
418
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

PAPER Special Section on Network Virtualization and Network Softwarization for Diverse 5G Services

Program File Placement Problem for Machine-to-Machine Service
Network Platform

Takehiro SATO†a), Member and Eiji OKI†, Fellow

SUMMARY The Machine-to-Machine (M2M) service network plat-
form accommodates M2M communications traffic efficiently by using tree-
structured networks and the computation resources deployed on network
nodes. In the M2M service network platform, program files required
for controlling devices are placed on network nodes, which have differ-
ent amounts of computation resources according to their position in the
hierarchy. The program files must be dynamically repositioned in response
to service quality requests from each device, such as computation power,
link bandwidth, and latency. This paper proposes a Program File Place-
ment (PFP) method for the M2M service network platform. First, the PFP
problem is formulated in the Mixed-Integer Linear Programming (MILP)
approach. We prove that the decision version of the PFP problem is NP-
complete. Next, we present heuristic algorithms that attain sub-optimal but
attractive solutions. Evaluations show that the heuristic algorithm based on
the number of devices that share a program file reduces the total number of
placed program files compared to the algorithm that moves program files
based on their position.
key words: IoT, M2M, placement problem, optimization, NP-completeness,
heuristic algorithm

1. Introduction

As symbolized by the buzz phrase “Internet of Things (IoT),”
Internet-based technologies that can connect and control ev-
ery device in our lives, such as smartphones, home appli-
ances, industrial machines, and vehicles, are becoming pop-
ular. The number of IoT devices was estimated to be 8.4 bil-
lion in 2017 with an increase to 20.4 billion by 2020 [1]. The
popularity of IoT services, in which devices and computers
communicate, calculate, and make decisions without human
intervention, means there will be a rapid growth in Machine-
to-Machine (M2M) communications traffic [2]. Data from
a lot of sensors will be accumulated and analyzed by using
the computation resources deployed in the network, such as
cloud datacenters and edge computers. By placing and trig-
gering controllers according to the analysis results, highly
accurate and efficient device control can be achieved. Un-
fortunately, due to the continuous increase in Internet traffic,
network equipment and datacenters are consuming more and
more electrical power [3]. Therefore, more efficient use of
network and computation resources in the provision of IoT
services is required.

TheM2Mservice network platformwas presented in [4]
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as an architecture suitable for accommodating and control-
ling various types of connected devices. This network plat-
form forms a tree-structured network that aggregates traffic
from a lot of edge nodes to a solitary center cloud and compu-
tation resources deployed on every node in the network. The
program files required to control the connected devices are
placed on the network nodes according to the service quality
requirements from each device, such as computation power,
link bandwidth, and latency. To lower the power consump-
tion, program files must be dynamically repositioned to meet
the change in service requirements imposed by the devices.
In [4], network and computation resources of the M2M ser-
vice network platform are controlled in an integrated manner
by using network virtualization techniques.

This paper proposes a Program File Placement (PFP)
method for the M2M service network platform. First, to
determine the optimal placement of program files, we for-
mulate the PFP problem as aMixed-Integer Linear Program-
ming (MILP) problem. It is proved that the decision version
of the PFP problem is NP-complete. For the case that an
optimum placement cannot be obtained within a practical
time by the MILP model, heuristic algorithms that offer sub-
optimal solutions are presented.

The rest of this paper is organized as follows. The
related works are described in Sect. 2. The detailed archi-
tecture of the M2M service network platform is introduced
in Sect. 3. The PFP problem is modeled by MILP in Sect. 4.
Sect. 5 shows that the PFP decision problem is NP-complete.
Heuristic algorithms are presented in Sect. 6. The perfor-
mance of the heuristic algorithms is evaluated in Sect. 7.
Finally, we conclude this paper in Sect. 8.

2. Related Works

As a research topic similar to the PFP problem, the replica
placement problem in Content Delivery Networks (CDN)
should be mentioned [5]. The replica placement problem
exists on a network consisting of origin servers, which hold
the original contents, and surrogate servers, which can cache
replicas of the contents. The objective of the replica place-
ment problem is to obtain the placement of replicas that
maximizes the Quality of Service (QoS) metrics of clients,
such as latency and availability.

The M2M service network platform, on the other hand,
must respond to device requests by setting program files
that can realize the tasks requested. Unlike CDN, the time
taken to finish the overall task has to be guaranteed for every
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device. In addition, nodes that a certain device can access
is limited. Every program file that the device requests must
be placed onto any one of these nodes. The rearrangement
of program files to satisfy the service quality request of a
specific device may impact other devices by varying the
task execution time or making program files inaccessible.
As program file rearrangements often occur, the whole the
platform is likely to become unstable. Thus the PFP problem
in the M2M service network platform requires a different
solution than the techniques developed to address the replica
placement problem in CDN.

There are several existing works on the resource al-
location problem in a multi-stage computing environment
for offloading tasks of mobile/wearable applications [6]–[8].
Z. Cheng et al. [6] present a three-layer computing archi-
tecture for code offloading of wearable devices. The archi-
tecture consists of a wearable device layer, a mobile device
layer, and a remote cloud layer. Two categories of computing
tasks that compose a wearable application are considered; w-
tasks that are dependent on local functions of the wearable
device (e.g., input devices, sensors, and displays) and non-
w-tasks that are independent of the local functions and able
to be offloaded to the upper layers. The authors formulate
an optimization problem and present a heuristic approach
based on genetic algorithm to determine the assignment and
scheduling of non-w-tasks that maximizes the number of w-
tasks executed within a given delay time after their previous
w-task. F. Berg et al. [7] present a code offloading system for
mobile applications in a multi-tier computing environment
named Code Bubbling Offload System (CoBOS). When a
mobile device, which is considered as the bottom tier, exe-
cutes a mobile application and reaches an offloadable part,
the mobile device creates an offload request message and
send it to a manager of the nearest tier. The manager, which
is deployed in every tier, locally decides whether the code
should be executed in the tier or not, and, only in the former
case, the manager responses an offering message to the mo-
bile device. The manager forwards the offload request mes-
sage to the upper tier regardless of the decision. The mobile
device receives the offering messages from multiple tiers,
and decides whether the device continues the execution of
the application part locally or offloads the application part to
one of the offering tiers. All of the decisions in the tier man-
agers and the mobile device are based on the calculation of
utility value, which takes into account energy consumption,
execution time, and monetary cost. The overall objective
of CoBOS is to minimize the utility value. L. Tong et al.
[8] present a hierarchical multi-tier edge cloud computing
architecture for the remote execution of mobile applications.
The mobile users connect with the servers in the bottom tier
and send the workloads of mobile application to the servers.
The workloads that cannot be handled in the server due to the
lack of computational capacity are offloaded to servers in the
higher tiers. The authors formulate an optimization problem
and present a heuristic approach based on simulated anneal-
ing to determine the workload placement on the servers that
minimizes the computation delay and the communication

delay.
In contrast with these existing resource allocation prob-

lems, each of which determines the placement of offloadable
tasks originally executed in the mobile/wearable device, the
PFP problem presented in this paper determines the place-
ment of program files that are provided by a center cloud and
required to execute a task of each device. These program
files are able to be shared by multiple devices as long as
enough computation resources are reserved on a node. The
objective of PFP problem is to reduce the total number of
placed program files while satisfying the service quality of
devices such as latency requirements.

3. Architecture of M2M Service Network Platform

Figure 1 overviews the M2M service network platform [4].
This network platform has a tree-structured topology. De-
vices (i.e., sensors and actuators) are connected to edge
nodes, and their traffic streams are aggregated and passed
to a solitary center cloud. Computation resources (i.e., CPU
cores, memory) are deployed not only the edge nodes and
the center cloud, but also intermediate nodes, such as in-
company datacenters, regional datacenters, and Central Of-
fice Re-architected as a Data center (CORD™) [9]. The
amount of computation resources and link bandwidth capac-
ity increases the higher the node is located in the hierarchy
(i.e. closer to the center cloud).

One of the features of M2M service network platform
is that a device can use only the computation resources of
nodes that lie on the path between the edge node hosting
the device and the center cloud. Every program file that
the device requests is placed onto any one of these nodes.
Therefore, the device does not need to search all nodes in
the platform for the program files required to execute its
task. The device simply sends queries and sensor data in the
upstream direction to discover the desired program files.

Program files are basically placed on the center cloud,
which has huge computation resources, and moved to or
replicated at downstream nodes dynamically according to
device status. For example, a program file may be moved
or replicated to a downstream node when a certain device
requires low latency or uses the program file frequently. In
contrast, a program file may be moved or aggregated to
upstream nodes if running the program file requires greater
computation resources or is used by multiple devices. The
placement of program files should be determined so as to
utilize network and computation resources efficiently while
satisfying the service quality requests of all devices.

4. Modeling the Program File Placement Problem

In this section, the Program File Placement (PFP) problem in
the M2M service network platform is modeled using Mixed-
Integer Linear Programming (MILP). We define the PFP
problem as the problem to find the placement of program
files on the nodes, which minimizes the number of placed
files, while satisfying program file requirements and service
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Fig. 1 Overview of M2M service network platform.

quality requests of all devices in the M2M service network
platform.

We assume virtual machine (VM) image files as the
program files handled in the M2M service network plat-
form. Each of VM image files consists of a set of codes that
provides a certain function required to complete a task. A
dedicated VM instance is launched for every device that re-
quires the function by using computation resources deployed
on the node. The size of VM image file is relatively large
(e.g., several gigabytes or more), so it is important to pro-
mote sharing the file by multiple devices and reduce the total
number of placed files.

4.1 Conditions of Computation Model

In the computationmodel discussed in this Section, all nodes
including edge nodes and the center cloud have computation
resources to place and execute program files. When a node
receives a query from a device, the node executes the re-
quested program file if the program file is held by the node
and the node has enough computation resources available. If
the desired program file is not on the node or the node has in-
sufficient free computation resources, the node transfers the
query to the next upstream node. The center cloud has huge
computation resources and holds all types of program files.
When a node finishes executing a program file or receives a
processing result from an upstream node, the node transfers
the processing result to the next downstream node towards
the device. The nodes do not transfer a query received from
one downstream node to a different downstream node.

The model is intended for the static scenario, i.e., point
of attachment, a set of requested program files, and latency
requirement of each device are known in advance. Each
edge node serves a single device. Each device has both sen-
sors and actuators, and operates in a stand-alone manner. A
task in a device may consist of multiple program files that
should be executed in order. A program file held by a node
can be shared by multiple devices if the node has sufficient
computation resources to support all of those devices. Each

program file process is assumed to be completed in a single
node. Interactions between multiple program files placed in
a single node or multiple nodes are not considered. Back-
ground traffic other than queries and sensor data from the
devices and processing results from the nodes are not con-
sidered. Queueing delay and packet losses in the nodes are
assumed to be zero.

Note that we introduce the condition that each edge
node serves a single device in order to keep the model sim-
ple. The model can be extended to deal with the problem
where multiple devices are attached to an edge node by the
following procedure.

1. Add node stages to the edge-side of the platform.
2. Set the computational resource amount of added nodes

to zero.
3. Rearrange the attachment point of each device so that a

single device is attached to each added node.
4. Attach a dummy device which requests no program files

to each vacant node.

4.2 Computation Model by Mixed-Integer Linear Pro-
gramming

Table 1 defines the symbols used to model the PFP problem.
Figure 2 shows the model of the M2M service network

platform as represented by undirected graph G = (V, E).
For the sake of simplicity, a perfect binary tree is considered
below. The term “node (m, n) ∈ V” includes all edge nodes,
intermediate nodes, and the center cloud. m (1 ≤ m ≤ M)
is the number of stages counted from the edge node. n
(1 ≤ n ≤ 2M−m) is the index number of nodes belonging
to the same stage. The center cloud is located on the Mth
stage, and represented as node (M, 1). In this model, each
node other than the center cloud has a single upstream link.
Therefore, links are represented as (m, n) ∈ E ((M, 1) < E).

The devices connected to this platform are represented
by u ∈ U, where U is a set of u and |U | > 1. In this model,
only one device is connected with each edge node. That
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Table 1 Definition of symbols for PFP problem inM2M service network
platform.

Sets
V Set of nodes
Vu Set of nodes (Vu ⊂ V ) available to device u ∈ U
E Set of links
Eu Set of links (Eu ⊂ E) available to device u ∈ U
U Set of devices
F Set of types of program files
Ru Set of types of program files (Ru ⊆ F) that

device u ∈ U requests

Given Parameters
cu, f Amount of computation resources that device

u ∈ U uses to execute program file f ∈ Ru
bu, f Bandwidth required at links between device u ∈

U and the node holding program file f ∈ Ru

dprop
m,n One-way propagation delay time on the up-

stream link (m, n) ∈ E of node (m, n)
dexe
u, f ,m,n

Processing time of program file f ∈ Ru re-
quested by device u ∈ U at node (m, n) ∈ V

dafter
u, f

Post processing time of processing result of pro-
gram file f ∈ Ru at device u ∈ U

Cm,n Amount of available computation resources at
node (m, n) ∈ V

Bm,n Bandwidth capacity of the upstream link
(m, n) ∈ E of node (m, n)

Du Latency requirement as regards completing the
overall task at device u ∈ U

M Number of node stages at M2M service network
platform

Decision Variables
xu, f ,m,n 1 if program file of type f ∈ Ru requested by

device u ∈ U is executed on node (m, n) ∈ V ; 0
otherwise

yf ,m,n 1 if program file of type f ∈ F is held by node
(m, n) ∈ V ; 0 otherwise

lu, f ,m,n 1 if traffic between device u ∈ U and the node
where program file f ∈ Ru is placed goes
through link (m, n) ∈ E; 0 otherwise

bmax
u,m,n Bandwidth that device u ∈ U has to reserve on

upstream link (m, n) ∈ E of node (m, n)

Fig. 2 Graph model of M2M service network platform.

means, device u is connected with edge node (1, n) where
n = u at the first stage of the platform. Nodes available to
device u are limited to those located on the path between
edge node (1, u) and the center cloud (M, 1). Vu ⊂ V is the
set of nodes available to device u. Eu ⊂ E is the set of links
that connect adjacent nodes in Vu . The traffic from device u
must go through the links in Eu ⊂ E. Note that the link that
connects device u to edge node (1, u) is not in E or Eu .

The types of program files provided by this platform
are represented by f ∈ F, where F is a set of f . The set
of program types forming the task requested by device u
is represented by Ru ⊆ F, and the ith program file that u
requires is represented by ru,i ∈ Ru , where 1 ≤ i ≤ |Ru |.
|Ru | is the number of program files that compose the task
requested by device u. Each program file in Ru is placed on
node (m, n) ∈ Vu . The computation resources that device
u uses to execute program file ru,i ∈ Ru are represented
by cu,i . As mentioned in Sect. 4.1, a program file placed
on a node can be shared by multiple devices, but sufficient
computation resources must be reserved for every device.
The amount of bandwidth required at links between device
u and the node where program file ru,i ∈ Ru is placed is
represented by bu,i . In other words, at least bu,i of bandwidth
has to be reserved on these links to transfer a query, sensor
data, and a processing result. The program files are executed
in sequence. To prevent interruption of the task of device u
due to insufficient bandwidth, the maximum bandwidth that
goes through the link, max f ∈Ru {lu, f ,m,nbu, f }, is reserved for
device u at each link (m, n) ∈ Eu in advance. The time
required to execute the task of device u should be equal to
or less than the latency requirement Du . The required time
consists of the sum of propagation delay time on the links
used, the sum of processing time at each node, and the sum
of post processing time at device u.

Figure 3 shows an example of the allocation of compu-
tation resources and link bandwidth for a task requested by
device u = 1. The corresponding task sequence is shown
in Fig. 4. In Figs. 3 and 4, the task requested by device
u = 1 consists of three program files: r1,1, r1,2 and r1, |R1 | .
These program files are held by nodes (1, 1), (M, 1), and
(2, 1), respectively. The computation resources required by
the program files are taken to be c1,1 = 2, c1,2 = 4, and
c1, |R1 | = 2. The bandwidths that the program files require
are taken to be b1,1 = 3, b1,2 = 2, and b1, |R1 | = 1. The re-
quired computation resources and bandwidth are reserved at
every node and link, respectively. Note that the bandwidth of
max f ∈Ru bu, f is always required at the link between device
u and edge node (1, u).

As shown in Fig. 4, we consider a sequential program
access in this computation model. Several types of M2M
applications inevitably require such a sequential program
access and do not allow to shorten the procedure anymore.
For example, the remote control application of an industrial
robot based on the robot operating system (ROS) framework
is reported in [10]. In this application, the robot has to access
three programs placed on cloud or edge compute nodes,
namely the surface detection, the process path planning, and
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Fig. 3 Example of resource allocation for a device.

Fig. 4 Example of task sequence for a device.

the motion planning, in a sequential manner to complete
a surface blending task. The process path planning and the
motion planning require the results of their previous program
as an input, so it is impossible to exchange the order of
program executions or shorten the procedure.

The PFP problem is formulated by Mixed-Integer Lin-
ear Programming (MILP) as follows.
Objective:

min
(∑
f ∈F

∑
(m,n)∈V

(M − m + 1) yf ,m,n

+ε
∑
u∈U

∑
(m,n)∈E

bmax
u,m,n

)
(1)

Equation (1) is the objective function of this problem.
In contrast with the objectives in existing works [6]–[8] pre-
sented in Sect. 2, this objective function aims to minimize
the number of program files placed on the nodes.

The first term of Eq. (1), excluding (M − m + 1), rep-
resents the number of program files placed on nodes. As
mentioned in Sect. 3, the M2M service network platform has
a policy that program files are basically placed on the center
cloud and can be moved or replicated to downstream nodes
if necessary [4]. To place as many program files as possible
on cloud-side nodes, the first term of Eq. (1) should be mul-
tiplied by a weight that decreases according to the number

of stages m. In Eq. (1), (M − m + 1), which indicates the
number of stages counted from the center cloud, is used for
the purpose.

There is a possibility that multiple feasible solutions
which provide the same optimal value exist on the MILP
model. In order to choose an effective solution from them,
the second term is added in Eq. (1). The second term, exclud-
ing ε , represents the sum of bandwidth reserved on the links.
Although this term does not relate to the original objective
of the PFP problem, it helps to obtain a solution with the
best link bandwidth utilization efficiency among the feasible
solutions which provide the same value in the first term. In
order to prioritize the first term over the second term, the
latter is multiplied by a small number, ε , so that the value of
second term becomes less than one. ε is given by Eq. (2).

ε =
1

1 +
∑

(m,n)∈E Bm,n
(2)

Subject to:∑
(m,n)∈Vu

xu, f ,m,n = 1, ∀u ∈ U,∀ f ∈ Ru (3)

xu, f ,m,n ≤ yf ,m,n,

∀u ∈ U,∀ f ∈ Ru,∀(m, n) ∈ Vu (4)∑
u∈U

∑
f ∈F

cu, f xu, f ,m,n ≤ Cm,n,

∀(m, n) ∈ V (5)
lu, f ,m−1,i ≥ xu, f ,m,n,

∀u ∈ U,∀ f ∈ Ru,∀(m, n) ∈ Vu,

∀(m − 1, i) ∈ Vu,m , 1 (6)
1 − xu, f ,m,n ≥ lu, f ,m,n,

∀u ∈ U,∀ f ∈ Ru,∀(m, n) ∈ Vu (7)
lu, f ,m−1,i ≥ lu, f ,m,n,

∀u ∈ U,∀ f ∈ Ru,∀(m, n) ∈ Vu,

∀(m − 1, i) ∈ Vu,m , 1 (8)
lu, f ,m,n = 0,
∀u ∈ U,∀ f ∈ F : f < Ru,∀(m, n) ∈ Vu (9)∑

u∈U

max
f
{lu, f ,m,nbu, f } ≤ Bm,n,

∀(m, n) ∈ E (10)∑
(m,n)∈Eu

∑
f ∈Ru

dprop
m,n lu, f ,m,n × 2

+
∑

(m,n)∈Vu

∑
f ∈Ru

dexe
u, f ,m,nxu, f ,m,n

+
∑
f ∈Ru

dafter
u, f ≤ Du,

∀u ∈ U (11)

Equations (3)–(10) are the constraints of this problem.
Equation (3) means that a program file of type f ∈ Ru

is executed at one of the nodes (m, n) ∈ Vu that are available
to device u. Equation (4) means that a program file of type
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f ∈ Ru is placed on node (m, n) ∈ Vu when the program
file is executed at the node. Equation (5) means that the
total required amount of computation resources to execute
program files at node (m, n) ∈ V is equal to or less than the
available computation resources Cm,n. Equation (6) means
that when a program file of type f ∈ Ru is executed on
node (m, n) ∈ Vu , the bandwidth required to transfer the
traffic for the program file is reserved at the link between
nodes (m, n) and (m − 1, i) ∈ Vu . Equation (7) means that
when a program file of type f ∈ Ru is executed on node
(m, n) ∈ Vu , no bandwidth is reserved for the program file
at the links upstream of node (m, n). Equation (8) means
that when the bandwidth required to transfer traffic for a
program file of type f ∈ Ru is reserved at the upstream
link of node (m, n) ∈ Vu , the same amount of bandwidth is
reserved for the program file at the link between nodes (m, n)
and (m − 1, i) ∈ Vu . Equation (9) means that no bandwidth
is reserved for a program file of type f at links upstream of
node in Vu when device u does not request the program file.
Equation (10) means that the sum of bandwidth reserved
at link (m, n) ∈ E is equal to or less than the bandwidth
capacity of link Bm,n. Equation (11) means that the time
needed to execute the task of device u is equal to or less than
the latency requirement Du .

Equation (10) includes a max function. Equation (10)
can be recast in linear form by using bmax

u,m,n to yield Eqs. (12)
and (13).

lu, f ,m,nbu, f ≤ bmax
u,m,n,

∀u ∈ U,∀ f ∈ Ru,∀(m, n) ∈ Eu (12)∑
u∈U

bmax
u,m,n ≤ Bm,n,

∀(m, n) ∈ E (13)

5. NP-Completeness

In this Section, we prove that the decision version of PFP
problem is NP-complete. From the PFP problem described
in Sect. 4.2, we define the PFP decision problem as:
Problem Given a set of requested program files Ru ⊆ F
from each device u ∈ U, is it possible to place program files
of F onto nodes v ∈ V , which satisfy the link bandwidth and
latency requirements between each u and v , such that the
total required computation resources on v does not exceed
Cv?
Theorem The PFP decision problem is NP-complete.

Proof: First, we show that the PFP decision problem is
in NP. For a given instance of the PFP decision problem, we
can verify whether the program files in Ru ⊆ F are placed
onto nodes v ∈ V that device u ∈ U can access in polynomial
time O(|U | |V | |Ru |). We can also verify whether the total
required computation resources in each node v ∈ V do not
exceed v’s computation resources capacity Cv in polynomial
time O( |U | |V | |Ru |). Therefore, we can check the validity
of an instance of the PFP decision problem in polynomial
time.

Next, we show that the partition problem (PB), which is
a known NP-complete problem [11], is reducible to the PFP
decision problem. PB is defined as: is it possible to partition
a given set G of positive integers into two subsets G1 and G2
such that the sums of numbers in the two subsets equal each
other?

We construct an instance of the PFP decision problem
from any instance of PB. An instance of PB consists of a
set G of positive integers and the value of positive integer
g ∈ G is represented by Ig. An instance of the PFP decision
problem is constructed with the following algorithm, which
runs in polynomial time of O( |G |).

1. We consider an M2M service network platform con-
sisting of one edge node, i.e. node (1, 1), and a center
cloud, i.e. node (2, 1). Device u = 1 connected to node
(1, 1) can use nodes (1, 1) and (2, 1) and requests a set
of program files R1 with |R1 | = |G |. For each posi-
tive integer g ∈ G, there is a corresponding program
file r1, j ∈ R1 with computation resource requirement of
c1, j = Ig.

2. The maximum computation resources that nodes (1, 1)

and (2, 1) can provide are set to C1,1 = C2,1 =
∑|G |

i=1 c1, i
2 .

3. The bandwidth capacity of the link between nodes (1, 1)
and (2, 1) is set to B1,1 = ∞, which means that the link
can accommodate any traffic between the nodes.

4. The latency requirement of device u = 1 is set to D1 =
∞, which means that the device does not care about the
latency to finish the task of R1.

Consider that a PB instance is a Yes instance. G can
be partitioned into two subsets G1 and G2, and the sums
of the numbers in the two subsets are

∑
g∈G Ig

2 . Define a
PFP instance from the PB instance by using the above de-
scribed algorithm. In the PFP instance, each requested pro-
gram file r1, j ∈ R1 requires computation resources with
value c1, j . The set of computation resource requirements
S =

{
c1,1, c1,2, · · · , c1, |G |

}
is able to be partitioned into two

subsets S1 and S2, which refer to G1 and G2, respectively,
and the total computation resource requirements in the two
subsets are

∑|G |
i=1 c1, i

2 . By allocating S1 and S2 to nodes (1, 1)
and (2, 1), respectively, device u = 1 can access the program
files of R1. As a result, it is possible to place program files of
R1 onto nodes v ∈ V , which satisfy the link bandwidth and
latency requirements, with the total computation resource
requirements on node v equal to Cv =

∑|G |
i=1 c1, i

2 . Therefore,
the PFP instance is a Yes instance.

Conversely, consider a PFP instance is a Yes instance.
In the Yes PFP instance, in order to provide a set of program
files R1 to device u = 1, for each program file r1, j ∈ R1,
corresponding computation resource requirements c1, j ∈ S
have to be allocated to nodes (1, 1) and (2, 1). Since the
capacities of nodes (1, 1) and (2, 1) are

∑|G |
i=1 c1, i

2 and
∑|G |

i=1 c1, i
2 ,

respectively, the set of computation resource requirements
S can be partitioned into two subsets S1 and S2, where the
total computation resource requirements of the two subsets
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equal
∑|G |

i=1 c1, i
2 . Referring to the partition of S, we are able to

partition G into two subsets G1 and G2 such that the sums
of numbers in the two subsets equal each other. Therefore,
if the PFP instance is a Yes instance, then the PB instance is
a Yes instance.

The above described algorithm transforms any PB in-
stance into a PFP instance in polynomial time. This confirms
that if a PB instance is a Yes instance, then the correspond-
ing PFP instance is a Yes instance, and vise versa. This
proves that PB, a known NP-complete problem, is polyno-
mial time reducible to the PFP decision problem. Thus, the
PFP decision problem is NP-complete. 2

6. Heuristic Algorithms

For the case that the optimum placement cannot be obtained
within a practical time by the MILP problem modeled in
Sect. 4.2, this section presents heuristic algorithms for the
PFP problem that output sub-optimal solutions. The heuris-
tic algorithms presented in this section are designed focus-
ing on the reduction of the number of placed program files,
which is the original objective of the PFP problem. The
link bandwidth utilization is not taken into account in the
heuristic algorithms since it is additionally considered in the
MILP formulation to choose a better solution from multi-
ple solutions with the same performance in the program file
placement.

6.1 Most Upstream Position First Algorithm

The Most Upstream Position First (MUPF) algorithm aims
to find a feasible placement of program files with low com-
putational time complexity. The basic idea of the MUPF
algorithm is to move program files initially placed on the
center cloud to downstream nodes by considering only their
position.

6.1.1 Algorithm Description

The MUPF algorithm is illustrated in Algorithm 1.
Devices are sorted and processed sequentially in as-

cending order of Du; a device with stricter latency require-
ment is processed before other devices. For each device, all
requested program files are initially held only by the center
cloud. The algorithm checks if all the constraints, i.e. com-
putation resources, link bandwidth, and latency requirement,
of the device are met. If the current placement of program
files does not meet at least one constraint, a requested pro-
gram file placed on the most upstream node is selected and
moved to the next downstream node. If multiple program
files are placed on the most upstream node, a program file
with the smallest index number is selected. The movement
of program files and the constraint checks are iterated until
every constraint is met, or until all requested program files
have been moved to the edge node. When the placement of
program files for the device that meets every constraint is
found, the algorithm moves on to the next device. When the

placement of program files for a device does not meet any
constraint even when all of the requested program files have
been moved to the edge node, the algorithm judges that there
is no feasible solution.

A program file is shared if multiple devices have de-
cided to place the same program file on the same node.
When the placement of program files has been successfully
decided for all devices, the algorithm returns the entire place-
ment of program files and the link bandwidth allocation as a
solution.

6.1.2 Computational Time Complexity

Sorting |U | devices in ascending order of Du takes
O(|U | log |U |). Each device requests up to |F | program
files. For each iteration for a device, a program file placed
on the most upstream node and that has the smallest index
number is selected in O(1) and moved to the next down-
stream node. All of the requested program files are moved
from the center cloud (M, 1) to the edge node (1, u) in the
worst case. This movement of program files is performed in
O(M |U | |F |). As a result, the computational time complex-
ity of the MUPF algorithm is O( |U |(log |U | + M |F |)). If
the topology of M2M service network platform is a perfect
binary tree, the number of node stages is M = log2 |U | + 1.
In this case, the computational time complexity is given by
O(|U | |F | log |U |).

The above discussion indicates that the computational
time of the MUPF algorithm grows by a factor of |U | log |U |
against the number of devices |U | at the worst case. The
MUPF algorithm has a polynomial computational time, so
practically it can be considered as an efficient algorithm [12].

6.2 Small Sharing Degree First Algorithm

The Small Sharing Degree First (SSDF) algorithm aims to
reduce the total number of placed program files compared
to the MUPF algorithm by increasing the program files that
are shared by multiple devices. The basic idea of the SSDF
algorithm is to move program files to downstream nodes
based on the number of devices that share a program file.

6.2.1 Algorithm Description

The SSDF algorithm is illustrated in Algorithm 2. Different
from the MUPF algorithm, the SSDF algorithm checks the
number of devices sharing the same program file in each
iteration, and selects and moves the requested program file
shared by the least number of devices.

Devices are sorted and processed sequentially in as-
cending order of Du; a device with stricter latency require-
ment is processed before other devices. For each device, all
requested program files are initially held only by the center
cloud and marked “movable”. The algorithm checks if all
the constraints of computation resources, link bandwidth,
and latency requirement of the device are met. If the current
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Algorithm 1: Most Upstream Position First
(MUPF)

Data: Network condition
〈V, E,U, F, d

prop
m,n,Cm,n, Bm,n, M〉, and program file

requests from devices
〈Ru, cu, f , bu, f , d

exe
u, f ,m,n

, dafter
u, f

, Du 〉

Result: Node utilization xu, f ,m,n , placement of program files
yf ,m,n , link utilization lu, f ,m,n , and link bandwidth
allocation bmax

u,m,n

begin
for u ∈ U in ascending order of Du do

Place all program files in Ru on the center cloud
(M, 1), and record the placement in xu, f ,m,n

Utilize every link between the edge node (1, u) and the
center cloud (M, 1) to access every program file in
Ru , and record the link utilization in lu, f ,m,n

Allocate bandwidth at each link (m, n), and record the
link bandwidth allocation in bmax

u,m,n

while The current placement of program files does not
meetCm,n, ∀(m, n) ∈ Vu , Bm,n, ∀(m, n) ∈ Eu ,
and Du do

if All of program files in Ru are placed on the
edge node (1, u) then

Error exit (feasible solution not found)
Select a program file in Ru placed on the most
upstream node

Move the selected program file to the next
downstream node

Update xu, f ,m,n , lu, f ,m,n , and bmax
u,m,n

Get yf ,m,n from xu, f ,m,n

if The placement of program files meets
Cm,n, ∀(m, n) ∈ V , Bm,n, ∀(m, n) ∈ E , and
Du, ∀u ∈ U then

Return xu, f ,m,n , yf ,m,n , lu, f ,m,n , and bmax
u,m,n

else
Error exit (feasible solution not found)

placement of program files does not meet at least one con-
straint, a requested programfile shared by the least number of
devices examined earlier and marked “movable” is selected.
If the next downstream node has enough computation re-
sources to accept the selected program file, the program file
is moved to the node. Otherwise, the program file remains
on the current node and is marked “immovable”. The pro-
gram file is also marked “immovable” when it reaches the
edge node. The movement of program files and the con-
straint checks are iterated until every constraint is met, or
until all requested program files have been marked “immov-
able”. When the placement of program files for the device
that meets every constraint is found, the algorithm moves on
to the next device. When the placement of program files for a
device does not meet any constraint even when all requested
program files have been marked “immovable”, the algorithm
judges that there is no feasible solution.

A program file is shared if multiple devices have de-
cided to place the same program file on the same node.
When the placement of program files has been successfully
decided for all devices, the algorithm returns the entire place-
ment of program files and the link bandwidth allocation as a
solution.

6.2.2 Computational Time Complexity

Sorting |U | devices in ascending order of Du takes
O(|U | log |U |). Each device requests up to |F | program
files. For each iteration for a device, one of the program files
shared by the least number of devices and marked “movable”
is selected inO(|F |) andmoved to the next downstreamnode.
In the same way as the MUPF algorithm, all of the requested
program files are moved from the center cloud (M, 1) to the
edge node (1, u) in the worst case. Therefore, the move-
ment of program files is performed in O(M |U | |F | × |F |).
As a result, the computational time complexity of the SSDF
algorithm is O(|U |(log |U | + M |F |) × |F |). If the topol-
ogy of M2M service network platform is a perfect bi-
nary tree, the computational time complexity is given by
O(|U | |F |2 log |U |).

Although the complexity of the SSDF algorithm is
higher than that of theMUPF algorithm, the SSDF algorithm
is still a polynomial-time algorithm. From the perspective of
the scalability against the number of devices |U |, the com-
putational time of SSDF algorithm also grows by a factor of
|U | log |U | at the worst case.

7. Evaluation

We evaluated the performance of our heuristic algorithms
by comparisons against the optimal value obtained by using
the MILP model presented in Sect. 4.2. The averages of
objective value and number of placed program files were
evaluated as the metrics of resource utilization efficiency.

7.1 Simulation Environment

The M2M service network platform with 4, 8, 16, and 32
devices is considered in this simulation. The number of steps
of network topology, M , is 3, 4, 5, and 6, respectively. The
number of program types, |F |, is set to 4 and 8.

A set of program files that each device u requests, Ru ,
is selected by the following procedure. First, the number
of requested program files, |Ru |, is selected from uniform
random numbers between 1 and |F |. Then |Ru | types of
program files are randomly chosen from the set of program
types, F.

To simplify the discussion, cu, f , bu, f , dprop
m,n , dexe

u, f ,m,n
,

and dafter
u, f

are all set to 1. The amount of computation re-
sources of node (m, n),Cm,n, is set to d |F |+1

2 e×2(m−1) except
for the center cloud (M, 1). CM,1 is set to a large enough
number. The bandwidth capacity of link (m, n), Bm,n, is
set to 2(m−1); this is sufficient to accommodate all of the
traffic from devices u ∈ U in this simulation environment.
This bandwidth setting helps us to evaluate the performance
of algorithms focusing on the reduction of the number of
placed program files, which is the original objective of the
PFP problem.

The latency requirement from device u, Du , is selected
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Algorithm 2: Small Sharing Degree First (SSDF)
Data: Network condition

〈V, E,U, F, d
prop
m,n,Cm,n, Bm,n, M〉, and program file

requests from devices
〈Ru, cu, f , bu, f , d

exe
u, f ,m,n

, dafter
u, f

, Du 〉

Result: Node utilization xu, f ,m,n , placement of program files
yf ,m,n , link utilization lu, f ,m,n , and link bandwidth
allocation bmax

u,m,n

begin
for u ∈ U in ascending order of Du do

Place all program files in Ru on the center cloud
(M, 1), and record the placement in xu, f ,m,n

Utilize every link between the edge node (1, u) and the
center cloud (M, 1) to access every program file in
Ru , and record the link utilization in lu, f ,m,n

Allocate bandwidth at each link (m, n), and record the
link bandwidth allocation in bmax

u,m,n

Mark every program file in Ru “movable”
while The current placement of program files does not
meetCm,n, ∀(m, n) ∈ Vu , Bm,n, ∀(m, n) ∈ Eu ,
and Du do

if All of program files in Ru are marked
“immovable” then

Error exit (feasible solution not found)
Get the current position and the number of
sharing devices of every program file in Ru

Select a program file shared by the least number
of devices and marked “movable”

if The next downstream node has enough
computation resources to place the selected
program file additionally then

Move the program file to the next
downstream node

Update xu, f ,m,n , lu, f ,m,n , and bmax
u,m,n

if The program file reaches the edge node
(1, u) then

Mark the program file “immovable”

else
Mark the program file “immovable”

Get yf ,m,n from xu, f ,m,n

if The placement of program files meets
Cm,n, ∀(m, n) ∈ V , Bm,n, ∀(m, n) ∈ E , and
Du, ∀u ∈ U then

Return xu, f ,m,n , yf ,m,n , lu, f ,m,n , and bmax
u,m,n

else
Error exit (feasible solution not found)

from uniform random numbers between 2|Ru | and 2m |Ru |.
These numbers are the required times to finish the task when
all of the program files in Ru are placed on edge node (1, u)
and center cloud (M, 1), respectively.

We generated 1,000 patterns of simulation parameters
for each set of (M, |F |), and tried to solve the same set
of parameters by using the MILP model and the heuris-
tic algorithms. The MILP model is solved by using the
CPLEX®Interactive Optimizer 12.7.1.0. We compared the
results in case that the feasible solution was obtained by both
MILP model and heuristic algorithms.

7.2 Simulation Results

Figures 5 and 6 show the average of objective values when

Fig. 5 Average of objective value when the number of program types,
|F |, is 4.

Fig. 6 Average of objective value when the number of program types,
|F |, is 8.

the number of program types, |F |, is 4 and 8, respectively.
Each of the figures shows the results for 4, 8, 16, and 32
devices. The objective values of the heuristic algorithms
are calculated by using the objective function of the MILP
model, i.e., Eq. (1). Therefore, a value related to the link
bandwidth utilization is included in the objective values, but
it is ignorably small (less than one). Note that, as mentioned
in Sect. 4.2, the objective value becomes larger if program
files are placed on nodes located more downstream. Com-
pared to the optimal value, the objective value is 9%–38%
and 9%–48% larger when using the MUPF algorithm and
the SSDF algorithm, respectively.

Figures 7 and 8 show the average number of placed pro-
gramfiles for 4 and 8 program types, respectively. Compared
to the optimal value, the number of placed program files is
14%–61% and 8%–36% higher when using the MUPF al-
gorithm and the SSDF algorithm, respectively. As Figs. 7
and 8 indicate, the SSDF algorithm yields solutions that re-
quire fewer program files than the MUPF algorithm. The
number of placed program files 17% lower when the number
of devices is 16 and the number of program types is 8. In
the SSDF algorithm, program files shared by fewer devices
are preferentially moved to downstream nodes. This feature
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Fig. 7 Average number of placed program files when the number of
program types, |F |, is 4.

Fig. 8 Average number of placed program files when the number of
program types, |F |, is 8.

leads an increase in objective value since more program files
are placed on edge-side nodes compared to the MUPF algo-
rithm. However, the total number of placed program files
becomes smaller since the program files remaining on the
upstream nodes are shared by many more devices. Figures 7
and 8 also show the number of program files shared by mul-
tiple devices and that used by a single device. The ratio of
the program files shared by multiple devices to those used by
a single device is larger in the optimal scenarios compared
to the scenarios of applying heuristic algorithms. It can be
observed that, when the number of devices is 8, 16, and 32,
the number of shared program files obtained by using the
SSDF algorithm is smaller than that obtained by the MUPF
algorithm. This fact indicates that the SSDF algorithm en-
ables program files to be shared by more devices compared
to the MUPF algorithm.

The difference between the number of placed program
files obtained by the heuristic algorithms and that obtained
by theMILPmodel becomes bigger as the number of devices

increases. This is because the number of node stages, M ,
increases according to the number of devices. Both heuristic
algorithms determine the placement of programfiles for each
individual device in a sequential manner. Therefore, when
the number of node stages becomes large, the requested pro-
gram files are likely to be scattered across multiple nodes;
the number of program files that are shared by a large num-
ber of devices decreases. In the case of SSDF algorithm,
the difference between the obtained value and the optimal
value increases by approximately 8% when the number of
devices doubles. However, as discussed in Sects. 6.1.2 and
6.2.2, both heuristic algorithms are polynomial-time algo-
rithms. This fact indicates that these heuristic algorithms
have a possibility of obtaining a solution for the PFP prob-
lem within a practical time even in the case of large number
of devices.

Note that this simulation assumes that each link has
enough bandwidth capacity to carry all traffic from the de-
vices. If we consider the variability of link capacity Bm,n and
the required bandwidth from each device cu, f , the number
of placed program files might increase.

8. Conclusion

This paper proposed a ProgramFile Placement (PFP)method
for the Machine-to-Machine (M2M) service network plat-
form providing program files and computation resources
required to execute the tasks requested by connected IoT
devices. To obtain the optimal placement of program files,
a computation model of the PFP problem was introduced
as a Mixed-Integer Linear Programming (MILP) problem.
The PFP decision problem was proven to be NP-complete
by reducing the partition problem (PB) to the PFP decision
problem in polynomial time. Two heuristic algorithms, Most
Upstream Position First (MUPF) algorithm and Small Shar-
ing Degree First (SSDF) algorithm, were introduced. Simu-
lations showed that the SSDF algorithm tends to place more
program files on edge-side nodes, but reduces the number of
placed program files compared to the MUPF algorithm. As
future work, the proposed PFP algorithms could be expanded
to online algorithms in order to support dynamic scenarios
wherein the devices connect and disconnect to the platform
dynamically or request multiple tasks. From the viewpoint
of feasibility, methods to migrate and replicate program files
between network nodes without disrupting current device
tasks should be established.
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