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PAPER
Simulation Study of Low-Latency Network Model with
Orchestrator in MEC∗

Krittin INTHARAWIJITR†a), Student Member, Katsuyoshi IIDA††b), Senior Member, Hiroyuki KOGA†††c),
and Katsunori YAMAOKA†d), Members

SUMMARY Most of latency-sensitive mobile applications depend on
computational resources provided by a cloud computing service. The prob-
lem of relying on cloud computing is that, sometimes, the physical locations
of cloud servers are distant from mobile users and the communication la-
tency is long. As a result, the concept of distributed cloud service, called
mobile edge computing (MEC), is being introduced in the 5G network.
However, MEC can reduce only the communication latency. The comput-
ing latency in MEC must also be considered to satisfy the required total
latency of services. In this research, we study the impact of both latencies
in MEC architecture with regard to latency-sensitive services. We also
consider a centralized model, in which we use a controller to manage flows
between users and mobile edge resources to analyze MEC in a practical ar-
chitecture. Simulations show that the interval and controller latency trigger
some blocking and error in the system. However, the permissive system
which relaxes latency constraints and chooses an edge server by the lowest
total latency can improve the system performance impressively.
key words: mobile edge computing, low-latency network, orchestrator,
processor sharing, simulation

1. Introduction

The fifth generation (5G) network will enhance communi-
cation through higher quality of services [2]. One 5G re-
quirement is reduced service latency. A very short latency
will enable or improve many latency-sensitive mobile appli-
cations in which excessive total latency is not acceptable.
For example, an augmented reality application [3] showing
additional data on a screen will be able to display more in-
formation in real-time. The latency issue in 5G networks is
critical and must be resolved for this communication tech-
nology to move forward.

However, most mobile applications rely on cloud com-
puting service because of limited mobile device resources.
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Mobile users have no way of knowing the physical location
of cloud servers, though, which can be far from the users.
A long distance between users and cloud servers leads to
long network communication latency that will not satisfy
the service time requirement in mobile applications.

One solution to the distance problem of cloud com-
puting is Mobile Edge Computing (MEC) [4]–[6], which
distributes cloud capability to the edge of networks where
users connect to the entry point of core networks. MEC
can provide services in a local area and support very short
service communication latency.

Even though MEC can enable short communication la-
tency, its resources are still limited. Unlike cloud computing,
MEC is established through the cooperation of network de-
vices acting as a virtual server inside the networks. Too
many requests from users in the same area can go to one
edge server and overload it. An excessive workload will
mean that more time is needed to complete each job. Even-
tually, the computing latency will not be acceptable for low
latency services.

However, there is not only one edge server along the
edge of networks. Users are able to access other edge servers
near the location, such as a sever in the same city. Their
packets probably travel through networks but the distance is
definitely shorter than the cloud. The nearby edge servers
with lighter loads could probably provide shorter computing
latency.

Surveys in [7], [8] addressmany challenges aboutMEC.
The common issue is how to communicate between each
component and how an edge sever handles load with their
own capacity. Our previous studies [9], [10], consequently,
consider an ideal MEC model where it is assumed that the
system knows all information regarding sources and edge
servers without any delay. However, that is unlike the real
situation in network architecture. If all components send
updated information every moment, the network would have
a very high overhead. Furthermore, the system cannot in-
stantaneously determine the necessary MEC network infor-
mation.

Edge computing is a distributed computing model,
which means that huge number of computers will be de-
ployed in the network. How to manage them is one of
important issues. To answer this, European Telecommu-
nications Standards Institute (ETSI) [11] divides the MEC
architecture to two levels; system level and host level. The
host level that contains edge servers operates as a distributed
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model. The system level as a control and management part is
introduced as a centralized management model. It includes
a component called orchestrator to communicate between
users and edge servers. It is a control unit in system level
to manage the components in host level. Furthermore, MEC
must be implemented on network technology as Network
Function Virtualization (NFV) [12] which also requires a
NFV orchestrator for controlling the network. To deploy the
orchestrator, there could be many considerable issues such
as a single point failure, computational cost and resource
requirement. However, it is very important to first study
the real performance if we deploy the orchestrator in MEC
system.

Consequently, an extension of the ideal model must be
considered. A practical MEC model using a control unit (or
an orchestrator) is needed where the interval necessary to
collect system information is taken into account. The model
will also have to take into consideration that a longer interval
will require the system to work with information that is more
outdated. This could lead the system to make poor decisions
about network management and affect performance.

This paper studies the impact of computing and commu-
nication latency with a more practical model by cooperating
with an orchestrator. We model MEC architecture and intro-
duce the time interval needed to collect network information.
Evaluation of the defined model through simulation is de-
scribed, and numerical results are discussed with regard to
how MEC can enable low latency services according to a
practical model.

This manuscript is an extension of the conference pa-
per [1] by investigating more parameters that would have an
impact on the system. In [1], we studied the selection policy
performance, orchestrator update interval and orchestrator
communication latency but ignoring computation latency
inside the orchestrator and always assumed it as zero. The
manuscript, therefore, considers the latency from controller
computation and expresses how it affects the system perfor-
mance compared to other latencies.

The paper is organized as follows. Section 2 addresses
definition and some literatures about MEC. In Sect. 3, we
discuss the theoretical model. Section 4 depicts the sim-
ulation and evaluation metrics in this research. Section 5
presents all numerical results from the simulation. Finally,
Sect. 6 concludes and highlight our work and future plan.

2. Mobile Edge Computing and Related Work

MEC is applied in a network architecture to distribute cloud
computing service within the local area – especially at the
edge of the core network [4]. The aim of MEC is to shorten
the communication path from users to service resources and
to provide services faster. MEC is also known as Cloudlet,
fog computing, and edge cloud computing, depending on
one’s perspective [13].

The MEC architecture is illustrated in Fig. 1. Mobile
devices, such as tablets, smart phones, and laptops, connect
to a base station (BS) over a radio access network (RAN).

Fig. 1 Mobile edge computing domain.

The BS first connects to the edge of a network before enter-
ing the Internet. At the edge, network components having
high computation and storage capabilities are gathered to
create a virtual server offering mobile edge services. If any
workload requests resources exceeding what the edge server
can support, the request can be forwarded through the core
network until it reaches cloud services on another side of the
network.

Many works have focused on the optimal delay for sav-
ing more energy. In [4], Chen et al. study the optimization
model to find the minimum overhead of distributing offload
in MEC using game theory. M. Chen et al. in [14] and
V. Chamola et al. in [15] modeled and simulate the task
offloading. J. Liu and others in [16] also did the delay op-
timization of task scheduling when given a delay deadline.
S. Sundar, B. Liang [17] also concerned a delay constrain
and propsed their heuristic algorithm. While D. Satria and
others [18] did not find the optimum but focus the procedure
of when an edge server is overloaded.

Sarkar et al. in [19] and Deng et al. in [20] did not
underline the time constrain but studied the suitability of
MEC in cloud computing with regard to power usage.

Nevertheless, all of these studies assume that the model
ideally knows the network information without being con-
cerned with actual implementation.

In our previous studies [9], [10], we model MEC as an
ideal system that can immediately get network information.
A simple model is proposed in [9] and is used to study the
MEC model mainly by considering the impact of both com-
munication latency and computing latency. The communi-
cation latency is simply calculated by hop count while the
computing latency is determined by a linear function. This
preliminary work is still too ideal and simple for practical
purposes, so we extend the model further in [10] by apply-
ing processor sharing [21] for the computing. However, the
model still relies on the ideal assumption.
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The ideal model is not practical in a real environment,
which is more complex than the model recognizes. For ex-
ample, without an orchestrator as a control unit, the model
cannot say what network information will be available to
the system or how the system will maintain that informa-
tion. This paper, therefore, further extends the MEC model
to make it more realistic. An interval for collecting net-
work information is introduced to the model, as explained in
Sect. 3.

3. Mathematical Model

To study MEC, we define a model of MEC to identify the
important components in the architecture and address the
relationship of each element in the model. Since this paper
is proposing an extension of existing research, we will first
explain the necessary points of the previous work [10].

3.1 MEC Model without Orchestrator

In this section, we describe a model of MEC when there is
no an orchestrator. We assume that the system can know the
component status i real-time as a ideal case.

We define a mathematical model of MEC in [10]. The
essential components are illustrated in Fig. 2 and briefly ex-
plained below.

Si: A source node gathering mobile devices in the same
area, 1 ≤ i ≤ N .
Ej : An edge node representing an mobile edge server,
1 ≤ j ≤ M .
wk : A workload produced from a source node and contain-
ing bk as a size which is defined by amount of computational
resources, 1 ≤ k ≤ K .
λi: Average producing rate of a source node as a Poisson
process [22].

The communication latency is denoted by li, j for a link
from Si to Ej . The hop count is determined, in which each
link has the same latency lh . We suppose that every source
node can access all edge nodes. The communication latency
follows the model in [10]. The hop counts Hi, j is calculated
by the difference between node IDs where Si and Ei have
one hop distance, then plussing hop distance between Ei and
Ej as shown in Fig. 3. The communication latency can be
determined by li, j = Hi, j × lh .

For the computing latency, Ej computesworkloadswith
a processing rate of µ j instructions per time unit. We apply
the concept of processor sharing (PS) [21], which allows a
single server to simultaneously processmanyworkloadswith
the resources equally divided for each workload and without
waiting in a queue. We then estimate the computing latency
by the current number of workloads and an additional new
workload. The estimation function is defined as Pk, j (t):

Pk, j (t) =
(

bk
µ j

)
(n j (t) + 1), (1)

Fig. 2 Problem model.

Fig. 3 Propagation latency model.

where n j (t) denotes the current number of workloads at time
t, t ≥ 0.

Finally, the total latency of workload wk from Si to Ej

is defined as Li, j,k (t) = li, j + Pk, j (t).
Let θ be the maximum allowance of latency for a ser-

vice. We propose the optimization model as follows.

min
br ,bk

Pb =

∑
wr

br∑
wk

bk
(2)

subject to Li, j,a (t) ≤ θ (3)
Li, j,e (t ′) + δe, j ≤ θ (4)
n j (t) ≥ 0 (5)
lh, ∀µ j, ∀bk > 0 (6)
t > t ′ ≥ 0. (7)

We set the objective function to find the minimum
blocking probability, denoted by Pb , which is calculated
from the ratio of rejected workloads wr with size br in the
system. Constraint Eq. (3) is to check whether the total la-
tency of a new workload exceeds the maximum allowance.
When estimating the computing latency, we might underes-
timate, which would lead to a wrong decision where some
workloads are finished later than allowed.

According to PS, when a workload arrives at a server,
resources of the server are shared to thae new workload
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equally with other existing workloads. That makes each
existing workloads extend the computing latency because
of getting less resources. We define δe, j as the amount of
that increased latency for an existing workload we when
the server accept a new workload. The system can check
whether the new workload will cause the finishing time of
any existing workload to exceed the maximum allowance as
in Eq. (4). We note that δe, j is a parameter that cannot be
predefined or specified a certain value. We can only calculate
the change of computing latency when a edge node accepts
or finishes other workload.

We note that in this study bk is identical for all work-
loads, and edge node Ej has a single processorwith unlimited
memory capacity.

The system using this optimization model is called a
“strict underestimation system” because it checks latency of
every existing workload with Eq. (4) and does not allow any
excessive latency caused by underestimation.

In the real-timemultimedia [23], the strict underestima-
tion system is determined as a deterministic admission con-
trol for multimedia servers because it guarantees the worst
case assumption of no errors. However, according to [23],
checking every existing workload would cause very high
overhead in the system and blocking probability becomes
high. There is another service guarantee using statistical
admission control. It increases the acceptance probability of
workloads by allowing some service errors to more utilize
the system resources. We therefore consider another system,
called a“permissive underestimation system,”which ignores
Eq. (4) and assumes that the service can tolerate some errors
(or statistical services). For example, a real-time service,
such as streaming video, augmented/virtual reality, on-line
gaming, needs very low latency from edge nodes but it can
ignore late reply packets and process only in-time feedback.
The errors will be presented as lack or jitter to users. It might
not be notices if they are very small.

The optimization model corresponds to an extension of
the stochastic knapsack problem [24] that consider an edge
node as a knapsack and a workload as an item in the bin. It
optimizes the most effective packing items into bins. Our
model is more complex because of the dynamic status from
processing in an edge node. Since the optimization of the
stochastic knapsack problem is NP-hard, our model is also
difficult to find the solution. As a results, we consider three
policies as one of the heuristic algorithm to select a target
edge from candidate nodeswhich satisfy the constraints. The
three policies are the followings.

• Random policy (Random): One simple approach is un-
patterned selection where one edge node is randomly
selected according to a uniform distribution.

• Lowest latency policy (Low. latency): This policy con-
cerns fast computation and quick transmission. It se-
lects the edge node providing the lowest total latency.

• Minimum unfinished work policy (Min. work): The un-
finished work is determined as the unprocessed amount
of all existing workloads in an edge node. The node

with the least work is preferred as the most available
edge node.

3.2 MEC Model with Orchestrator

In models of workload allocations for multiple edge nodes,
the system must maintain information regarding sources,
workloads, edge nodes, and links in the network. When
a workload is produced from a source node, one edge node
must be selected as a destination. To control flows and man-
age the network, we have to develop a way to ensure all the
system information is known.

For the model without the controller in Sect. 3.1, we
assume that every component in the network can know the
status of other nodes immediately but, in practical, the sys-
tem is not always aware of the current state of edge nodes. It
can gather the status with an interval of time. As in the ETSI
framework [6], MEC leaves that function to an entity called
orchestrator which manages edge server resources and re-
sponds to users. This entity is very important to develop
MEC system in the realistic system. The orchestrator ac-
tually operates many functions to manage the system. In
this paper, we focused on the controller function of admin-
istration control and communication with sources/servers.
Because this is one of MEC orchestrator functions, we will
use the word controller instead of a orchestrator to represent
a control unit in the system as a centralized model. The
controller can manage and control a network very simply. It
collects the necessary information for components, e.g. by
probe messages, and makes autonomous decisions based on
its collected data. In addition, we can deploy the controller
with either a real or virtual server connecting around edge
and source nodes.

In this study, we design a system that uses a controller
to collect all information and control flows from sources to
edges as in a centralized model. However, the controller
cannot monitor every element all the time. It needs a time
interval to collect data and control the system based on the
information. As illustrated in Fig. 4, the controller performs
as described below.

0. Controller updates information with interval.
1. Source node Si produces a new workload wk .
2. Source node Si asks the controller for a destination.
3. Controller selects an edge node according to a policy

regarding its current information.

Fig. 4 Workload acceptance procedure with a controller
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4. Controller sends back a decision to the source.
5. Source node submits the workload to the edge node.

The controller has an internal delay (arrows (0) to (5) in
Fig. 4) resulting from processing and communication of the
controller. This study concentrates on both the communica-
tion between the controller and nodes in the system (arrows
(2) and (4)), and processing time inside the controller (arrow
(3)). We also assume that the controller has enough potential
to do its duty without any failure.

The controller collects updated information from all
edge nodes in every time interval σ as in arrow (0). The
controller communicates with source nodes as arrows (2)
and (4). We suppose that the latencies of both arrows are
the same. In addition, the controller processes an inquiry
message from sources with time of arrow (3).

The controller communication latency (li,C ) is then de-
termined as the location of the controller between source
nodes and the controller. We first consider this latency by
hop count like the workloads. The hop delay of the con-
troller, said (lc

h
), is defined in scope of workload hop delay

(lh). We also determine the location of the controller in be-
tween each source Si∈{1,N } and edge E1. That means lc

h
= 0

when the controller is at the same place with source Si and
lc
h
= lh at E1. As a result, we can state

li,C = H (i, 1) × lch . (8)

The controller processing latency, we define lp
C
as delay

from receiving a query to replying message. Either more
complexity of a process or less resources of controller lead
a processing latency in the controller longer.

Note that such an interval and controller communication
are also required in the distributed model. This analysis of
the impact of the interval will be useful with regard to both
centralized and distributed models.

4. Simulation and Evaluation Metrics

We describe the simulation implementation and evaluation
metrics for the model in this section. We then show and
discuss the numerical results from that simulation.

We developed a simulation of the problem model using
C++ programming language to evaluate the MEC system
under various parameters.

We consider a target application of the simulation
to real-time interaction with human vision such as vir-
tual/augmented reality, steaming and gaming. According
to the concept of Tactile Internet merging with MEC, the
latency scope should be roundly 10 ms; otherwise users will
notice jagged process [25]. Therefore, the parameter values
were carefully chosen by the application scope.

We fixed some parameters while we varied the number
of edges (M), and controller interval (σ) as summarized
in Table 1. The maximum allowance θ is set to 15ms as
a requirement for real-time virtual application. We assume
that the MEC service is being operated in a city town where
there are N = 10 source nodes requiring the service. Each

Table 1 Simulation parameters.
Parameter Description Value

N Number of source nodes 10
M Number of edge nodes 6–14
λ Producing work rate of a

source node
2 workloads/ms

µ Processing rate of an edge
node

32 billion instructions/s

b Size of a workload 16 million instructions
lh Hop delay 2 ms
θ Maximum service latency

allowance
15 ms

σ Controller interval 0–2 ms
li,C Controller hop delay 0–2 ms
lCT Controller processing la-

tency
0–2 ms

source node generates independent workloads with Poisson
Process as an event of service requests in networks. The
producing rate is rate λ = 2 workloads per millisecond for
all sources node. All workloads equally contain bk = 16
million instructions of CPU cycles. We also suppose all
edge nodes apply PS for execution with identical processing
rate µ j = 32 billion instructions per second as a single server
at the base station. A hop delay between each nodes is fixed
to 2ms as a proper delay between two base stations. In the
simulation, we also implement a controller to collect the data
with interval σ as mention in Sect. 3.2

The parameters were not changed during each simu-
lation, which was allowed to run long enough to reach a
steady state within which the results remained almost con-
stant. To confirm that was the case, we ran each simulation
for 500 s but did not collect results for the first 200 s, which
we considered a warm-up phase.

Three metrics showing system performance were eval-
uated in this simulation for both a strict underestimation sys-
tem and a permissive underestimation system. We explain
each of them as follows.

• Blocking probability (Pb): Both systems are evaluated
using Eq. (2) to represent how effective the system can
support mobile users.

• Decision error (ε): The permissive underestimation
system commits errors by ignoring Eq. (4) which ac-
cepted workloads could have excessive latency after
execution. We call such an error as decision error. It
is defined as a ratio of accepted workloads having total
latency exceeding the allowance. It can be stated as

ε =

∑
wu

bu∑
wa

ba
, (9)

where wu is a wrong accepted workload and wa is an
accepted workload.

• Modified blocking probability (P′
b
): We cannot fairly

compare the performance of both systems using the
blocking probability since the strict system always
achieves zero decision errors while another probably
leads some errors. The permissive system should be
evaluated using another metric able to measure its ac-
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tual efficiency. To include the effect of decision error,
we define modified blocking probability (P′

b
) stated as

P′b = Pb + ε − Pb · ε . (10)

This metric shows the real efficiency of the permis-
sive system with respect to both blocking probability
and decision error. Therefore, we can compare it with
blocking probability of the strict system.

We note that the system evaluates only the blocking
probability while the permissive system measures all three
matrices.

5. Numerical Results

The numerical results from the simulation are presented and
discussed in this section. First, we analyze the impact of the
three polices with respect to different numbers of edge nodes
in the system on the metrics described in Sect. 4. Then we
analyze the impact of the interval, communication latency,
processing latency of the controller (as respectively arrow
(0), (2)&(4), and (3) in Fig. 4).

5.1 Policies

The three policies–random, low. latency, and min. work in-
fluence how to select edge nodes for arriving workloads.
Fig. 5 shows the impact of the number of edge nodes (M)
on the blocking probability and decision error when we fix
the controller interval to 0.5 ms and li,C always be 0. The
Y-axis uses a logarithmic scale to show the results.

Generally, when we added more edge nodes in the sys-
tem, the blocking probability and decision error were signif-
icantly improved (Fig. 5). It is clear that more edge nodes
provide more resources in the network. That can support
more workloads and make the system more efficient.

As Fig. 5 shows, the lowest latency policy provided the
best performance and least error among the three polices
in both systems. For fewer edge nodes (M < N), there
was no clear difference among the policies. Because there
were very limited resources in this case, each policy had few
choices for allocating an edge node. On the other hand, when
we increased the number of edge nodes, the lowest latency
policy dropped the blocking probability below that of others.

The lowest latency policy usually gets the best solu-
tion because it enables very short transmission and very fast
computation. The lowest latency policy helps an edge node
complete workloads faster than other policies. The quick re-
lease of edge resources allow each edge node to accept more
workloads and reduces the blocking probability.

Figure 5(a) presents that the strict system still causes a
higher rejection ratio. In addition, the random and minimum
unfinished work policies had similar results. The minimum
unfinished work policy has the potential to balance load in
a system by selecting the most available edge node. The
random policy also provides load balancing with a uniform

Fig. 5 Impact of each policy.

distribution and less complexity. So, from a practical view-
point, the two policies did not perform the same result.

The permissive system with the random policy leaded
to the highest decision error (Fig. 5(c)) because it always
makes decisions randomly without considering latency or
available resources. The minimum unfinished work policy
resulted in error that was quite low, but not lower than that
of the lowest latency policy. It distributes workloads into
edge nodes equally, and that helps ensure the number of
workloads in each edge is nearly the same and the estimated
latency is fairly precise. Nonetheless, the lowest latency
policy is still the winner since it finishes a process so rapidly
that underestimation is not over the maximum allowance.
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The modified blocking probability of the permissive
system is shown in Fig. 5(d). The permissive system pro-
vided a better solution than that of the strict system. Because
of the high error, the random policy improved little, while
the other policies performed extremely well.

The permissive system likely preferred a redundant sup-
ply of service (M > N). Considering Fig. 5(b), the system’s
performance was significantly enhanced when the number
of edge nodes was greater than 10.

The lowest latency policy provides low blocking per-
formance and very low decision error, especially for the per-
missive underestimation system. Additionally, more spare
edge nodes in the system leads to an impressive blocking
probability.

5.2 Controller Latency

We will show the all latency impacts from using controller
in the MEC. Firstly, we investigate the controller interval σ.
Next, we analyze the impact of the communication latency
from the controller (li,C) and a controller processing latency
(lCT ). Since we added more latencies to the system, we
have to consider a higher allowable latency resulting from
the communication with the controller.

5.2.1 Controller Interval

We analyzed the controller interval (σ) by assuming that the
controller communication latency (li,c) always equal to 0 in
order to see the real effect of this parameter. The results in
Fig. 6 show the impact that an interval on blocking in both
the strict and permissive underestimation systems. Note that
both systems used the lowest latency policy and the number
of edge nodes (M) was fixed at 10 nodes.

We showed the impact of using the controller in the sys-
tem by increasing the controller interval (σ) from 0 to 2 ms.
The interval σ = 0 represents the performance of an MEC
model without the controller as described in Sect. 3.1 while
the results of the model in Sect. 3.2 are presented where
σ > 0. Figures 6(a) and 6(b) show the blocking proba-
bility for the strict and permissive underestimation systems
respectively. The both systems had the same tendency that
the controller interval where σ > 0 increased the blocking
probability of the both systems from a case of the system
without the controller (σ = 0). Clearly, when the controller
collected datamore frequently, it got information that ismore
current and controls the system with nearly real-time infor-
mation. However, the both systems had the different impact
from the controller latency. The analysis of each system is
described separately as following.

The blocking probability of the strict underestimation
system in Fig. 6(a) greatly increased to almost 0.8 when we
extended the controller interval σ to 2ms. The strict system
often rejects workloads due to Eq. (3), Eq. (4). When one
workload has been rejected, the following workloads will be
dropped until the controller receives an update from the edge
nodes. That severely increases the blocking probability.

Fig. 6 Impact of controller interval, when edges (M ) = 10.

The blocking probability of the permissive underesti-
mation system in Fig. 6(b) was increased when the controller
interval was prolonged, as it was for the strict system. How-
ever, the permissive system was more robust with respect to
the controller interval than the strict system. Even though we
inspected the modified blocking probability (P′

b
) of this sys-

tem, the combined performance was still impressive. For ex-
ample, when the interval was 2ms, the strict system reached
a blocking probability of 0.8 while that of the permissive
system was below 0.02. In fact, if an edge node has al-
ready finished some workloads, the controller in the strict
system will not notice that until the next update interval, and
resources available to process more workloads will proba-
bly go unused. Because the permissive system may accept
a new workload without considering existing workloads, it
can use any spare capability of an edge node by not waiting
for updated information.

Another metric of the permissive system is the deci-
sion error ε (Fig. 6(c)). According to the simulation results,
the decision error was not higher than 0.0026. When we
increased the controller interval, the decision error of the
permissive system surprisingly decreased. Decision error
occurs when the controller permits too many workloads into
one edge node and causes the latency of some existing work-
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Fig. 7 Rejection cause, when edges (M ) = 10.

loads to exceed the maximum. Decision error can be de-
creased if the system uses a longer interval. The controller
updates the number of workloads of an edge node when it
accepts one workload and will never decrease the number
if it has not received an update. A longer updating period
makes the number of workloads in the controller higher than
the actual value in the edge node. The higher value by
update interval leads the controller to further overestimate
the computing latency and bring less underestimated latency.
According to the impact of toomuch overestimation, the con-
troller reasonably rejects more workloads and shows higher
blocking probability. However, the accepted workloads are
probably finished earlier than estimation and bring the ratio
of error down.

Consequently, the controller is prevented from sending
too high a load to one node and provides precise decision.

As mentioned, the rejections result from two con-
straints. We then classified the causes of rejection into three
kinds: 1 due to Eq. (3), 2) due to Eq. (4), 3) and due to both.
To further address how the permissive system provides a
better solution than the strict system, we show the blocking
probability with respect to the causes of rejected workloads
in Fig. 7. The permissive system, of course, rejects a work-
load only because of Eq. (3). The strict system, on the other
hand, has all three kinds of rejection. Fig. 7 shows that the
majority of rejection in the strict system came from Eq. (4)
when the controller interval was extended. Because the per-
missive system ignores Eq. (4), it can accept more workloads
than the strict system and instead induces decision error. On
the other hand, there was a decrease in the blocking probabi-
lity of the strict system due to Eq. (3). This was because the
edge nodes blocked so many workloads because of Eq. (4)
that they had fewer existing workloads and denoted a short
time for a new workload by Eq. (3).

Although the longer controller interval can reduce the
decision error in the permissive system, the blocking pro-
bability worsens. Furthermore, the modified blocking pro-
bability shows that the true performance of the permissive
system is still better than that of the strict system (Fig. 6).
However, if a service needs zero errors, the strict system
should be considered, even though its blocking probability
is so high. Additionally, the controller interval creates some
overhead in the network due to probe messages or informa-
tion packets. More consideration is needed to determine the
proper interval and achieve balanced performance.

Fig. 8 Impact of controller hop delay on modified blocking probability,
when sources (N ) = 10.

5.2.2 Controller Communication Latency

We studied the controller communication latency by deter-
mining hop delay. Here, we ran simulations for maximum
allowances of 15, 30, and 60ms and increased the controller
hop delay (li,C) from 0 to 2ms with fixing the transmission
delay to 0. We used the lowest latency policy to select an
edge node and set 10 nodes as sources.

The numerical results in Fig. 8 show the impact of the
controller hop delay on the modified blocking probability
for different controller intervals, i.e., 0.5 and 1ms. Because
the strict system made decision errors, we calculated the
modified blocking probability for both systems.
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Fig. 9 Impact of controller hop delay in different max. allowance, when sources (N ) = 10 and interval
(σ) = 0.5ms.

Clearly, a longer controller hop delay increased the
modified blocking probability in both systems. The con-
troller propagation latencymakes the controller serve an out-
of-date decision to sources with some delay, so the source
nodes have to wait for a while to start sending a workload
to the designated edge node. This additional latency in the
communication with the controller makes the total latency
of each workload longer and could lead more rejections in
the system. We observed such degradation in both systems
when we added the hop delay of the controller.

The permissive system
(
Figs. 8(c), 8(d)

)
still performed

better than the strict system
(
Figs. 8(a), 8(b)

)
on the whole,

even though we added the communication latency between
the sources and the controller. Without the controller latency,
the permissive system had a very low blocking probability.
When we increased the communication latency of the con-
troller, the performance naturally deteriorated, but not much
as it did in the strict system. This shows that the permissive
system was tolerant to the impact of controller communica-
tion latency.

In the strict system
(
Figs. 8(a), 8(b)

)
, the modified

blocking stayed relatively constant when the allowable la-
tency θ = 60ms but there is increment when θ = 15, 30ms
caused by decision errors and the impact of the controller
communication latency, which wewill analyze in detail later.

Figures 8(c) and 8(d), the permissive system perfor-
mance, show that a lower allowable latency clearly gave a
higher modified blocking probability, but the tendency of the
maximum allowance was the same.

Figure 8 shows only the modified blocking probability.
Analyzing the controller communication latency requires
consideration of the blocking probability and of decision
errors in the individual maximum allowance. Each panel
of Fig. 9 shows the impact of the controller hop delay on
the normal/modified blocking probability and decision er-

ror. We drew the probability and error on the same axes
and with the same scale. The number of source nodes was
10, the controller interval was 0.5ms, and the lowest latency
policy was used.

Figures 9(a), 9(b) and 9(c) show the results for the strict
system for maximum latencies of 15, 30 and 60ms. Deci-
sion errors are apparent because, as mentioned in Sect. 4,
underestimations occur when the controller uses out-of-date
edge statuses. When we added more communication latency
at the controller, more out-of-date decisions were delivered
to source nodes, and this led to higher error rates.

Looking over the results for different maximum laten-
cies, the higher allowances led to lower blocking rates and
fewer errors. The high allowable latency endured the ef-
fect of underestimation because when the total latency was
longer than expected, it did not exceed the allowance and was
not considered to be a decision error. The results were quite
stable in some part of Fig. 9(b) and in all of Fig. 9(c). Thus,
if the maximum allowance is high enough, the system can
maintain its performance despite communication latency of
the controller, but once the allowance becomes too low, com-
municating with the controller will cause errors and degrade
the system.

Figures 9(d), 9(e), and 9(e) show the results of the
permissive system for maximum latencies of 15, 30 and
60ms with different scales on the y axis. Obviously, the
higher latency allowance gave better quality results for every
metric. Although there were still decision errors even for the
high allowable latency, the permissive system impressively
outperformed the strict system.

The controller communication latency determined by
the hop delay represents its distance from the source node.
The above discussion indicates that the system performs well
if we put the controller closer to the source. However, we
should also think of the maximum allowance of latency to
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Fig. 10 Impact of controller processing delay, when sources (N ) = 10, interval (σ) = 1ms, and max.
latency (θ) = 20ms.

achieve an acceptable level of system efficiency.

5.2.3 Controller Processing Latency

The processing latency in the controller is a time to receive an
inquiry message and send back a results into the network. If
the controller resources are enough to compute the controller
process, the latency will be very short. In contrast, the
limited resources requires more time to finish the contriller
process. The complexity of controller process also affects
this latency because amore complex process consumesmore
resources. This latency could the significant factor that we
should concern when using the controller.

In the simulation, we ran the controller processing la-
tency varied from 0 to 2ms. We compared its impact with
the controller communication latency as hop delay. We fix
the number of source/egde nodes to 10, the controller in-
terval to 1ms, and the allowance latency to 20ms. We ran
two simulations with the strict and permissive systems using
only the lowest latency policy.

The results is shown in Fig. 10 with 3D graph. Since
we found the decision error in both systems like Sect. 5.2.2,
we showed the modified blocking probability in the vertical
axi. The horizontal axises are the controller processing and
communication latency. Fig. 10(a) presents the impact of the
controller processing latency in the strict system. The result
shows that longer processing latency brought more block-
ing probability to the system. We could see clearer impact
when we add more communication latency (see Fig. 10(a),
communication latency = 0.8ms). However, its effect was
so less when compared to the communication latency. In the
strict system, the controller processing latency could affect
the blocking probability around ±0.1 from the ideal case but
if we increase hop delay, it raised the blocking from 0.5 to 1.
This is because the communication latency is a delay from
the distance. It can be expanded to multiple hops regrading
the source location. The processing latency is a delay inside
the controller, so it is a fixed latency added to the network.

According to Fig. 10(b), the permissive system still pro-
vided the better performance than the strict system. It showed

the same impact as the strict system does but within the
smaller range of blocking probability.

Finally, the controller processing latency had some im-
pact to the MEC system but less than the that of controller
communication latency.

6. Conclusion

MEC is essential for the low-latency architecture of 5G ser-
vices. It can provide very short communication path from
users to edge servers. A practical system, however, also has
to consider computational latency. In addition, MEC re-
quires a more practical model to provide guidance regarding
its design before implementation.

Consequently, we have defined a mathematical model
of MEC with a controller that controls any flow in the sys-
tem. The controller is responsible for selecting one of the
edge servers that satisfy the system constraints. The simula-
tion results show that the permissive underestimation system,
which selects the destination with the lowest latency policy,
provides an impressive MEC solution, although this system
would result in some decision errors. When we include the
controller communication latency in the system, the permis-
sive system still has the low blocking probability while the
strict system is affected to get high blocking probability.

This study leaves some questions open such as the com-
plexity and scalability of the controller. If the controller cre-
ates the extra delay due to a heavy load, it may also introduce
the extra delay for workloads. We therefore plan to analyze
the impact of the internal delay and of the extra delay caused
by heavy load of the controller.
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