· 25) is written as

K∑

k=1
k,i

E

{
N cos

(
2π

(
γ +

σk

N

) )

1 − cos
(
2π σk−σi

N

)

}

=

N(N − 5)(K − 1)

6
cos

(
2π

(
γ +
σi

N

))
(A· 35)

Similarly, we obtain the average of the sum of the third term
of Eq. (A· 25):

E





∑

k=1
k,i

N cos
(
2π

(
γ +

σi

N

) )

1 − cos
(
2π σk−σi

N

)





=

K − 1

N − 1

N−1∑

q=1

N cos
(
2π

(
γ +

σi

N

) )

2 sin2
(
π

q

N

)

=

N(N + 1)(K − 1)

6
cos

(
2π

(
γ +
σi

N

))
.

(A· 36)

Finally, we obtain the following relation

E




∑

k=1
k,i

N
(
cos

(
2π

(
γ +

σk

N

) )
+ cos

(
2π

(
γ +

σi

N

) ) )

1 − cos
(
2π σk−σi

N

)




=

N(N − 2)(K − 1)

3
cos

(
2π

(
γ +
σi

N

))
.

(A· 37)

From Eq. (A· 31) and Eq. (A· 37), we arrive at SINR of the
user i with the spreading sequence (w̃k,n)

SINRi =

{
Ri +

N0

2E

}−1/2

, (A· 38)

where

Ri =
(K − 1)

18N2

{
2(N + 1) + (N − 2) cos

(
2π

(
γ +
σi

N

))}
.

(A· 39)
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