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PAPER
Heterogeneous Delay Tomography for Wide-Area Mobile Networks∗

Hideaki KINSHO†a), Rie TAGYO†, Daisuke IKEGAMI†, Members, Takahiro MATSUDA††, Senior Member,
Jun OKAMOTO†, and Tetsuya TAKINE†††, Members

SUMMARY In this paper, we consider network monitoring techniques
to estimate communication qualities in wide-area mobile networks, where
an enormous number of heterogeneous components such as base stations,
routers, and servers are deployed. We assume that average delays of neigh-
boring base stations are comparable, most of servers have small delays, and
delays at core routers are negligible. Under these assumptions, we propose
Heterogeneous Delay Tomography (HDT) to estimate the average delay at
each network component from end-to-end round trip times (RTTs) between
mobile terminals and servers. HDT employs a crowdsourcing approach to
collecting RTTs, where voluntary mobile users report their empirical RTTs
to a data collection center. From the collected RTTs, HDT estimates aver-
age delays at base stations in the Graph Fourier Transform (GFT) domain
and average delays at servers, by means of Compressed Sensing (CS). In
the crowdsourcing approach, the performance of HDT may be degraded
when the voluntary mobile users are unevenly distributed. To resolve this
problem, we further extend HDT by considering the number of voluntary
mobile users. With simulation experiments, we evaluate the performance
of HDT.
key words: delay tomography, graph Fourier transform (GFT), compressed
sensing (CS), crowdsourcing, mobile network

1. Introduction

Increased traffic volume due to the spread of mobile com-
munication technologies and services leads to degradation
of Quality of Service (QoS) such as throughput, packet loss
rate, and delay in mobile networks. In such a situation, net-
work monitoring is an important technique to maintain and
design mobile networks. We consider network monitoring
in wide-area mobile networks such as Long Term Evolu-
tion (LTE) networks, composed of an enormous number of
heterogeneous network components such as base stations,
routers in the core network, and servers that mobile termi-
nals connect. In order to identify which components affect
QoS degradation, we utilize network tomography [1]–[11],
where network internal characteristics such as packet loss
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rates and delays are estimated from end-to-end measure-
ments. Network tomography is a promising approach in
the wide-area mobile network monitoring because it does
not need to implement a measurement tool in each network
component. Although a lot of network tomography schemes
have been proposed, these schemes aim at estimating QoS of
homogeneous network components such as link delays. In
other words, the existing schemes are inapplicable in wide
area mobile networks with heterogeneous components.

In this paper, we consider delay tomography, the es-
timation of the average delay at each network component
from end-to-end round trip times (RTTs). The relationship
between delays and RTTs is formulated by a system of lin-
ear equations, and delays will be estimated from it. When
applying delay tomography to a wide-area mobile network,
however, we have to consider two technical issues: how to
collect empirical RTTs and how to estimate network internal
characteristics. This paper proposes Heterogeneous Delay
Tomography (HDT) to resolve these issues.

As for the collection of empirical RTTs, we have two
approaches: active and passive measurements. In the active
measurement, to collect empirical RTTs, probe packets are
injected into the network from ameasurement node deployed
at the edge of the network. On the other hand, in the passive
measurement, RTTs of user traffic are collected. The active
measurement may not be suitable in wide-area mobile net-
works because an enormous measurement nodes have to be
deployed so as to collect measurement data from the whole
network. HDT utilizes a crowdsourcing approach, which is
a kind of passive measurement methods with the help of vol-
untary mobile users. In the crowdsourcing approach, each
voluntary mobile user implements a measurement tool in
its mobile terminal, and reports RTTs measured during its
sessions to a data collection center.

As for the estimation of the average delay, we have
to resolve the rank deficiency problem and the heterogeneity
problem of delays. The rank deficiency problemmeans that a
system of linear equations for average delays is not full-rank
even if all possible measurement paths are used. In other
words, there are infinitely many candidates of the solution
(i.e., an underdetermined linear inverse problem). On the
other hand, the heterogeneity problem means that different
types of network components have different statistical char-
acteristics of delays. To the best of our knowledge, there have
been no tomography schemes for the heterogeneity problem.

This paper considers a simple mobile network model
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Fig. 1 Network model.

composed of base stations, core routers, and servers (see
Fig. 1) under the following assumption.

Assupmption 1 We assume that

(i) delays at base stations are spatially dependent and av-
erage delays at neighboring base stations are compa-
rable,

(ii) delays at core routers are negligible, and
(iii) only a few servers have large average delays.

Assumption (i) indicates that the geographical distribution
of mobile users connecting to base stations are spatially de-
pendent. Readers may refer to [12] for traffic characteristics
in large-scale mobile networks. By assumption (iii), we con-
sider that there are only a few popular servers in the mobile
network.

Under these assumptions, HDT utilizes Compressed
Sensing (CS) [13], [14] and Graph Fourier Trans-
form (GFT) [15], [16]. CS can resolve the underdetermined
linear inverse problem with a prior knowledge that the true
solution is a sparse vector. GFT is an emerging signal pro-
cessing technique for signals defined on graphs [16]. By
assumption (i), we can represent average delays at base sta-
tions as an approximately sparse vector in GFT domain.
Further, by assumption (iii), we can represent average delays
at servers as an approximately sparse vector. Based on these
facts, HDT estimates average delays at base stations in the
GFTdomain and average delays at serverswithCS.Although
many network tomography schemes have been proposed, to
the best of our knowledge, there have been no methods to
solve the heterogeneity problem except for HDT.

In the crowdsourcing approach to collecting empirical
RTTs, measurement paths with more voluntary mobile users
contribute to finer estimation of average delays. The perfor-
mance of HDT, however, may be degraded due to the user
heterogeneity problem. In [17], HDT without considering
the user heterogeneity is proposed, which is referred to as
HDT with unweighted estimation in this paper. In order to
improve robustness against the user heterogeneity, we extend
HDTwith unweighted estimation toHDTwithweighted esti-
mation, where the number of voluntary mobile users in each
path is taken into account.

The rest of this paper is organized as follows. We re-
view related work in Sect. 2. In Sect. 3, we explain CS and

GFT briefly. In Sect. 4, we explain HDT with unweighted
and weighted estimation. In Sect. 5, we evaluate the perfor-
mance of the proposed scheme with simulation experiments.
Finally, we conclude the paper in Sect. 6.

2. Related Work

There have been several types of network tomography such
as traffic matrix estimation [18], network topology esti-
mation [19], estimation of network-internal link or node
level characteristics such as packet loss rates and de-
lays [1], [2], [4]–[11], [19]. Network tomography for es-
timating packet loss rates is referred to as loss tomography
and network tomography for estimating delay characteristics
is referred to as delay tomography. In this paper, we focus
on delay tomography schemes.

Some delay tomography schemes aim at estimating the
probability distributions of delays and can be classified into
parametric [2], [9] and non-parametric schemes [5], [11]. In
the parametric schemes, network internal delays aremodeled
with a certain probability distribution with the finite num-
ber of parameters. On the other hand, the non-parametric
schemes do not presume a specific probability distribution.
In [2], link delays are modeled with a mixture of probability
distributions and it is estimated by the General Method of
Moments. In [9], link delays are also modeled with a mixture
of probability distributions and it is estimated with an Ex-
pectation Maximization (EM) algorithm. In [5], link delays
are modeled with a non-parametric discrete distribution and
it is estimated by using multicast measurements. In [11],
link delays are modeled with a non-parametric multinomial
distribution and it is estimated with an EM algorithm.

CS is applied to both loss tomography [6], [7], [10] and
delay tomography [4], [8]. Delay tomography schemes with
CS aim at estimating average delays, rather than their distri-
butions. In [4], identifiability of a delay tomography scheme
with CS is discussed. In [8], the synchronization-free delay
tomography based on CS is proposed so as to resolve the
synchronization problem between source and receiver mea-
surement nodes. In HDT we propose, CS is used to estimate
average delays. HDT, however, is different from existing
schemes because it can estimate average delays with differ-
ent statistical characteristics, i.e., HDT can estimate delays
at base stations and servers with CS by applying graph signal
processing to base station delays.

3. Preliminary

In this section, we explain CS and GFT briefly. These meth-
ods are utilized in HDT to estimate delays at base stations
and servers. With regard to HDT, we explain the detail in
Sect. 4.

3.1 Graph Fourier Transform (GFT) [16]

Let G = {V, E} denote an undirected, connected graph with
N nodes, where V = {vn | n = 1, 2, . . . , N } and E ⊆ V ×
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Fig. 2 An example of spatially dependent graph signals.

V denote the sets of nodes and links, respectively. We
define A and D as an N × N adjacency matrix of G and
an N × N diagonal matrix, respectively, where the (i, j)-th
(i, j = 1, 2, . . . , N) component ai, j of A and the i-th (i =
1, 2, . . . , N) diagonal component di ofD are given by

ai, j =



1, if (vi, vj ) ∈ E,
0, otherwise,

di =

N∑
j=1

ai, j .

Graph Laplacian is defined as L = D −A. Let λi and
ui (i = 1, 2, . . . , N ) denote the i-th eigenvalue of L and an
eigenvector associated with λi . BecauseL is a real, symmet-
ric, irreducible matrix, we can set 0 = λ1 < λ2 ≤ · · · ≤ λN

[20] and choose ui (i = 1, 2, . . . , N) to be orthonormal. We
define an orthonormal matrix U = (u1 u2 · · · uN ), that is,
U>U = UU> = IN , where IN denotes an N × N identity
matrix.

We define x = (x1 x2 · · · xN )> as a graph signal on
V , where the n-th (n = 1, 2, . . . , N) component xn is a signal
associated with node vn ∈ V . With the orthonormal matrix
U , x can be represented uniquely by

x = f1u1 + f2u2 + · · · + fNuN = Uf,

where f = ( f1 f2 · · · fN )> is referred to as Graph Fourier
Transform (GFT) of x and U is referred to as an IGFT (In-
verse GFT) matrix.

Suppose graph signalx is spatially dependent and nodes
within a smaller distance have more comparable values. In
such a case, the GFT of x is known to be sparse, i.e., most of
the components in x are zeros exactly or can be regarded as
zeros approximately. Figure 2 shows an example of spatially
dependent graph signals, where nodes in darker area have
larger values, and Fig. 3 shows the GFT of the graph signal,
which can be represented as an approximately sparse vector.

3.2 Compressed Sensing (CS) [13], [14]

Suppose a vector y ∈ RM is given by a linear transformation
of vector x ∈ RN :

y = Ax, (1)

where M and N are natural numbers and A denotes an

Fig. 3 Graph Fourier Transform of the graph signal in Fig. 1.

M × N real matrix. We consider a linear inverse problem to
estimate x from given y and A. Note that if rank A < N ,
the solution of (1) is not unique. CS is applicable in such a
situation, where CS selects a sparse solution, assuming x is
a sparse vector.

For p ≥ 1, we define `p-norm ‖x‖p of x as ‖x‖p =
(
∑N

i=1 |xi |
p)1/p . In CS, if x is exactly sparse, we obtain an

estimation x̂`1 of x by solving the following `1 optimization
problem:

min
x
‖x‖1 subject to Ax = y.

On the other hand, if x is approximately sparse, we obtain
an estimation x̂`1-`2 of x by solving the following `1-`2
optimization problem [21]:

x̂`1-`2 = arg min
x

(
1
2
‖Ax − y‖22 + η‖x‖1

)
,

where η denotes a positive parameter.

4. Heterogeneous Delay Tomography in Mobile Net-
work

4.1 Network Model

We introduce some notations/quantities related to our net-
work model in Fig. 1. Let VB = {b1, b2, . . . , bNB } denote a
set of base stations, where NB denotes the number of base
stations. We also define VS = {s1, s2, . . . , sNS } as a set
of servers, where NS denotes the number of servers. Let
M denote the number of paths, and let P = {pm | m =
1, 2, . . . , M } denote the set of paths, where pm = (im, jm)
(m = 1, 2, . . . , M) is given by a pair of a base station
bim ∈ VB and a server s jm ∈ VS. For later use, we intro-
duce functions BS(m) and Server(m) for path pm = (im, jm)
(m = 1, 2, . . . , M).

BS(m) = im, Server(m) = jm.

Let Nm (m = 1, 2, . . . , M) denotes the number of vol-
untary mobile users transmitting packets on path pm and
we call the k-th (k = 1, 2, . . . , Nm) mobile user on pm
(m = 1, 2, . . . , M) user (m, k). User (m, k) transmits a packet
to server s jm via base station bim and the server transmits
its reply packet to the user. RTTs are measured at mobile
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terminals of the mobile users. We assume that delays in the
core network and in mobile terminals are negligibly small.
RTT z between a base station and a server is then given by

z = delayup + delayserver + delaydown, (2)

where delayup and delaydown denote delays at the base sta-
tion on the uplink and downlink directions, respectively, and
delayserver denotes a delay at the server.

By setting delayBS = delayup + delaydown, (2) is rewrit-
ten to be

z = delayBS + delayserver,

where delayBS and delayserver are referred to as BS delay and
server delay, respectively. Let Xi (bi ∈ VB) andYj (s j ∈ VS)
denote random variables for BS delay at base station bi and
server delay at server s j , respectively. Also, let µbi and
σ2
bi

denote the mean and the variance of Xi , respectively,
and let µsj and σ2

sj
denote the mean and the variance of Yj ,

respectively.

4.2 Crowdsourcing for Collecting Empirical RTTs

To collect empirical RTTs, we utilize crowdsourcing, which
is a concept of outsourcing tasks to an undetermined crowd
of people [22]. In the proposed delay tomography scheme,
each voluntary mobile user implements a measurement tool
in its mobile terminal and reports empirical RTTs to a data
collection center. In what follows, voluntary mobile users
are referred to as measurement users.

Crowdsourcing is a promising technique for data col-
lection and it is utilized in many applications such as QoE
assessment systems [22], [23] andmobile crowdsensing [24].
Note that crowdsourcing is cost-effective because any mea-
surement nodes need not to be deployed in the network. It,
however, has several issues such as privacy protection, in-
creased traffic, battery consumption and user incentives [25].
Due to these issues, the number of measurement users is not
always large, and then it causes user heterogeneity, i.e., mea-
surement users are unevenly distributed over base stations.
Therefore the number of data collected by using crowdsourc-
ing has bias. In this paper, in order to estimate delays under
the condition, we focus on the unreliability problem due to
user heterogeneity, which will be discussed in Sect. 4.5.

4.3 Problem Formulation

Let zm,k denote an RTT measured by measurement user
(m, k).

zm,k = x (pm )
im,k
+ y

(pm )
jm,k

,

where x (pm )
im,k

and y (pm )
jm,k

denote a BS delay at base station bim
and a server delay at server s jm , respectively, of user (m, k).
We define zm (m = 1, 2, . . . , M) as the average of empirical
RTTs on path m.

zm =
1

Nm

Nm∑
k=1

zm,k = x (pm )
im
+ y

(pm )
jm

, (3)

where x (pm )
im

and y (pm )
jm

are given by

x (pm )
im
=

1
Nm

Nm∑
k=1

x (pm )
im,k

, y
(pm )
jm
=

1
Nm

Nm∑
k=1

y
(pm )
jm,k

.

To proceed further, we introduce some notations. We
define Nbi and Nsj as the numbers of measurement users
that pass through bi and s j , respectively.

Nbi =
∑

pm ∈Pbi

Nm, Nsj =
∑

pm ∈Ps j

Nm,

where Pbi and Psj denote sets of paths that pass through
bi ∈ VB and s j ∈ VS.

Pbi = {pm ∈ P | BS(m) = i},
Psj = {pm ∈ P | Server(m) = j}.

We then define xi (i = 1, 2, . . . , NB) and yj ( j = 1, 2, . . . , NS)
as

xi =
1

Nbi

∑
pm ∈Pbi

Nm∑
k=1

x (pm )
im,k
=

∑
pm ∈Pbi

Nm

Nbi

· x (pm )
im

, (4)

yj =
1

Nsj

∑
pm ∈Ps j

Nm∑
k=1

y
(pm )
jm,k
=

∑
pm ∈Ps j

Nm

Nsj

· y
(pm )
jm

.

Note here that x (pm )
im

, y (pm )
jm

, xim , and yjm are unbiased, i.e.,

E(x (pm )
im

) = E(xim ) = µbim
, E(y (pm )

jm
) = E(yjm ) = µsjm .

We define νm (m = 1, 2, . . . , M) as

νm = x (pm )
im
+ y

(pm )
jm

− xim − yjm . (5)

(3) is then rewritten to be

zm = xim + yjm + νm. (6)

Let z = (z1 z2 · · · zM )>, x = (x1 x2 · · · xNB )>, y =
(y1 y2 · · · yNS )>, and ν = (ν1 ν2 · · · νM )>, which we call
measurement vector, BS delay vector, server delay vector,
and noise vector, respectively. We then have

z = RBx +RSy + ν, (7)

where RB denotes an M × NB matrix whose (m, i)-th com-
ponent is set to be 1 if i = BS(m), and otherwise 0, andRS
denotes an M × NS matrix whose (m, j)-th component is set
to be 1 if j = Server(m), and otherwise 0.

The problem studied in this paper is to estimate BS
delay vector x and server delay vector y from measurement
vector z. Asmentioned in Sect. 1, (7) has the rank deficiency
problem [17]. To see this, we consider an ideal situation that
ν = 0, i.e.,
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z = RBx +RSy =
(
RB RS

) (
x
y

)
. (8)

Obviously, M ≤ NBNS, and the equality holds if all pairs of
base stations and servers are used as measurement paths.

Theorem 1 (Theorem 1 in [17]) Let R denote an M ×
(NB + NS) matrix given by R = (RB RS). We then have
rankR < NB + NS for all M = 1, 2, . . . , NBNS.

Proof. By definition, the m-th (m = 1, 2, . . . , M) row vector
of RB (resp, RS) is a unit vector with one at the BS(m)-
th (resp. Server(m)-th) position. We then have RB1M =

RS1M = 1M , where 1M denotes an M × 1 vector whose
components are all equal to one. This implies that (NB+NS)
column vectors ofR are linearly dependent, from which the
theorem follows. �

Theorem 1 indicates that we cannot determine x and y
uniquely from (8) even if all measurement paths pm (m =
1, 2, . . . , NBNS) are used. In what follows, we propose two
estimating schemes: unweighted estimation and weighted
estimation, under Assumption 1 stated in Sect. 1.

4.4 HDT with Unweighted Estimation [17]

We present a naive delay estimation using GFT and CS ex-
plained in Sect. 3.

4.4.1 Delay Estimation Using Graph Fourier Transform
and Compressed Sensing

Let GB = (VB, EB) denote an undirected graph for base
stations, where VB = {bi | i = 1, 2, . . . , NB} and EB ⊂
VB × VB. Let e ∈ EB denote a virtual link between two
base stations. We define αi ∈ R

2 as the location of base
station bi and dist(αi1,αi2 ) = ‖αi1 −αi2 ‖2 as the Euclidean
distance between base stations bi1 and bi2 . For bi1, bi2 ∈ VB,
(bi1, bi2 ) ∈ EB if and only if dist(αi1,αi2 ) ≤ Dth.

Let UB denote an IGFT matrix of GB. (7) is then
rewritten to be

z = RBUBf +RSy + ν, (9)

where f denotes the GFT of x.
Under Assumption 1 (iii), server delay vector y are ap-

proximately sparse. Furthermore, Assumption 1 (i) implies
that the GFT f of BS delay vectorx is approximately sparse.
We thus have

f = fsparse + ∆f, y = ysparse + ∆y, (10)

where fsparse and ysparse are sparse vectors, and ∆f and ∆y
denote error terms such that ‖∆f ‖2 � 1 and ‖∆y‖2 � 1.

Using (10), we re-define f and y as f := fsparse and
y := ysparse. It then follows from (9) that

z = RBUBf +RSy + ω, (11)

where ω = RBUB∆f + RS∆y + ν. By regarding ω as a

Algorithm 1: Iterative algorithm for (12).
Input : RB,RS,UB, η1, η2, measurement vector z ∈ RM ,

and the stopping criteria ε (ε > 0).
Output: Estimated BS delay vector in the GFT domain f̂ ∈ RNB

Estimated server delay vector ŷ ∈ RNS .
ŷ := 0NS , f̂ := 0NB .
repeat

fprev := f̂ , yprev := ŷ.
f̂ :=

arg min
f

(
1
2
‖z −RBUBf −RSŷ‖

2
2 + η1‖f ‖1

)
.

ŷ := arg min
y

(
1
2
‖z −RBUBf̂ −RSy‖

2
2 + η2‖y‖1

)
.

until

*
,

‖f̂ − fprev‖2
‖fprev‖2

≤ ε+
-
∧

(
‖ŷ − yprev‖2
‖yprev‖2

≤ ε

)
.

noise vector, we can estimate them from z by using CS. Let f̂
and ŷ denote estimated vectors of f and y, respectively. We
obtain f̂ and ŷ by solving the following `1-`2 optimization
problem:

(f̂, ŷ) = arg min
f,y

{1
2
‖z −RBUBf −RSy‖

2
2

+ η1‖f ‖1 + η2‖y‖1

}
, (12)

where ηi (i = 1, 2) are positive parameters. Note that an
estimation x̂ of BS delay vector x is obtained by x̂ = UBf̂ .
We solve (12) by Algorithm 1, where we estimate f̂ and
ŷ iteratively until the convergence criteria are met. In this
paper, we use FISTA (First Iterative Shrinkage-Thresholding
Algorithm) [14], [26] to estimate f̂ and ŷ.

4.5 HDT with Weighted Estimation

In general, measurement users are unevenly distributed over
base stations and popular servers are connected from many
mobile users. Therefore it is natural that the numbers Nm’s
of measurement users on different paths would be different
from each other, which we call user heterogeneity.

Note that the unweighted estimation in Sect. 4.4 treats
the average delays zm’s of all paths equally, regardless of
the values of Nm, as shown in (3), (9), and (12). We first
show that user heterogeneity yields large variance in the un-
weighted estimation, and thenwe propose aweighted estima-
tion method so as to alleviate the effect of user heterogeneity.

4.5.1 Effect of the Number of Measurement Users

We demonstrate that user heterogeneity degrades the per-
formance of the unweighted estimation. For simplicity, we
assume that {x (pm )

im,k
} and {y (pm )

jm,k
} are independent identically

distributed samples from their respective distributions. It
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then follows from (5) that the first two moments of noise
factor νm of path m are given by E[νm] = 0 and

E[ν2
m] = E[(x (pm )

im
− xim )2] + E[(y (pm )

jm
− yjm )2]

=
1 − βB

m

βB
m

·
σ2
bim

Nbim

+
1 − βS

m

βS
m

·
σ2
sjm

Nsjm

, (13)

where βB
m (resp. βS

m) denotes the ratio of the number Nm

of measurement users on path m to the total number Nbim

(resp. Nsjm ) of measurement users accessing base station
im = BS(m) (resp. server jm = Server(m)).

βB
m =

Nbim

Nm
, βS

m =
Nsjm

Nm
.

Note that factor σ2
bim

/Nbim
(resp. σ2

sjm
/Nsjm ) in (13) is

common for all paths with base station bim (resp. server
s jm ), and the (1 − βB

m)/βB
m and (1 − βS

m)/βS
m determine

the contribution of the common factors to the variance
E[v2

m]. For example, consider two paths m1 and m2 such that
BS(m1) = BS(m2) = b1 and βB

m1 < βB
m2 (i.e., Nm1 < Nm2 ).

We then have

1 − βB
m1

βB
m1

/ 1 − βB
m2

βB
m2

>
βB
m2

βB
m1

=
Nm2

Nm1

.

Note that a similar observation can be made for server delay.
The above discussion shows that the average of empirical
RTTs on a path with relatively small numbers of measure-
ment users has relatively large variance. Therefore, if we
deal with all paths equally, the accuracy of the estimation
may be degraded due to large variance of the noise term in
paths with small numbers of measurement users. In what
follows, we propose a weighted estimator so as to alleviate
the effect of user heterogeneity.

4.5.2 Weighted Estimation According to the Number of
Measurement Users

We first identify the theoretically optimal weights. Let X
denote a random variable with mean µ and variance σ2

and there are N samples of X (which may represents a
BS delay or a server delays). We divide the N samples
into K groups Qk = {qk,1, qk,2, . . . , qk,Nk

} (k = 1, 2, . . . , K),
where qk,n (n = 1, 2, . . . , Nk) denotes the n-th sample in Qk .
Let qk = (qk,1 + qk,2 + . . . ,+qk,NK )/Nk (k = 1, 2, . . . , K).
Note that qk is a random variable with mean µ and variance
σ2/Nk . For a set of qk (k = 1, 2, . . . , K), an estimator µ̂ of µ
is called Best Linear Unbiased Estimator (BLUE) if (i) µ̂ is a
linear function of qk (k = 1, 2, . . . , K), (ii) µ̂ is unbiased (i.e.,
E[µ̂] = µ), and (iii) the variance of µ̂ is minimum among all
estimators satisfying (i) and (ii).

Theorem 2 The BLUE µ̂ of µ is given by

µ̂ =

K∑
k=1

Nk

N
· qk .

Proof. Due to the shortage of space, we only provide an
outline of the proof. It is clear that a linear estimator
µa =

∑K
k=1 akqk is unbiased iff

∑K
k=1 ak = 1. Furthermore,

the variance σ2
a of µa is given by σ2

a = σ2 ∑K
k=1 a2

k
/Nk .

Therefore {ak ; k = 1, 2, . . . , K } for the BLUE is given by
the solution of the following linear optimization problem.

min
K∑
k=1

a2
k

Nk
subject to

K∑
k=1

ak = 1.

It is easy to verify that the solution of the above problem is
ak = Nk/N (k = 1, 2, . . . , K). �

Theorem 2 suggests that if x (pm )
im

(pm ∈ Pbi ) and
y

(pm )
jm

(pm ∈ Psj ) were given, it would be reasonable to
adopt the BLUEs of xi and yj :

xi =
∑

pm ∈Pbi

Nm

Nbi

· x (pm )
i , yj =

∑
pm ∈Ps j

Nm

Nsj

· y
(pm )
j .

Note here that the contributions of x (pm )
i and y

(pm )
j to xi

and yj in the BLUEs are proportional to the number Nm of
measurement users of path pm. Keeping this in mind, we
propose weighted estimation as follows.

We define z∗m (m = 1, 2, . . . , M) as z∗m =
∑Nm

k=1 zm,k . It
then follows from (3) and (6) that

z∗m =
Nm∑
k=1

(
x (pm )
im,k
+ y

(pm )
jm,k

)
= Nmx (pm )

im
+ Nm y

(pm )
jm

= Nmxim + Nm yim + Nmνm. (14)

LetN ∗ denote an M ×M diagonal matrix whose m-th (m =
1, 2, . . . , M) diagonal component is given by Nm. (14) is
then rewritten to be

z∗ =N ∗RBx +N
∗RSy +N

∗ν

= R∗BUBf +R
∗
Sy +N

∗ν,

where z∗ = (z∗1 z∗2 · · · z∗M )> and

R∗B =N
∗RB, R∗S =N

∗RS.

As in unweighted estimation, f and y are estimated by solv-
ing the following `1-`2 optimization problem:

min
f,y

1
2
‖z∗ −R∗BUBf −R

∗
Sy‖

2
2 + η

∗
1‖f ‖1 + η

∗
2‖y‖1,

(15)

where η∗1, η
∗
2 denote positive parameters. Note that (15) is

equivalent to (12) if N1 = N2 = · · · = NM .

5. Simulation Experiments

We validate the proposed scheme with unweighted/weighted
estimation by conducting simulation experiments.

5.1 Experimental Setup

In all simulation experiments, we assume NB = 100 and
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NS = 10. Figure 4 shows base stations deployed on the grid
in 3000 [m] × 3000 [m] area. We set Dth = 300 [m] to
establish virtual links.

At base station bi ∈ VB, delays are generated accord-
ing to an exponential distribution with mean µbi . De-
lays at base stations are spatially dependent, as shown in
Fig. 4 where base stations on darker areas have larger av-

Fig. 4 Graph structure of base stations and a spatially dependent delay
distribution.

Fig. 5 GFTs of BS delays (upper), BS delays (middle), and server delays in the proposed scheme with unweighted estimation.

erage delays. Delays at server s j ∈ VS are also gener-
ated according to an exponential distribution with mean µsj ,
where µs1 = µs2 = 100 [msec] and µsj = 5 [msec] for
s j ∈ VS \ {s1, s2}. We define x0 and y0 as true BS delay
vector x0 = (µb1 µb2 · · · µbNB

)> and true server delay
vector y0 = (µs1 µs2 · · · µbNS

)>, respectively.
Parameters in the iterative algorithm are set to be: ε =

10−5, η1 = 5, and η2 = 10 in unweighted estimation, and
ε = 10−5N , η∗1 = 5N and η∗2 = 10N in weighted estimation,
where N = (N1+N2+· · ·+NM )/M . Although the parameter
optimization is important for the proposed scheme, we leave
it as future work.

5.2 Interpolation Effect of GFT

It is known that GFT has the interpolation effect [27], i.e.,
missing values of signals on a graph are interpolated by
smoothness of eigenvectors. In network monitoring tech-
niques based on crowdsourcing, this effect is important be-
cause measurement users may not exist at some base sta-
tions. In this section, we evaluate the interpolation effect in
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the proposed scheme, where unweighted estimation is em-
ployed. We consider two types of base stations: active base
stations and inactive base stations, where an active base
stations has some measurement users and an inactive base
station has no measurement users. We choose N (active)

B ac-
tive base stations randomly and other (NB − N (active)

B ) base
stations are set to be inactive. Figure 4 shows active/inactive
base stations for N (active)

B = 80. We assume that there are
Nuser = 500 measurement users in each active base station.
Each measurement user chooses one server from 10 servers
randomly.

Figure 5 shows a typical result in the above scenario,
where Fig. 5(a) shows the GFT f0 of the true BS delay vec-
tor x0, and Figs. 5(b) and 5(c) show estimated GFTs for
N (active)

B = 100 and 80, respectively. We observe that esti-
mated GFTs are sparsified as compared with that of the true
BS delay vector. Figure 5(d) shows a true BS delay vector
x0, and Figs. 5(e) and 5(f) show estimated BS delay vectors
for N (active)

B = 100 and 80, respectively. From these figures,
we observe that the proposed scheme can capture the spa-
tial dependence of delays at base stations, even if some base
stations have no measurement users. Moreover, Fig. 5(g)
shows a true server delay vector y0, and Figs. 5(h) and 5(i)
show estimated server delay vectors for N (active)

B = 100 and
80, respectively. These figures clearly indicate servers with
larger delays.

5.3 Performance of Weighted Estimation

We now demonstrate the robustness of weighted estimation
against user heterogeneity. For this purpose, we assume M =
2NB, and for each base station bi (i = 1, 2, . . . , NB), we set
two paths p2i−1 = (i, ji,1), p2i = (i, ji,2), where two different
servers s ji,1 and s ji,2 are chosen randomly. To represent user
heterogeneity, we set N2i−1 = 50(1− ρ) and N2i = 50(1+ ρ)
(0 ≤ ρ ≤ 1). Note that when ρ = 0, Nm = 50 for all m =
1, 2, . . . , M , and the degree of user heterogeneity increases
with ρ. We define γ̂2

i (i = 1, 2, . . . , NB) and γ̂2 as the mean
square error (MSE) of estimated delay x̂ (n)

i at base station bi
and mean of γ̂2

i .

γ̂2
i =

1
Nrun

Nrun∑
n=1

( x̂ (n)
i − xi)2, γ̂2 =

1
NB

NB∑
n=1

γ̂2
i ,

where xi is given by (4) and Nrun = 200.
Figure 6 shows γ̂2

i (i = 1, 2, . . . , NB) for ρ = 0.9 (i.e.,
N2i−1 = 5 and N2i = 95). From Figs. 6(a) and 6(b), we ob-
serve that unweighted estimation has much larger MSE than
weighted estimation. Figure 7 shows γ̂2 of unweighted esti-
mation and weighted estimation as a function of ρ. While γ̂2

in unweighted estimation increases rapidly with ρ, γ̂2 does
not increase so much in weighted estimation even if ρ ap-
proaches 1. Therefore, the proposed scheme with weighted
estimation is more robust against user heterogeneity.

Fig. 6 Mean square error γ̂2
i of the estimated x̂ (n)

i (ρ = 0.9).

Fig. 7 Mean γ̂2 of mean square error γ̂2
i vs. ρ (0 ≤ ρ ≤ 1).

6. Conclusion

In this paper, we proposed heterogeneous delay tomogra-
phy to estimate delays at base stations and servers in mobile
networks by means of graph Fourier transform and com-
pressed sensing. Simulation results validate the proposed
scheme. We still have some remaining issues with the pro-
posed scheme such as the parameter optimization of the
proposed scheme and the performance evaluation in various
network environments. Further, the graph construction is an
interesting problem inGFT.While a binary adjacencymatrix
is used in this paper, it can be defined by a real matrix [16].
We will leave these issues to future research.
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