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Simple and Complete Resynchronization for
Wireless Sensor Networks

Hiromi YAGIRI†, Nonmember and Takeshi OKADOME†a), Member

SUMMARY The methods proposed in this paper enable resynchroniza-
tion when a synchronization deviation occurs in a sensor node without a
beacon or an ack in a wireless sensor network under ultra-limited but stable
resources such as the energy generated from tiny solar cell batteries. The
method for a single-hop network is straightforward; when a receiver does
not receive data, it is simply placed in recovery mode, in which the receiver
sets its cycle length TB to (b ± γ)T , where b is non-negative integer, 0 <
γ < 1, and T is its cycle length in normal mode, and in which the receiver
sets its active interval WB to a value that satisfies WB ≥W + γT , where
W is its active interval in normal mode. In contrast, a sender stays in nor-
mal mode. Resynchronization methods for linear multi-hop and tree-based
multi-hop sensor networks are constructed using the method for a single-
hop network. All the methods proposed here are complete because they are
always able to resynchronize networks. The results of simulations based on
the resynchronization methods are given and those of an experiment using
actual sensor nodes with wireless modules are also presented, which show
that the methods are feasible.
key words: asynchronous neighbor discovery, resynchronization, ultra-
limited resources, wireless sensor network.

1. Introduction

In the Internet of Things (IoT) era, sensor networks gather
ambient information from the environment using sensors.
We believe that, in the future, some sensor networks will
be comprised of microscopic sensors. One such example
is the sensor network that senses the state of blood. This
sensor network is composed of microscopic sensing devices
drifting down with the flow of blood in blood vessels. Such
microscopic devices are required to be able to operate using
very limited resources, that is, using less physical devices
and software under low energy consumption.

This study focuses on resynchronization ofwireless sen-
sor networks with a synchronous communication protocol
under ultra-limited resources∗.

The constraint of ultra-limited resources requires us
to adopt a simple synchronous communication protocol, in
which sensor nodes with their own counter clocks iterate be-
tween a long-term battery charging mode and a short-term
data communication mode. That is, the sensor nodes charge
in sleep mode, and then send or receive data in a short-term
active mode for normal communication (see Fig. 1). If rich
resources are available, a sensor node may take a sufficiently
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Fig. 1 Synchronized communication between two nodes with sleepmode
in normal communication, where W denotes the active interval in which
sensor nodes send or receive data, and S denotes the sleep interval. Node
A is a data sender and node B a data receiver.

long active interval to receive data; this enables us to resyn-
chronize the node with the network when a synchronization
deviation occurs in the sensor node, where a synchronization
deviation denotes a state in which, even if the active interval
of a sender overlaps with that of a receiver, the overlapping
interval is not sufficient for the receiver to receive data from
the sender. Under ultra-limited resources, however, a sensor
node may not always have a long enough active interval to
resynchronize.

Previous studies have proposed practical algorithms for
neighbor discovery that are based on slotted discovery sched-
ules [3], [6]–[8]. For example, Kandhalu, Lakshmanan,
and Rajkumar [6] presented a complete algorithm named
U-Connect that always discovers a neighbor node for any
relative phase offset. When a synchronization deviation oc-
curs in a sensor node, the neighbor discovery algorithms can
be used for recovery of synchronization.

Recovery of synchronization using the neighbor dis-
covery algorithms, however, requires a beacon∗∗ between a
sender and a receiver (or an acknowledgment (ack) from a
receiver to a sender) in the normal communication mode if
the sender and receiver use the minimum slot. The min-
imum slot is defined as the slot with the shortest length
among those that allow sensor nodes to send data and/or
receive data. This is because, when a synchronization devi-
ation occurs, the sender may not detect the occurrence of the
synchronization deviation without a beacon; consequently,
it cannot switch to a slotted discovery schedule.

Even if the sensor nodes do not use a beacon or an ack,
∗This paper is a full version of a conference paper [7] that

focuses only on the single-hop sensor network. In addition to
the single-hop sensor network, this paper deals with linear multi-
hop and tree-based multi-hop one-way sensor networks. It also
describes an experimental evaluation with the physical devices,
which is not described in [7].
∗∗We assume that a receiver transmits a beacon outside a slot

before and after the slot.
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Fig. 2 Sensor network topologies.

the neighbor discovery algorithms may permit us to recover
slot synchronization if the sensor nodes have a slot with at
least twice the minimum slot length. This is because of
the following reason. For any amount of synchronization
deviation, there exists an overlap between the active slot
of the sender and that of the receiver that is longer than
the minimum slot length. If the receiver can estimate the
amount of synchronizaition deviation during the active-slot
overlap, the receiver can synchronize its slot to that of the
sender. In either case, the neighbor discovery algorithms
require additional resources.

The methods proposed in this paper are not based on
slotted discovery schedules. In particular, the most basic
method for a single-hop network requires no beacon or ack.
The methods are complete; they are always able to resyn-
chronize networks for any continuous phase offset. Further-
more, they are simple; they reduce the power required for
resynchronization computations.

In this study, we focus on single-hop, linear multi-hop,
and tree-based multi-hop one-way sensor networks. Focus-
ing on the theoretical aspect of resynchronization, we first
present a resynchronization method for one-to-one single-
hop networks. We then extend this method to linear and
tree-based sensor networks. Figure 2 shows schematic rep-
resentations of the networks.

For simplicity, we begin with the following assump-
tions, which we relax later.
ASSUMPTION 1. The sleep and active intervals are constants
with no fluctuation.
ASSUMPTION 2. After a synchronization deviation occurs
in a sensor node, no node experiences further disturbance of
synchronization until the node resynchronizes.

Besides, we assume, without loss of generality, that the
sleep interval is significantly longer than the active interval.
This assumption corresponds to the long-term battery charge
and short-term data transceiver modes.

Section 3 discusses the relaxation of the assumptions
mentioned above after Sect. 2 presents the resynchronization
methods in detail. Section 4 describes simulations based
on the resynchronization methods and an experiment using
actual sensor nodes with wireless modules. Section 5 de-
scribes related work, and Sect. 6 concludes the paper. We
present the proof of Property 1 in Sect. 2, but we describe
them of Properties 2 to 12 in Appendix.

2. Resynchronization Methods

This section describes a few methods of synchronization re-
covery when a sensor node cannot communicate with the
other nodes in a wireless sensor network that adopts a syn-
chronous communication protocol.

2.1 Resynchronization for Single-Hop Networks

We first attempt resynchronization for a simple single-hop
network consisting of two sensor nodes– the data sender
node and the receiver node. Let node A be a sender and
node B a receiver. They have no beacon. Node B does not
return an ack signal to A. When a synchronization deviation
occurs in either A or B, node B does not receive data from
node A; node B then enters recovery mode, in this mode,
node B attempts to receive data from node A. Once node B
succeeds in receiving data, it can return to normal commu-
nication. We say this process of recovering synchronization
resynchronization. Note that node A cannot detect the loss
of a synchronization owing to the lack of a beacon or ack
signal. Thus node A continues to send data in normal com-
munication (normal mode), even after synchronization has
been lost.

LetW be the active interval of nodes A and B in normal
mode,WB be the receive interval of nodeB in recoverymode,
respectively, S be the sleep interval in normal mode and SB
be the sleep interval of node B in recovery mode. Further,
let T be the cycle interval of nodes A and B in normal mode
and TB be the cycle interval of node B in recovery mode. By
definition, T = S +W and TB = SB +WB hold. Furthermore,
without loss of generality, we assume that T > S � W , and
thus TB > SB �WB holds.

For a synchronization deviation, the following method
enables us to resynchronize the nodes.

METHOD SN (Single-hop Network). Let α = b +
γ be a positive constant, where b ≥ 0 is the integer part
of α and γ > 0 is its fractional part. If node B does not
receive data, Method SN puts node B in recovery mode,
where we set

TB = αT = (b + γ)T (1)

and we set WB to a positive number that satisfies either
of the following

WB ≥ W + γT, (2)
WB ≥ W + (1 − γ)T ; (3)

we repeat the longer sleep and active cycles. On the other
hand, node A stays in normal mode. If node B receives
data from node A while in recovery mode, the node judges
itself to be resynchronized and changes its mode to normal
mode.

Note that

γ =
TB

T
−

⌊
TB

T

⌋
, (4)
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Fig. 3 Operations of nodes A and B in Method SN.W : active interval of
nodes A and B in normal mode,WB : active interval of node B in recovery
mode, S: sleep interval in normal mode, SB : sleep interval of node B in
recovery mode, T =W + S: cycle interval in normal mode, d: magnitude
of synchronization deviation.

Fig. 4 A sufficient condition for resynchronization. A state occurs in
which the active interval of node B covers that of node A. W : active
interval of nodes A and B in normal mode,WB : active interval of node B
in recovery mode, S: sleep interval in normal mode, T = W + S: cycle
interval in normal mode, d: magnitude of synchronization deviation.

where b c denotes the floor function. Figure 3 illustrates the
operations of nodes A and B in Method SN. Method SN can
recover synchronization between nodes A and B in a finite
time. We show this with the following property.

Property 1. Let the amount of synchronization deviation
be d†. (see Fig. 3). Then, for any d, 0 < d < T , Method
SN can resynchronize nodes A and B in a finite number of
active–sleep cycles in recovery mode.

Proof. Assume that, just after node B enters recovery mode,
nodes A and B repeat m and n cycles whose intervals are T
and TB, respectively. Method SN succeeds in resynchroniz-
ing if a state occurs in which the active interval of node B
covers that of node A (Fig. 4). The state is represented by

m × T −W ≥ n × TB −WB + d and
m × T ≤ n × TB + d,

which are equivalent to

nTB −WB +W + d ≤ mT ≤ nTB + d. (5)

A sufficient condition for resynchronization is therefore that,
for any deviation d in a cycle, 0 < d < T , there exist positive
integers m and n that satisfy inequality (5). We first assume
that WB satisfies condition (2). Let us here consider the
following inequality

−γT + d ≤ mT − nTB ≤ d. (6)

†For d < 0, we can use d′ = T + d > 0 as the magnitude
of synchronization deviation instead of d. Thus, without loss of
generality, we can assume 0 < d < T .

Because −(WB −W ) ≤ −γT holds from (2), we can see that
if, for any deviation d, there exist positive integers m and n
that satisfy (6), then the integers m and n also satisfy (5).
Inequality (6) is equivalent to

(n − 1)γ +
d
T
≤ m − nb ≤ nγ +

d
T
. (7)

Thus, it is sufficient to show that, for any deviation d in a
cycle, there exist positive integers m and n that satisfy (7).
We can easily observe the following facts from inequality
(7). (a) The difference between the extreme left-hand and
right-hand sides is the positive constant γ < 1 for each n = 1,
2, . . .. (b) Both the extreme left-hand and right-hand sides
monotonically increase as n increases, and the increment is
the positive constant γ < 1. (c) The extreme left-hand side
for (n + 1) is equal to the extreme right-hand side for n for
all n = 1, 2, . . .. Hence, for some positive integer n, there
exists a positive integer m̃ that satisfies

(n − 1)γ +
d
T
≤ m̃ ≤ nγ +

d
T
. (8)

Set m = m̃ − nb, where m̃ and n are positive integers that
satisfy (8). The positive integers m, n then obviously satisfy
(7).

Next, we assume that WB satisfies condition (3). We
can then see that, from inequality (5) and (3), it is sufficient
to show that there exist positive integers m, n that satisfy the
following:

(n + 1)γ − 1 +
d
T
≤ m − nb ≤ nγ +

d
T
. (9)

Just as described above, we can prove this assertion. �

Note that Property 1 is not a necessary condition for
resynchronization. In Sect. 3, we shall give a necessary
condition for resynchronization if sensor nodes work under
the minimum active interval, where the minimum active
interval is defined as the shortest active interval in length
among those that allow the sensor nodes to send data and/or
to receive data stably.

Let us consider the resynchronizationmethod presented
here, which uses a positive, non-integer constant α and WB

satisfying either (2) or (3). We again call the methodMethod
SN.

Property 2. Let α, γ, and TB be the constants defined in
Method SN. (a) If we setWB toW + γT , which is theminimum
value that satisfies (2), then, after recovery mode starts,
Method SN resynchronizes in at most N1 = d

1
γ e cycles in

recoverymode, where d e is the ceiling function. Thus it takes
Method SN at mostTBN1 to resynchronize. Furthermore, the
average latency of Method SN is expressed as

Lave
1 =

⌊
1
γ

⌋∑
k=1

kγTB +
⌈ 1
γ

⌉( 1
γ
−
⌊ 1
γ

⌋ )
γTB (10)

if the amount of synchronization deviation obeys the uniform
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distribution.
(b) If we set WB to W + (1−γ)T , which is the minimum

value that satisfies (3), it resynchronizes in at most N2 =
d 1

1−γ e cycles in recovery mode. Thus it takes Method SN at
most TBN2 to resynchronize. The average latency of Method
SN is represented by

Lave
2 =

⌊
1

1−γ

⌋∑
k=1

k (1 − γ)TB

+
⌈ 1
1 − γ

⌉( 1
1 − γ

−
⌊ 1

1 − γ
⌋ )

(1 − γ)TB (11)

if the amount of synchronization deviation obeys the uniform
distribution.

Let us give some numerical examples of the recovery
time. First, set W = 10.0ms, T = 1,000ms, and b = 1. If
we have γ = 0.002, then WB = W + γT = 12.0ms, which is
the the minimum value that satisfies (2) in this setting, and it
takes Method SN 4.18min on average to resynchronize and
at most 8.35min. If γ = 0.001, then 8.35min on average
and at most 16.7min, and if γ = 0.0005, then 16.68min on
average and at most 33.35min. Next, set W = 5.0ms, T =
600ms, b = 1, and γ = 0.0025. Then, it takes Method SN
2.01min on average to resynchronize and at most 4.01min.

Note that, in addition to clock fluctuation, a packet
loss leads to the beginning of the recovery mode. Even
if the recovery mode is caused by the packet loss, Method
SN succeeds in resynchonizing; however, theoretically, it is
the worst recovery time to resynchronize the network. In
practice, we can avoid this worst recevery time by slightly
modifying the procedure in Method SN. That is, when a
receiver does not receive any data, it maintains the normal
communication mode instead of entering the recovery mode
immediately, and if the receiver fails to receive data several
times, it starts the recovery mode.

In closing this section, we describe two properties that
characterize Method SN.

Property 3. Assume the constant setting of Method SN. If
WB satisfies condition (2), then the increment of S, ∆S = SB
− S, satisfies ∆S ≤ (b − 1)T . The equality ∆S = (b − 1)T
holds if and only if the equality WB =W + γT holds in (2).

Note that ∆S ≥ 0 for b ≥ 1, but ∆S < 0 for b = 0. In
contrast, the increment of W is always positive because WB

> W .

Property 4. The condition where, with the assumption SB >
WB, (1) holds and either (2) or (3) holds, where b is a non-
negative integer and 0 < γ < 1 is equivalent to that where
either

TB = (b+ + γ̄)T (12)

or

TB = (b+ − γ̄)T (13)

holds and

WB ≥ W + γ̄T (14)

holds, where b+ is a positive integer and 0 < γ̄ < 1.

2.2 Resynchronization for Linear Multi-Hop Networks

This section describes a method for resynchronization in
one-way and linear multi-hop networks. The method uses
Method SN for single-hop networks that was presented in
the previous section. In a one-way and linear multi-hop
network, data are sent from the terminal node to the sink
node and data send alternates with data receive in each node.
That is, a cycle in the operation of nodes except the terminal
and sink nodes consists of two phases: data send and data
receive. Thus, as shown in Fig. 5, the cycle interval T2 is
equal to 2(W + S) = 2T , where W and S are the active and
sleep intervals. The terminal node simply sends data to its
succeeding node once every cycle. The root node also simply
receives data from its preceding node once every cycle. In
the following discussion, a receiver does not need to return
an ack to a sender.

The following is a method for resynchronization in a
one-way and linear multi-hop network.

METHOD LN (Linear Network). Use the cycle
interval T2 instead of T and define α, b, and γ as con-
stants defined in Method SN. In recovery mode, Method
LN changes the active intervals for data send to sleep in-
tervals as shown in Fig. 6. If a node does not receive data
from its preceding node, Method LN puts the node in re-
covery mode just as in Method SN using T2 instead of
T .

Note that in Method LN, once a node, say node B,

Fig. 5 The operations of sensor nodes in normal mode in simple syn-
chronous communication in linear multi-hop networks. W : the active
interval of nodes A and B, S: the sleep interval, T2 = 2(W + S): the cycle
interval.

Fig. 6 The operations of sensor nodes in recovery mode in linear multi-
hop networks. W : the active interval in normal mode, WB : the active
interval in recovery mode, T2 = 2(W + S): the cycle interval in normal
mode.
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Fig. 7 The propagation of recovery mode in linear multi-hop networks.
A synchronization deviation occurs in node B. Gray nodes are in recovery
mode.

enters recovery mode, its succeeding node, say C, also enters
recovery mode because after entering recovery mode, node
B does not send data, and then node C does not receive data
from node B. The same relation holds between the adjacent
two nodes from B to the sink and thus they all enter recovery
mode. Figure 7 illustrates the propagation of recovery mode.

Property 5. Assume that a synchronization deviation occurs
in a node and it does not receive data in a one-way and linear
multi-hop network. Method LN enables us to resynchronize
the network in a finite time.

Property 6. Assume that a synchronization deviation oc-
curs in the k-th node from the sink node in a one-way and
linear multi-hop network. Then just after the k-th node en-
ters recovery mode, it takes Method LN at most kTBN to
resynchronize the network, where N is N1 or N2 defined in
Property 2.

Although Method LN is complete, the recovery time
using this method increases in proportion to the number of
nodes in a linear network, as shown in Property 6. We,
however, have some ways to improve the speed of synchro-
nization recovery drastically, if we allow the minimum use
of an ack. For example, let nodes n1, n2, . . ., nN consist of
a linear multi-hop network, where node n1 is the leaf node
and node nN is the sink node. We do not use an ack in the
normal mode. Assume that the synchronization deviation
occurs in node n3 and that node n4 cannot receive any data.
If n4 does not receive data from n3, then n4 sends a special
message to n5; if n5 sends an ack back to n4 in response to
the special message, then n4 can judge that a synchronization
deviation did not occur in n4 but it did in n3. Thus, entering
only n3 into the recovery mode enables us to resynchronize
the whole network without the propagation of the recovery
mode. Hence, if we use this method for resynchronization
in a large linear multi-hop network, the latency of synchro-
nization recovery is of the same order as that in a single-hop
two-node network.

2.3 Resynchronization for Tree-Based Sensor Networks

For simplicity, we assume a full binary tree of height H ,
where the top node is the root (sink) node and the nodes at
the lowest level are leaves. In a tree-based sensor network,

Fig. 8 Data transceiver in a tree-based sensor network in normal mode.
Node C is the parent of nodes A and B.W : the active interval, S: the sleep
interval, T3 = 3(W + S): the cycle interval.

Fig. 9 A non-leaf node can determine whether a synchronization devia-
tion occurs in the node or in one of the children. (a) If the deviation occurs
in the left child, the node does not receive data from the left child. (b) If the
deviation occurs in the node itself, the node does not receive data from the
left or the right child.

every sensor node except the root node sends data to its parent
in the active mode. Every non-leaf node except the root node
receives data twice and sends data once in a transceiver phase
because it has two children and a parent. That is, as shown
in Fig. 8, node C receives data from its child nodes A and B
and sends them to the parent in the active intervals. Thus
the cycle interval T3 in normal mode is equal to 3(W + S) =
3T , where W and S are the active and sleep intervals. Leaf
nodes simply send data to their parents in the active interval
once every cycle. Further, the root node simply receives data
from its children.

First, we describe a resynchronization method for the
situation, in which a synchronization deviation occurs in a
sensor node that is neither a leaf nor the parent of a leaf. In
this case, a higher node need not return an ack to the lower
ones. Note that a non-leaf node has two children that send
data to the node. Thus Assumption 2 enables a non-leaf node
to determine whether the synchronization deviation occurs
or not in the node. As Fig. 9(a) shows, for example, the node
determines that a synchronization deviation occurs in the
left child because it does not receive data from it, but it does
from the right child. Further, as Fig. 9(b) shows, the node
determines that a synchronization deviation has occurred in
the node because it does not receive data from the left or the
right child.

METHOD TNU (Tree-based Network, Upper).
Use the cycle interval T3 instead of T and define α, b,
and γ as constants defined in Method SN. In recovery
mode, Method TNU changes the active interval for data
send into the sleep interval and it also changes the active
interval for one of the two receive phases into the sleep
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Fig. 10 The operations of a node in recovery mode and those of its
children in normal mode in a tree-based sensor network. W : the active
interval in normal mode, WB : the active interval in recovery mode, T3 =
3(W + S): the cycle interval in normal mode.

interval as shown in Fig. 10. Let G be a node that is not
a leaf or the parent of a leaf. If node G does not receive
data from the children and if it determines that a synchro-
nization deviation has occurred in node G, Method TNU
puts node G in the same recovery mode as in Method SN
using T3 instead of T . The other nodes stay in normal
mode.

Property 7. Assume that a synchronization deviation oc-
curs in a node that is not a leaf or the parent of a leaf in
a tree-based sensor network. Method TNU permits us to
resynchronize the network in a finite time.

Now we turn to leaf nodes and their parents. If a leaf
node does not receive the ack returned from its parent, it
cannot detect the occurrence of synchronization deviation
in it or in its parent because it simply sends data to the
parent. Hence, resynchronization between a leaf node and its
parent requires the ack to be returned from the parent†. Even
when using an ack, a leaf node needs a particular operation
for resynchronization because it has only one receiver (its
parent), whereas a non-leaf node has two senders and a
receiver.

METHOD TNL (Tree-based Network, Lower).
Again, define α, b, and γ and use the cycle interval T3
instead of T . Assume that a synchronization deviation
occurs in a leaf node or in the parent of a leaf. Method
TNL uses the same recovery mode as in Method TNU.
Furthermore, it requires a sync message sent from a par-
ent node to its child. Let node A be a leaf node and node
C its parent.

i) Assume that the synchronization deviation occurs in
leaf A. Then node A does not receive the ack returned
from the parent C and thus node A enters recovery
mode. Node C also detects the synchronization devi-
ation and it changes its mode to seminormal mode, in
which node C receives data from the other child, B,
and sends data to its parent just as in normal mode,
but node C sends a sync to node A at the time of

†We can use the beacon instead of the ack. In particular, the
beacon is more compatible with the resource-limited requirement
if the size of the ack is larger than that of the beacon, although the
beacon communication needs additional devices.

Fig. 11 A synchronization deviation occurs in a leaf node. Leaf-node A
enters recovery mode. Node C slightly changes its mode into seminormal
mode, in which it receives data from the other child B and sends data to its
parent just as in normal mode, but node C sends a sync to node A. Gray
nodes are in recovery mode.

Fig. 12 When a synchronization deviation occurs in the parent of a leaf
node, the parent enters recovery mode and its children also enter recovery
mode. Gray nodes are in recovery mode.

receiving data from A in normal mode. The other
nodes stay in normal mode. Figure 11 illustrates the
operation of the nodes in the method.
After the synchronization between nodes A and C
completes, they reenter normal mode.

ii) Assume that a synchronization deviation occurs in par-
ent C. Then it enters recovery mode. The two child
nodes, A and B, also enter recovery mode because
they do not receive the ack returned from node C.
Figure 12 shows the situation. In this method, par-
ent D of node C changes its mode to seminormal
mode, in which node D receives data from the other
child and sends data to its parent just as in normal
mode, but node D sends a sync to node C at the
time of receiving data from node C in normal mode.
The other nodes stay in normal mode. Figure 13 il-
lustrates the operation of nodes A, B, C, and D after
a synchronization deviation occurs in node C.
After the resynchronization between nodes C and D
is completed, node C enters seminormal mode and
sends a sync to its children A and B that are in re-
covery mode. Again, after node C resynchronizes its
children, node C return to normal mode. Further,
nodes A and B enter normal mode after they resyn-
chronize node C.

Note that when a synchronization deviation occurs in
the parent C, it enters recoverymode and its children A and B
also enter recovery mode. The recovery of synchronization
for the three nodes requires a sync from node D, the parent
of C, as shown in Fig. 13.

Property 8. Assume that a synchronization deviation occurs
in a leaf node or in the parent of a leaf node in a tree-based
sensor network. Method TNL permits us to resynchronize
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Fig. 13 When a synchronization deviation occurs in the parent, C, of a
leaf node, the parent D of node C slightly changes its mode into seminormal
mode, in which node D receives data from the other child and sends data to
its parent just as in normal mode, but node D sends sync to node C at the
time of receiving data from C in normal mode. Gray nodes are in recovery
mode.

the network in a finite time.

From Properties 7 and 8, we obtain the following.

Property 9. Assume that a synchronization deviation occurs
in a node in a tree-based sensor network. Methods TNL and
TNU permit us to resynchronize the network in a finite time.

Property 10. Assume that a synchronization deviation oc-
curs in a node at level k in a tree-based sensor network.
Methods TNL and TNU enable us to resynchronize the net-
work in at most

τ =




2
3TBN, k < M − 1,
3TBN, k = M − 1,
TBN, k = M,

where N is N1 or N2 defined in Property 2.

3. Discussion

We first discuss the constant setting in the resynchronization
methods presented in this paper, relating it to the feasibility
of the resynchronization methods. From Property 3, we find
that the increment of the active time, ∆W , is always positive
and that the increment, ∆S, of the sleep time satisfies ∆S ≥
0 for b ≥ 1, but ∆S < 0 for b = 0. This means that if we set b
to 0, we must use an active interval with a margin in normal
mode Thus this setting might be physically infeasible. Even
when we set b to 1, we must use an active interval with
a small margin, but this setting is feasible as shown in the
numerical example of the recovery time, where we set W =
10.0 ms, T = 1,000 ms, b = 1, γ = 0.001, and WB = W + γT
= 11.0 ms. In contrast, if we set b to 2 or higher, we do not
need an active interval with a margin, but the recovery time
of the methods becomes longer.

Next, we discuss the assumptions introduced in Sect. 1
and relax them. The simplified synchronous system requires
constant sleep and active intervals without fluctuation, which
is Assumption 1. Under such ultra-limited resources, even if
we use state of the art technologies, the counter clock fluctu-
ates (see, for example, [1]), which leads to unstable operation
of the synchronous system. Thus, adopting the synchronous

system is impractical, especially, for a large-scale sensor net-
work. One of the solutions to the clock fluctuation problem
is to use an active interval with a large margin. The use
of a largely-margind active interval, however, contradicts
the premise that the sensor network that we are focusing on
works under ultra-limited resources.

The following property shows that a slightly modified
version of Method SN enables us to apply resynchroniza-
tion in a synchronous system with a fluctuating active/sleep
interval if we modify the conditions of WB and γ.

Property 11. Let ε be an upper bound of the errors of the
active/sleep interval. That is, we assume that, in both nor-
mal and recovery modes, the active/sleep interval fluctuates
between the constant ±ε. Set γ and WB to satisfy either of
the following:

γT > 2ε(b + 1), (15)
WB ≥ 2εb +W + γT (16)

or
(b + 4)ε

T
+

1
2
< γ < 1 −

(b + 4)ε
T

, (17)

WB ≥ (2b + 6)ε +W + (1 − γ)T . (18)

Furthermore, set TB = (b + γ), where b is a non-negative
integer. Then, for any amount of synchronization deviation
d, 0 < d < T , Method SN with the above constant setting can
resynchronize nodes A and B in a finite number of active–
sleep cycles in recovery mode.

We can also relax Assumption 2: “After a synchroniza-
tion deviation occurs in a sensor node, no node experiences
further disturbance of synchronization until the node resyn-
chronizes.” Assume that synchronization deviation occurs as
a Poisson arrival process, which is a commonly used model
for random, mutually independent error occurrences. Then,
the following property holds.

Property 12. We assume that the number of synchronization
deviations obeys a Poisson distribution; that is, the proba-
bility of exactly k synchronization deviations in the time
interval between 0 and t is expressed as

P(k) =
(λt)k

k!
e−λt, (19)

where λ is the number of synchronization deviations per
unit time. We also assume that the amount of synchroniza-
tion deviation obeys the uniform distribution. Then, if we
set WB = W + γT , the probability that Method SN resyn-
chronizes without further synchronization deviation after a
synchronization deviation occurs is given by

b 1
γ c∑

n=1
e−nλTB

γT
T
+ e−λ d

1
γ eTB

( 1
γ − b

1
γ c)γT

T
. (20)

If we set WB = W + (1 − γ)T , it is given by



686
IEICE TRANS. COMMUN., VOL.E102–B, NO.4 APRIL 2019

b 1
1−γ c∑
n=1

e−nλTB
(1 − γ)T

T

+ e−λ d
1

1−γ eTB
( 1

1−γ − b
1

1−γ c)(1 − γ)T

T
. (21)

Let us give a numerical example of the probability of
resynchronization. Set W = 10.0ms, T = 1,000ms, b = 1, γ
= 0.001, and WB = W + γT = 11.0ms. Then, the probability
of resynchronization is greater than or equal to 87.29% if
a synchronization deviation occurs on average every hour,
95.50% every 3 hours, 97.72% every 6 hours, 98.85% every
12 hours, 99.42% every 24 hours, and 99.81% every 72
hours.

Finally, we give a stronger sufficient condition for resyn-
chronization without proof.

Property 13. Set TB, γ, and WB to satisfy either of the
following.

TB = (b + γ)T, (22)
W −WB

T
≤ bkγc − kγ < 0, (23)

where k is a positive integer, b is a non-negative integer, and
0 < γ < 1, or

TB = (b+ − γ)T, (24)
W −WB

T
≤ kγ − dkγe < 0, (25)

where k is a positive integer, b+ is also a positive integer,
and 0 < γ < 1. Then, for any amount of synchronization
deviation d, 0 < d < T , Method SN with the above constant
setting can resynchronize nodes A and B in a finite number
of active–sleep cycles in recovery mode.

If we put k = 1 in (22) to (25), then Property 13 yields
Property 1. Property 13 gives us the strongest sufficient
condition for resynchronization in the sense that if we take
TB, γ, and WB values that satisfy either (22) and (23) or (24)
and (25), then there exist integers m and n that satisfy (5)
and, conversely, if there exist integers m and n that satisfy
(5), then TB, γ, and WB in (5) satisfy either (22) and (23) or
(24) and (25). It also presents us a necessary condition for
resynchronization if sensor nodes work under the minimum
active interval, where the minimum active interval is defined
as the shortest active interval in length among those that
allow the sensor nodes to send data and/or to receive data
stably.

4. Experiment and Simulation

Yagiri and Okadome [7] confirm that Method SN recovers
from the synchronization in the single-hop networks through
simulation. The simulation results show that (a) Method SN
always succeeds in resynchronizing, and (b) the maximums
of the resynchronization latencies nearly coincide with the
worst-case estimations in any case.

We also perform a simple experiment for Method SN
implemented by XBee modules with Arduino boards. Fur-
thermore, we confirm that the resynchronization methods
for the multi-hop networks, Methods LN, TNU, and TNL
recover from synchronization deviation through simple sim-
ulation. We assume that no packet loss occurs through the
experiment and simulation.

4.1 Experiment

This section describes the experiment for Method SN imple-
mented by XBee modules with Arduino boards. We have
implemented Method SN using XBee 802.15.4 wireless net-
working RF modules [9] with Arduino [10]. That is, the
sender is an Arduino board with an XBee module and the
receiver is also an Arduino board with a XBee module. The
implementation details are as follows. (a) Using the Hi-
bernate function on the XBee modules, we put the XBee
modules to sleep. (b) For the active interval, a sender sends
one byte at a time to a receiver. (c) We consider a data trans-
fer to be succeessful when the serial port of the receiver’s
XBee module has the data.

Using Method SN implemented by XBee modules with
Arduino, we performed the experiment. We set the active
interval in normal mode to 25.0ms, that in recovery mode
to 30.0ms, the cycle interval to 1,025ms in normal mode,
γ to 0.2, and b to 1. Because an XBee module transmits
a one-byte packet in less than or equal to 10ms [11], the
active interval of 25.0ms seems to be long enough for the
transmission time. In fact, Method SN implemented by using
XBee modules with Arduino works without any trouble.

Starting from normal mode in which the receiver can
receive data transmitted by the sender, the receiver delays the
start of the active interval by a uniformly generated random
deviation and enters recovery mode. When the receiver
succeeds in receiving data, it sends the random deviation
and the corresponding recovery latency to a PC connected
to the receiver by a USB cable. After that, the receiver
delays the start of the active interval by another uniformly
generated random deviation and enters recovery mode again.
The receiver repeats the operations mentioned above.

A 73.5-day experiment shows that the method always
succeeds in synchronization recovery. In the experiment,
we obtain 58,784 data in total. The average and maximum
of latencies are 108.0 s and 221.5 s, respectively. On the
other hand, the theoretical average andmaximumof latencies
under the same setting are 106.8 s and 211.2 s, which are
compatible with the experimental results.

4.2 Simulation

In the simulations, we simulate the methods for each set-
ting of the parameters 10,000 times for uniformly generated
random synchronization deviations in a cycle.

In the simulations of Method LN, we randomly choose
a sensor node in which a synchronization deviation occurs.
We set b to two, three, and four. Furthermore, we set the ac-
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tive intervals to 15.0ms and 30.0ms and the cycle intervals to
4.5 s and 9.0 s in normalmode. We assume a linearmulti-hop
network consisting of 10 or 20 sensor nodes. The simulation
results show that (a) the method always succeeds in resyn-
chronizing and (b) the maximums of the resynchronization
latencies nearly coincide with the worst case estimations in
any case. For a linear multi-hop network consisting of 10
sensor nodes, the average, standard deviation, minimum, and
maximum of latencies become 20207.9 s, 16913.4 s, 45.0 s,
and 72090.0 s, respectively, for the setting W = 15ms, T =
4.5 s, and b = 4.

In the simulations of Methods TNU and TNL, we use
a full binary tree of height 4 levels. Again, we randomly
choose a sensor node in which a synchronization deviation
occurs. We set b to two, three, and four. Furthermore,
we set the active intervals to 15.0ms and 30.0ms and the
cycle intervals to 4.5 s and 9.0 s in normal mode. In the
simulations, the simulation results show that (a) Methods
TNU and TNL never fail to recover from synchronization
deviation and (b) the maximums of the resynchronization
latencies nearly coincide with the worst case estimations
in any case. For the leaf nodes of a full binary tree of
height 4 levels, the average, standard deviation, minimum,
andmaximumof latencies become 8226.5 s, 4698.4 s, 67.5 s,
and 16213.5 s, respectively, for the setting W = 15ms, T =
4.5 s, and b = 4.

For the parents of the leaf nodes and for the same setting
of W , T , and b, the average, standard deviation, minimum,
and maximum of latencies become 24175.0 s, 14017.8 s,
202.5 s, and 48640.5 s, respectively. For the root node or
its children, when we set W to 15ms, T to 4.5 s, and b to
4, the average, standard deviation, minimum, and maximum
of latencies are 5449.8 s, 3087.2 s, 45.0 s, and 10809.0 s,
respectively.

5. Related Work

Dutta and Cutter [3] have proposed a protocol named Disco
for asynchronous neighbor discovery. Disco ensures the dis-
covery of a neighbor node. The nodes select a pair of prime
numbers such that the sum of their reciprocals is equal to the
desired duty cycles. The nodes then wake up at multiples of
the individual prime numbers.

Kandhalu, Lakshmanan, and Rajkumar [5] have pre-
sented an algorithm named U-Connect. In U-Connect, the
period between consecutive listen-slots is determined by the
desired duty cycle. The protocol in U-Connect has a con-
straint that the period value needs to be a prime in the number
of slots. Such wake-ups of the node at multiples of prime
numbers ensure deterministic discovery latency which is an
outcome of the Chinese Remainder Theorem.

Purohit, Priyantha, and Lie [6] have presentedWiFlock,
which uses a unified and collaborative beaconingmechanism
to achieve both neighbor discovery and group maintenance
goals. WiFlock’s combined protocol can achieve high energy
efficiency and low latency.

Zhang et al. [8] have proposed Acc, which serves as an

on-demand generic discovery accelerating middleware for
many deterministic neighbor discovery schemes. Acc lever-
ages the discovery capabilities of neighbor devecies, support-
ing both direct and indirect neighbor discoveries. Further,
they have presented a proactive online rendezvous mainte-
nance mechanism, which is used to reduce delays for the
detection of leaving of neighbors.

Many of the previous studies on synchronizaion inwire-
less sensor networks have focused on clock synchronization,
that is, providing a common notion of time across the nodes
of wireless sensor networks (for example, [2], [4]). This is
because clock synchronization is viewed as a critical factor
in maintaining the healthy functioning of wireless sensor
networks.

6. Conclusion

Focusing on the theoretical aspects of resynchronization for
wireless sensor networks with a synchronous communica-
tion protocol, this paper presents the methods that permit
us to resynchronize single-hop, linear multi-hop, and tree-
based multi-hop one-way sensor networks with ultra-limited
resources. The methods proposed here are simple and thus
they reduce the power consumed by resynchronization. The
methods are complete because they always recover synchro-
nization. This paper also describes the results of an ex-
periment using actual sensor nodes with wireless modules.
These results of the experiment show that the methods pro-
posed in this paper are feasibile.
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g-Comparison-For-Data-Transfer-By-Product

Appendix: Proofs of Properties 2 to 12

Proof of Property 2. (a) Assume WB = W + γT . Inequal-
ity (5) is then equivalent to (7). Now just after the first
cycle of recovery mode in node B, if there does not exist
an integer m that satisfies (7) for n = 1, we have γ + d

T <

1, because the extreme left-hand side of (7) is d
T , where 0

< d
T < 1. Recall that the extreme right-hand side of (7)

monotonically increases as n increases, and its increment is
γ. Thus, it reaches a value greater than or equal to 1 after
at most d 1

γ e cycles, which implies Method SN requires at
most d 1

γ e cycles to recover the synchronization. Next, we
show that the average latency is given by (10). Note that
if d ≈ T , then n = 1 satisfies (7), which is the first cycle
of recovery mode. Assume that, for a d, n̂ is the minimum
value that satisfies (7). Then when d decreases by γT , the
minimum value of n that satisfies (7) is n̂ − 1 except when
0 < d < ( 1

γ − b
1
γ c)γT , where 1

γ is not an integer. Hence,
the probability that a synchronization deviation occurs for
which it takes Method SN n cycles to resynchronize is γTT if
the amount of synchronization deviation obeys the uniform
distribution. For 0 < d < ( 1

γ − b
1
γ c)γT , where 1

γ is not an
integer, the minimum value of n that satisfies (7) is equal to

d 1
γ e and consequently its probability is

( 1
γ −b

1
γ c)γT
T . Thus, we

obtain (10).
(b) The same reasoning for the caseWB =W + (1−γ)T

leads us to the conclusion that it recovers synchronization
after at most d 1

1−γ eTB and after Lave
2 represented by (11) on

average. �

Proof of Property 3. Because SB = TB − WB by definition,
we obtain

SB ≤ (b − 1)T + T −W (A· 1)

from (2) with (1). This relation leads us to

∆S ≤ (b − 1)T (A· 2)

because, by definition, S = T −W and ∆S = SB − S. Clearly,
if the equality in (2) holds, then the equality in (A· 2) also
holds and vice versa. �

Proof of Property 4. First, assume that (1) holds and either
(2) or (3) holds with the assumption SB > WB. (a) Let us
assume b ≥ 1. If (2) holds, put b+ = b and γ̄ = γ. Then we
obtain (12) and (14) from (1) and (2). If (3) holds, put b+ =
b + 1 and γ̄ = 1 − γ. Then (b + γ)T = (b + 1 − 1 + γ)T =
b+ − γ̄ and WB ≥W + γ̄. Thus we obtain (13) and (14) from
(1) and (3). (b) Let us assume b = 0. In this case, (2) does
not hold. This is because TB = γT and thus, if (2) holds,
WB ≥W + γT > TB > SB, which contradicts the assumption
SB > WB. If (3) holds, put b+ = 1 and γ̄ = 1 − γ. Then
we obtain (13) and (14) from (1) and (3). Next assume that
either (12) or (13) holds and (14) holds. If (12) holds, then

we obtain (1) and (2). If (13) holds, put b = b+ − 1 and γ = 1
− γ̄. Then we also obtain (1) and (3) from (13) and (14). �

Proof of Property 5. Note first that we can applyMethod SN
to two adjacent nodes in a linear network because it does not
depend on the cycle interval. Assume that synchronization
fails between adjacent nodes A and B shown in Fig. 7. Then
Property 1 assures synchronization recovery between them
with Method SN. After the resynchronization completes,
node B returns to normal mode, which, in turn enables us
to resynchronize nodes B and C, the other node adjacent to
B. The same recovery of synchronization propagates to the
sink node, and thus the network is resynchronized. �

Proof of Property 6. FromProperty 2, it takesMethodLNat
most TBN to resynchronize two neighboring nodes, because
it uses Method SN to recover synchronization between them.
If a synchronization deviation occurs in the k-th node from
the sink, Method LN uses Method SN k times to recover
synchronization of the network. Hence it takes Method LN
at most kTBN to resynchronize the network. �

Proof of Property 7. Note that we can applyMethod SN to a
parent–child pair in a tree-based network because it does not
depend on the cycle interval. Assume that a synchronization
deviation occurs in node G that is not a leaf or the parent
of a leaf and node G enters recovery mode. Then Method
SN resynchronizes node G with its children, which results
in synchronization recovery among node G and the other
nodes in the network because the other nodes, especially the
children, stay in normal mode in Method TNU. �

Proof of Property 8. When a synchronization deviation oc-
curs in a leaf node, Method TNL puts the node in recovery
mode and its parent in semi-normal mode, in which the par-
ent sends a sync to the leaf once every cycle that is synchro-
nized with the cycles of the nodes in normal mode. Hence,
Method SN ensures resynchronization of the leaf and its
parent.

Next consider when a synchronization deviation occurs
in the parent, node C, of a leaf node. In Method TNL, node
C enters recovery mode and the parent of node C changes
its mode into semi-normal mode, in which the parent sends
sync to its child C once every cycle that is synchronized with
the cycles of the nodes in normal mode. Again, Method SN
ensures resynchronization of node C and its parent. Like-
wise, Method TNL permits resynchronization of node C and
its children using Method SN. �

Proof of Property 9. This property is obtained from Proper-
ties 7 and 8 immediately. �

Proof of Property 10. Methods TNU and TNL basically use
Method SN for recovering synchronization between a node
and its parent. Assume first that a synchronization deviation
occurs in a node at level k < H − 1. After the node enters
recovery mode, it tries to receive data from its two children
in the active interval of every cycle. Because the two chil-
dren are in normal mode, the amount of the synchronization

http://knowledge.digi.com/articles/Knowledge_Base_Article/Timing-Comparison-For-Data-Transfer-By-Product
http://knowledge.digi.com/articles/Knowledge_Base_Article/Timing-Comparison-For-Data-Transfer-By-Product
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deviation that occurred in the node is at most 2
3TB. Thus it

takes at most 2
3TBN to resynchronize the node and one of its

two children, which results in the resynchronization of the
network.

Next assume that a synchronization deviation occurs in
a node at level H − 1. The parent in semi-normal mode
sends a sync to the node once every cycle (the interval: TB)
and it takes at most TBN to resynchronize the nodes. After
resynchronization between the node and its parent, the node
sends sync to its children for resynchronization among them
and it takes at most 2TBN to recover synchronization among
them because the node sends a sync to a particular child once
every cycle. Thus, it takes at most 3TBN to resynchronize
the network.

Finally, assume that a synchronization deviation occurs
in a leaf node at level H . The parent of the leaf in semi-
normal mode sends sync to the node once every cycle and it
takes at most TBN to resynchronize the nodes, which coin-
cides with the time of resynchronization of the network. �

Proof of Property 11. We outline a proof of this property.
Let σX (k) be the total error of the active interval of a node
named X in k cycles and τX (k) that of the sleep interval.
Then, a sufficient condition for resynchronization is that, for
any deviation d in a cycle, there exist positive integers m and
n that satisfy

nTB−WB+W+d+ε−m,n ≤ mT ≤ nTB+d+εm,n, (A· 3)

where

ε−m,n = σB (n) + τB (n − 1) − σA(m) − τA(m − 1) and
εm,n = σB (n) + τB (n) − σA(m) − τA(m).

We first assume (15) and (16). It is then sufficient to show
that, for any deviation d, there exist positive integers m and
n that satisfy

γ(n−1)+
−2εb + d + ε−n,m

T
≤ m−nb ≤ γn+

d + εn,m
T

.

(A· 4)

We can prove the following facts regarding inequality (A· 4).
For any synchronization deviation d, (a) the extreme left-
hand side for n is less than or equal to the extreme right-hand
side for n, (b) the extreme left-hand side for n+1 is less than
or equal to the extreme right-hand side for n, (c) the extreme
left-hand side for n + 1 is greater than that for n, and (d) the
extreme right-hand side for n+1 is greater than that for n. Set
m = b and n = 1. If (A· 4) is not satisfied, then increase m to
the minimum value of m − nb greater than the extreme right-
hand side for n. Next, increase n with m − nb kept constant
by increasing m by b when increasing n by one. Then, from
the facts (a) to (e) mentioned above, both the extreme left-
hand and right-hand sides increase as n increases and thus
there exist m and n that satisfy (A· 4) because m − nb is
kept constant. This implies that the integers m and n satisfy
(A· 3).

Likewise, if we assume (17) and (18), we can show that
there exist positive integersm and n that satisfy the following:

γn − (1 − γ)+
−(2b + 6)ε + d + ε−m,n

T

≤ m − nb ≤ γn +
d + εm,n

T
,

which implies that the integers m and n satisfy (A· 3). �

Proof of Property 12. Assume that we set WB = W + γT .
Note that, if no further synchronization deviation occurs after
a synchronization deviation d occurs, Method SN resynchro-
nizes in n cycles if d satisfies T − nγT ≤ d < T − (n − 1)γT
and it resynchronizes in d 1

γ e cycles if d satisfies 0 < d <

( 1
γ − b

1
γ c)γT , where 1

γ is not an integer. Hence, from (19),
we obtain (20) as the probability that Method SN resyn-
chronizes without further synchronization deviation after a
synchronization deviation occurs if d obeys the uniform dis-
tribution. Likewise, if we set WB = W + (1 − γ)T , we can
show that the probability of resynchronization is given by
(21). �
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