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Design and Evaluation of Information Bottleneck LDPC Decoders
for Digital Signal Processors

Jan LEWANDOWSKY†,††a), Gerhard BAUCH††b), Matthias TSCHAUNER†c),
and Peter OPPERMANN†††d), Nonmembers

SUMMARY Receiver implementations with very low quantization res-
olution will play an important role in 5G, as high precision quantization
and signal processing are costly in terms of computational resources and
chip area. Therefore, low resolution receivers with quasi optimum perfor-
mance will be required to meet complexity and latency constraints. The
Information Bottleneck method allows for a novel, information centric ap-
proach to design such receivers. The method was originally introduced
by Naftali Tishby et al. and mostly used in the machine learning field so
far. Interestingly, it can also be applied to build surprisingly good digital
communication receivers which work fundamentally different than state-
of-the-art receivers. Instead of minimizing the quantization error, receiver
components with maximum preservation of relevant information for a given
bit width can be designed. All signal processing in the resulting receivers
is performed using only simple lookup operations. In this paper, we first
provide a brief introduction to the design of receiver components with the
Information Bottleneck method. We keep referring to decoding of low-
density parity-check codes as a practical example. The focus of the paper
lies on practical decoder implementations on a digital signal processor
which illustrate the potential of the proposed technique. An Information
Bottleneck decoder with 4 bit message passing decoding is found to outper-
form 8 bit implementations of the well-known min-sum decoder in terms of
bit error rate and to perform extremely close to an 8 bit belief propagation
decoder, while offering considerably higher net decoding throughput than
both conventional decoders.
key words: mutual information, channel decoding, quantization, informa-
tion bottleneck method

1. Introduction

5G receivers will have to satisfy very high requirements con-
cerning power consumption and data throughput. The pre-
cision of the analog-to-digital conversion is well known to
have a very huge impact on these quantities. Small bit width
of the analog-to-digital converter, that is, a small number of
quantization levels, is desirable for low implementation com-
plexity and high throughput. Moreover, the applied receiver
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sided signal processing algorithms which work on the quan-
tized samples from the analog-to-digital converter should be
as simple and efficient as possible. One popular bottleneck
in this context is the decoding of low-density parity-check
(LDPC) codes which is computationally demanding [1], [2].
State-of-the-art LDPC decoders perform iterative message
passing using log-likelihood ratios (LLRs). While message
passing of continuous LLRs is required in the sum-product
algorithm in theory, practical implementations work with
quantized messages in fixed point format to reduce com-
plexity [1], [2]. The precision of the messages has a strong
impact on the decoder performance and its implementation
complexity. Thus, receiver development comprises finding
the best trade-off between complexity and acceptable perfor-
mance degradation of a quantized decoder implementation.
In this paper, we present and investigate a novel approach
to development of receiver components which automatically
yields the desired low quantization resolution and results in
low implementation complexity. We apply the Information
Bottleneck method [3] which has originally been introduced
by Naftali Tishby et al. without any specific application, to
development of an LDPC decoder. While having many very
interesting applications in learning and classification (for
an example see [4]), the Information Bottleneck method is
rather unknown in the communications community. How-
ever, as we will see, it offers remarkable possibilities for de-
velopment of quantized receiver implementations with low
resolution and very simple, completely homogenous opera-
tions. The proposed receiver design is information centric
and results in receivers which perform all signal processing
using only simple lookup operations in static lookup tables
(LUTs). These LUTs are designed in a relevant information
preserving manner with the Information Bottleneck method.
Works using similar approaches to a number of signal pro-
cessing problems have been published so far, e.g., in [5]–
[10]. Despite in this paper, we stick with LDPC decoding,
these works show that the described method is generic and
can also be applied to other receiver sided signal processing
tasks, such that finally receivers which implement all signal
processing with concatenated information preserving LUTs
can be built.

In this paper, ourmost important aim is to give practical
evidence of advantages of the proposed technique over state-
of-the-art approaches. For this purpose, we compare bit error
rates, net decoding throughputs and memory demands of
practical implementations of Information Bottleneck LDPC
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decoders and state-of-the-art decoders on a digital signal
processor (DSP).

The paper is structured as follows: In the next section,
we introduce preliminaries on the Information Bottleneck
method and state-of-the-art LDPC decoding. Section 3 de-
scribes in brief how both can be connected according to our
preliminary work [9]. Section 4 afterwards describes im-
plementation aspects of the proposed LUT based decoding.
Section 5 presents results fromDSP implementations, before
Sect. 6 concludes the paper.

We use the following notation: Random variable X ,
realization x, probability distribution p(x), mutual informa-
tion I(X ;Y ), joint and conditional probability distributions
p(x, y) and p(x | y), respectively, Kronecker delta δ(x).

2. Preliminaries

2.1 Information Bottleneck Method

The Information Bottleneck was introduced by Tishby et
al. in [3] and is related to rate-distortion theory [11]. The
fundamental idea can be summarized as follows. Given an
observation of a random variable Y , a mapping of Y onto
another variable T shall be found. This mapping is formally
described by the conditional probability distribution p(t | y).
Typically, the event space of Y is larger than the one of T ,
such that mapping p(t | y) introduces a compression. The
compression relation can be formalized by choosing p(t | y)
such that the mutual information I(Y ;T ) is minimized. This
idea is well known from rate-distortion theory [11]. Other
than in rate-distortion theory, however, the mapping p(t | y)
is at the same time designed to also maximize the mutual in-
formation I(T ; X ) between the compression variable T and a
so called relevant variable X . Thereby it is assumed that the
variables X → Y → T form a Markov chain and that joint
distribution p(x, y) is known. In rate-distortion theory, the
idea is instead to keep a distortionmeasure which needs to be
defined in advance below a certain threshold. Finally, in the
Information Bottleneck setup, p(t | y) can be considered to
be a relevant information preserving compression mapping.
The variableY is pressed through a compact bottleneck vari-
able T . T is designed to be informative about X and the
cardinality of T influences the width of the bottleneck and,
therefore, how much information I(T ; X ) ≤ I(X ;Y ) can be
preserved. The authors of [3] explain how to find suitable
p(t | y) by making use of Lagrangian multipliers. Several
other algorithms which also find suitable mappings p(t | y)
have meanwhile appeared in the literature [12]. These algo-
rithms typically input p(x, y) and deliver the desired p(t | y).
Moreover, they deliver p(x, t) = p(x |t)p(t) as a side product.
The conditional distribution p(t | y) in general can introduce
a non-deterministic mapping. In this paper, however, only
deterministic mappings p(t | y) will play a role. Such map-
pings map a certain realization y onto t without probabilistic
uncertainty. Therefore, they can be implemented in a simple
LUT t = f (y). Mathematically, p(t | y) = δ(t − f (y)). It
is important, that the output alphabet of variable T is arbi-

trary. The mutual information I(T ; X ) does not depend on
the particular elements of this alphabet, but is only influ-
enced by its cardinality. We will therefore simply consider
t ∈ {0, 1, . . . , 2q − 1} which is the set of unsigned q bit inte-
gers.

2.2 State-of-the-Art LDPC Decoding

LDPC codes are typically decoded using sum-product up-
date rules with iterativemessage passing on the Tanner graph
of a parity-check matrix. The sum-product algorithm is usu-
ally implemented in the log-domain with LLRs as exchanged
messages. Unfortunately, the required processing is compu-
tationally expensive. The involved Tanner graph consists of
variable and check nodes. Utilizing the knowledge that in a
valid codeword the sum of all bits in the neighborhood of a
check node is zero, the check nodes process incoming mes-
sages to extract extrinsic information on bit bj =

∑
i,j bi .

The check nodes in belief propagation LDPC decoders cal-
culate LLRs reflecting the desired extrinsic information as

Lext(bj ) =
∑
i,j

� L(bi), (1)

where
∑
� denotes the sum notation using the famous box-

plus operation

L(bi) � L(bj ) = log
1 + exp(L(bi) + L(bj ))

exp(L(bi)) + exp(L(bj ))
. (2)

Evaluation of this operation is the most expensive part of the
decoding. However, one can rewrite

L(bi) � L(bj ) =
sign(L(bi))sign(L(bj )) min(|L(bi) |, |L(bj ) |)+

fc (|L(bi) + L(bj ) |) − fc (|L(bi) − L(bj ) |). (3)

The function fc (x) is a Jacobian logarithm correction term
which can be implemented in a LUT, such that the computa-
tional efforts are reduced in comparison to a straightforward
evaluation of (2) [1]. However, in practice the terms in-
cluding fc (x) are often simply neglected in Eq. (3). This
approach is known as min-sum decoding of LDPC codes.
While lowering the computational efforts of iterative mes-
sage passing decoding, themin-sum approximation degrades
the decoding performance. The variable nodes simply sum
up incoming LLRs from the check nodes and also chan-
nel LLRs for generation of extrinsic information. Message
passing between both node types is repeated iteratively until
a certain exit criterion, for example, a maximum allowed
number of iterations is met.

3. Information Bottleneck LDPC Decoding

The Information Bottleneck method can be applied to design
iterative message passing decoders for LDPC codes. The
fundamental idea is sketched for an elementary check node
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b0 −→ y0

b1 −→ y1

t0 representing x0 = b0 ⊕ b1

f (y0, y1)

b0, b1 ∈ {0, 1}

y0, y1 ∈ {0, 1, . . . , 2q − 1}

I(T0; X0) −→ max

t0 ∈ {0, 1, . . . , 2q − 1}

Fig. 1 Illustration of two-input LUT to implement a box-plus equivalent
which works on unsigned integers with the Information Bottleck method.

operation shown in Fig. 1 in the following. More details can
be found in [9]. The shown block inputs two input messages
(y0, y1) and delivers an outgoing message t0. In contrast
to state-of-the-art LDPC decoding which processes LLRs,
we consider incoming messages (y0, y1) and the output t0
to be quantization indices from the set {0, 1, . . . , 2q − 1}.
When a q bit quantizer is applied, there exist 22q distinct
combinations (y0, y1) and 2q << 22q possible outputs of
the two-input operation. Therefore, the shown system essen-
tially implements a compression. Let x0 = b0 ⊕ b1 denote
the outcome of the exclusive OR operation of two codeword
bits b0 and b1. Now consider the mentioned compression to
be designed with the Information Bottleneck method, such
that it preserves the relevant information between the sys-
tem output T0 and the random variable X0 with realization
x0 = b0 ⊕ b1. In this case the shown two-input system serves
as an information-optimum integer based equivalent to the
box-plus operation of LLRs. The reasoning is that the output
t0 ∈ {0, 1, . . . , 2q − 1} is chosen such that the mutual infor-
mation shared with x0 = b0 ⊕ b1 is maximized. The most
significant difference to the state-of-the-art is that inputs and
outputs are from the set of integers representable using q bit
in the hardware and, therefore, other than in the conventional
decoding algorithms, no processing of any real numbers is re-
quired. No LLRs are used in the entire decoding process and
determination of t0 from (y0, y1) can simply be performed
as a simple lookup operation, t0 = lut[idx(y0, y1)]. The
vector lut simply implements mapping p(t0 | y0, y1) which
is designed using an Information Bottleneck algorithm with
two dimensional observation y = (y0, y1). The vector holds
the respective index t0 ∈ {0, 1, . . . , 2q − 1} which maxi-
mizes I(T0; X0) for the particular inputs (y0, y1) at posi-
tion idx(y0, y1). Therefore, only calculation of the indexing
function idx(y0, y1) from (y0, y1) followed by a lookup at
the calculated address is required for generation of extrinsic
information on x0. We use the very simple indexing function

idx(y0, y1) = y0 · 2q + y1 (4)

Evaluating the indexing function (4) simply corresponds to
writing the binary representation of (y0, y1) in a memory
cell which holds 2q bits and, therefore, is extremely simple.

So far, the operation shown in Fig. 1 is limited to pro-
cessing two inputs. LUTs implementing complete degree
dc check node operations which process dc − 1 inputs to
generate extrinsic information can be designed by simply
concatenating two-input LUTs, as it is illustrated in Fig. 2
for a degree dc = 6 check node. In the shown example, the

y0

y1

y2

y3
t

to y5

y4

f (i)
0 (y0, y1)

f (i)
0 (y2, y3)

f (i)
1 (t0, t1)

f (i)
2 (t2, y4)

t0

t1

t2

Fig. 2 Illustration of a decomposition implementing a degree dc = 6
check node operation.

decomposed node processes dc − 1 = 5 inputs using several
two-input LUTs. The message y5 is excluded at the input on
the left, such that the output t corresponds to the message
for the target edge which delivered y5. Several different pos-
sible two-input decompositions exist. Anyway, we focus on
degree dc = 6 check node operations with the shown decom-
position for a reason described in Sect. 4.2. The principle
of designing mutual information maximizing LUTs with the
Information Bottleneck method can also be applied for the
variable node operations. Also for variable nodes with ar-
bitrary degrees dv, two-input decompositions can be found,
such that only two-input LUTs which input and output un-
signed integers are required for their implementation. In
this work, we use the two-input decomposition described in
[5], [6], [9] for the variable nodes.

The described method requires knowledge of joint dis-
tributions p(x, y) because these distributions serve as inputs
of the applied Information Bottleneck algorithms which de-
sign the LUTs. The fundamental idea for determination of
the required joint distributions is application of discretized
density evolution to track the input distributions for the de-
sign of each two-input LUT in each decoding iteration. The
complete density evolution based decoder construction tech-
nique is described in detail in [9] and left out here for brevity,
as the focus lies on implementation aspects. However, we
want to stress that following [9], the LUTs are constructed
only once, for a fixed design-Eb/N0. The choice of this
design-Eb/N0 is important and is described in detail in [9].
As a result, the proposed technique yields a set of staticLUTs
which are applied in the resulting decoder implementation.
Indexing and lookup operations are the only required signal
processing steps in the resulting decoder and no on the fly
generation of the applied LUTs is required.

Please note that due to the evolution of the joint input
distributions p(x, y) for the Information Bottleneck method,
different two-input LUTs for each node type in each decoding
iteration are required. Therefore, in Fig. 2, we have added
subscripts m ∈ {0, 1, 2} identifying the particular two-input
LUT and also superscripts (i) for the decoder iterations to
the two-input LUTs f (i)

m (u, v). Some of the shown LUTs
are identical due to identically distributed inputs. Therefore,
they have the same indices m and (i). As an example, con-
sider f (i)

0 (y0, y1) and f (i)
0 (y2, y3). Both tables process pairs

of incoming integer messages (yk, yl) which are delivered to
the node by the variable nodes. In contrast, LUT f (i)

1 (t0, t1)
processes two intermediate results (t0, t1) which follow a
different joint distribution than (yk, yl). Thus, the applied



1366
IEICE TRANS. COMMUN., VOL.E102–B, NO.8 AUGUST 2019

table is different. It is practical to store all distinct LUTs for
a particular node type in a long vector LUT. Please note
that a vector LUT has to be stored for the check nodes and
a different one is required for the variable nodes. Letting
M denote the number of distinct two-input LUTs required to
implement the variable or the check node operation in a par-
ticular iteration, the length of this vector for the respective
node type is imaxM · 22q , where imax denotes the maximum
allowed number of decoder iterations. The memory amount
required to store theLUT vectors for exemplary LDPC codes
will be investigated in Sect. 5. With vectorLUTwhich holds
the two-input LUTs of a node type for all iterations concate-
natedly, them-th two-input LUT in the i-th decoding iteration
then can calculate its output w under inputs (u, v) as

w = LUT[ptr(i,m) + idx(u, v)]. (5)

Function ptr(i,m) points to the beginning of the subvector
which characterizes the two-input LUT f (i)

m (u, v) in iteration
i. It is calculated as

ptr(i,m) = iM · 22q + m · 22q . (6)

So far, design of receiver subsystems with the proposed
Information Bottleneck design approach has only been de-
scribed for applications in LDPC decoding in this paper.
However, the method can also be applied to other receiver
sided signal processing such as channel estimation and de-
tection [10], [13]. The applied principle is identical. In-
formation on a relevant quantity X is extracted from an ob-
served random varible Y by a system which is the design
target. For this purpose, one determines the joint probabil-
ity distribution of this relevant quantity and the observation
p(x, y) and feeds it to an Information Bottleneck algorithm.
The choice of the relevant quantity is made by the system
designer. The algorithm then delivers the desired relevant
information preserving mapping p(t | y) describing the re-
spective receiver component as a LUT. The output cardi-
nality of the Information Bottleneck algorithm determines
the bit width required to store the system output. Adjusting
this parameter allows to easily trade preservation of rele-
vant information for a more compact representation of the
system output and thus a smaller bit width in the hardware.
In [10], [13] we have presented complete signal processing
chains performing channel estimation, detection and decod-
ing by processing only unsigned integers with the proposed
method. Their performance is very close to double precision
receivers.

4. DSP Implementation Aspects of Information Bottle-
neck LDPC Decoders

In this section we discuss several important implementa-
tion aspects of Information Bottleneck LDPC decoders. Our
focus lies on DSP implementations, where the decoder is de-
veloped in software with the C + + programming language.
Therefore, our results are especially interesting for software

defined radio (SDR) applications [14]. Some of the dis-
cussed implementation aspects focus on (dv, dc) = (3, 6)-
regular codes because we investigate two such codes in
Sect. 5. However, the design principle of Information Bottle-
neck LDPCdecoders is extendable also to other node degrees
and also for irregular LDPC codes [8], [15].

4.1 Lookup Table Implementation

In the following we present two distinct options for the im-
plementation of LUTs on a DSP platform. We compare the
performance of both approaches in the practical evaluation
in the following section.

4.1.1 Lookup Table Reduction

Information Bottleneck LDPC decoders process q bit un-
signed integer messages. Preliminary results [6], [9] show
that q = 4 bit messages are sufficient to provide near opti-
mum performance for quantized output additive white Gaus-
sian noise (AWGN) channels, so we will focus on q = 4 from
now on. Most DSPs natively support data types consisting
of several bytes (8 bits). From a programming perspective,
it is completely natural to store each LUT vector in an array.
An array is a connected memory region consisting of multi-
ple cells that all hold data of the same data type. Access to
an array is done using indexing. The smallest standard data
type in C++which is suitable to store a q = 4 bit message is
a uint8 integer, where uint abbreviates unsigned integer and
the appended 8 denotes the wordlength of 8 bits. Reserving
a uint8 memory cell for each LUT entry, however, wastes
the upper half word of the cell because when storing a num-
ber from {0, 1, . . . , 24 − 1} in this cell, the upper halfword
is always 0000 in the binary representation. A very simple
idea to reduce the memory footprint of the decoder is to use
the upper halfword and the lower halfword to store two con-
secutive LUT entries. This of course halves the size of the
LUT arrays in comparison to the described straightforward
allocation of a uint8 array. Accessing an entry in the LUT,
however, requires some extra operations. In Eq. (5), the vec-
tor LUT is accessed at address addr = ptr(i,m) + idx(u, v).
If only one table entry is stored in the array holding LUT,
accessing the array at index addr automatically delivers the
desired table entry. If, in contrast, two table entries are
held concatenatedly in the memory cell, addr needs to be
divided by 2 according to integer division rules first. Array
access at baddr/2c then fetches 8 bits, that is, two consecutive
table entries in one byte from the memory. Thus, depend-
ing on whether addr is odd or even, the upper or the lower
halfword needs to be extracted by an additional bitshift oper-
ation. Many DSPs offer very fast intrinsic operations for the
required bit field extraction. Finally, we note that the princi-
ple of storing multiple q = 4 bit integers in longer standard
data types is not limited to LUT implementation, but can
also be applied for the exchanged messages. Consider a de-
gree dv = 3 variable node which has to process a channel
message and dv = 3 incoming messages from its connected
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check nodes for its bit decision. With q = 4 bit messages, a
single uint16 integer occupying only two bytes is enough to
store these four messages.

4.1.2 Lookup Table Expansion

In the degree dc = 6 check node operation shown in Fig. 2,
intermediate results tm are processed as inputs of following
LUTs. For example, f (i)

1 (t0, t1) processes t0 and t1 both
obtained from table f (i)

0 (u, v). After t0 and t1 have been read
from the memory, the next step is address calculation using
t0 and t1 to determine the result of f (i)

1 (t0, t1). Expanding
the address of the next accessed array entry according to
Eq. (5) for the following table with subscript m = 1 gives an
interesting insight. This address is

addr = iM · 22q + (0 + 1)22q + t0 · 2q︸                                  ︷︷                                  ︸
Integer t′0 only depends on i,m = 1, t0

+t1. (7)

The braced part in Eq. (7) only depends on the current it-
eration index i, the index of the respective two-input table
m = 1 and the first input message t0. Therefore, instead of
storing t0 as it is in vector LUT, one could also store the
complete braced part of (7) at the address of t0. We denote
the braced part in Eq. (7) t ′0. If t ′0 is read from the LUT
memory, the next calculated address can simply be obtained
by a single integer addition as addr = t ′0 + t1. This greatly
reduces complexity in comparison to storing t0 in LUT and
evaluating (5). Please note that t0 and t1 are obtained using
the same LUT with index m = 0. Therefore, also a modified
t ′1 instead of t1 is read if f (i)

0 (u, v) is implemented this way,
but t1 , t ′1 is required to determine the next address accord-
ing to Eq. (7). However, it is simple to reobtain t1 from t ′1 as

t1 = ((iM · 22q + (0 + 1)22q + t1 · 2q︸                                  ︷︷                                  ︸
t′1 read from the LUT

)/2q) mod 2q . (8)

Almost all concatenatedLUTs stored inLUT can bemodified
using the described technique. Only the last concatenated ta-
ble in a two-input decomposition which has index m = M−1
provides exchanged messages t ∈ {0, 1, . . . , 2q − 1}. There-
fore, these tables stay unchanged for all iterations i. The t ′m
of course are no longer 4 bit integers because they include
offsets for the iteration and the table index m. Therefore, a
larger base data type is required to store the LUT vectors in
arrays. For the parameters used in this paper, the smallest
integer data type large enough to handle all t ′m that appear
was a uint16. In comparison to the LUT reduction technique
described in Sect. 4.1.1, this larger base data type increases
the size of the LUT arrays in the memory by a factor of four.
However, as all messages output by a node are still q = 4 bit
integers, it does not affect the bit width of the messages.

4.2 Reusing Intermediate Results

Each variable and each check node has to generate outgo-
ing messages for all its connected edges during the iterative

y1 y0 y3 y2 y5 y4

f0f0 f0

f1f1 f1

f2f2f2 f2 f2 f2

to y0 to y1 to y2 to y3 to y4 to y5

t0 t2t1

t3 t5t4

incoming messages

outgoing messages

Fig. 3 Degree dc = 6 check node decomposition which utilizes reuse of
intermediate results to reduce the number of operations.

decoding process. So far, we have discussed message gen-
eration using two-input LUTs for one particular target edge,
as it is depicted in Fig. 2. Taking into account message
generation for all involved edges, many operations can be
saved by reusing intermediate results tm (or t ′m respectively,
if LUT expansion is applied). Figure 3 illustrates a possi-
bility to calculate all dc = 6 outgoing messages of a check
node using only twelve two-input operations in M = 3 dis-
tinct two-input LUTs. If no intermediate results were reused,
message generation for all dc outgoing edges would require
to process dc − 1 messages for each edge and result in eval-
uation of dc(dc − 2) two-input operations which is 24 in
this example. The decomposition in Fig. 3 includes the one
already depicted in Fig. 2 as it is highlighted using dashed
edges. Finding optimum two-input decompositions with a
small number of distinct required LUTs and additionally a
maximum reuse potential of intermediate results is a very
complex problem. The presented decomposition is the best
we found for a degree dc = 6 check node operation.

We note that the shown decomposition is not limited
to Information Bottleneck LDPC decoders, but can also be
applied in all state-of-the-art LDPC decoding algorithms.
There, the LUTs shown in Fig. 3 correspond to the box-plus
operation (3) or the min-sum approximation. Since these
decoders also profit from performing fewer operations, we
apply the same decomposition there.

5. Practical Results

We have implemented a fixed point precision belief propa-
gation decoder which evaluates Eq. (3) using a small LUT
for fc (x) at the check nodes, as it has been described in
Sect. 2.2, and also a min-sum LDPC decoder on a Texas In-
struments TMS320C6474 fixed point DSP. In order to not
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disadvantage the conventional decoders, we have optimized
the fixed point number format used in these decoders and
found that 8 bit messages with 4 bits assigned to the frac-
tional part offered best performance and throughput on this
device. Higher precision, e.g. using 16 bit fixed point arith-
metic, did not improve the decoder performance, but slowed
down the decoding process significantly. Moreover, we have
implemented Information Bottleneck decoders with either
LUT expansion or LUT reduction on the same device and
measured the bit error rates over Eb/N0 and the net de-
coding throughputs of the different decoders. Finally, we
performed an analysis of the memory footprints of the de-
coders. We have chosen two (3, 6)-regular LDPC codes from
[16] for performance evaluation. The identifiers of the codes
are a) Margulis.2640.1320.3 and b) 8000.4000.3.483. The
first number in the identifier is the codeword length. All
LDPC decoders performed a parity-check in each iteration
and stopped decoding once all parity-checks were satisfied
or after imax = 50 iterations.

5.1 Memory Demand

The memory demands of the distinct decoders are depicted
in Table 1. At the top we list the memory amounts needed
to store the Tanner graph structures for code a) and code b).
These memory amounts are identical for all decoders. In the
center part of Table 1, the memory required for LUTs in the
distinct decoders is provided. The min-sum decoder does
not use a LUT at all. For the fixed point belief propagation
decoder, we found that in the applied 8 bit fixed point format
a LUT with only 22 entries was sufficient to achieve the best
performance of this decoder, therefore resulting in a LUT
size of only 22 bytes. The Information Bottleneck decoders
naturally need more space to store LUTs for the two-input
operations in each iteration. The Information Bottleneck
decoder with LUT expansion requires the largest amount
of 153.6 kilobytes for the LUTs. If LUT memory is rare,
LUT reduction from Sect. 4.1 allows to significantly reduce
this memory amount by a factor of four to 38.4 kilobytes.
Handling LUTs of the listed sizes was not a problem on

Table 1 Comparison of memory demand of distinct decoders.
Decoder code Memory for graph structure
all code a) 15.84 kilobytes
all code b) 48.0 kilobytes

Decoder Memory for LUTs
min-sum decoder 0 kilobyte
belief propagation decoder 0.022 kilobyte
Information Bottleneck with LUT reduction 38.4 kilobytes
Information Bottleneck with LUT expansion 153.6 kilobytes

Code Decoder Memory for messages
a) min-sum decoder 10.56 kilobytes
a) belief propagation decoder 10.56 kilobytes
a) Information Bottleneck 5.28 kilobytes
b) min-sum decoder 32.0 kilobytes
b) belief propagation decoder 32.0 kilobytes
b) Information Bottleneck 16.0 kilobytes

notation: 1.0 kilobyte = 1000 bytes

the target DSP. We emphasize that LDPC codes with higher
node degrees will require more memory for the LUTs in the
Information Bottleneck decoders. However, this memory
demand scales linearly with the number M of distinct two-
input LUTs applied in the respective node operations and
hence can be expected to stay manageable also for higher
node degrees. The bottom of Table 1 finally compares the
memory amount needed to store the exchanged messages.
As it is observable, the Information Bottleneck decoders
here can profit from smaller q = 4 bit representation of the
exchanged messages. In summary, Table 1 allows for the
conclusion that the memory demand required to implement
the Information Bottleneck LDPC decoders on a DSP is a
little larger than the one for conventional decoders, but still
moderate and available on typical DSP platforms.

5.2 Bit Error Rate Performance

Figure 4 shows the bit error rate performances of all applied
decoder types over Eb/N0 for a transmission over a quan-
tized output AWGN channel with binary phase shift keying
(BPSK) modulation. The solid curves refer to code a). The
ones for the longer code b) with better error correction capa-
bility use dashed lines. For all decoders the channel output
was quantized using a 4 bit quantizer which was designed as
explained in [9]. For the conventional decoders, LLRs were
calculated at the output of the quantizer in fixed point pre-
cision. The Information Bottleneck decoder just processed
the plain 4 bit quantization indices from the quantizer. The
InformationBottleneck decoder clearly outperforms themin-
sum decoder by about 0.4 dB in the waterfall region of both
codes. At the same time, it comes very close to the per-
formance of the belief propagation decoder. The loss with
respect to this decoder is typically smaller than 0.1 dB over
Eb/N0 in the waterfall region of both codes. Therefore,
one can summarize that the Information Bottleneck decoder
which uses q = 4 bit to represent the exchanged messages
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Fig. 4 Bit error rate for LDPC code a) (solid curves) and LDPC code b)
(dashed curves) for several decoders implemented on the DSP.
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Fig. 5 Net decoding throughputs of distinct LDPC decoders on the TMS320C6474 DSP for code a)
(top) and code b) (bottom). Information Bottleneck decoders use q = 4 bit messages. The conventional
decoders use 8 bit fixed point arithmetic with 4 bits allocated to the fractional part.

offers much better bit error rate performance than the fixed
point min-sum decoder with 8 bit messages. Moreover, it
comes very close to a fixed point belief propagation decoder
with 8 bit messages.

5.3 Net Decoding Throughput

We have measured the average number of decoded infor-
mation bits per second for Eb/N0 ∈ [0, 14] dB to deter-
mine the net decoding throughputs of the distinct decoders.
The DSP was clocked with a main frequency of 1 GHz
in this experiment. Figure 5 shows the obtained results.
The upper part corresponds to code a) and the lower one
corresponds to code b). We have split up the Eb/N0 axis
from Eb/N0 = 0 dB to Eb/N0 = 4 dB (left) and from
Eb/N0 = 4 dB to Eb/N0 = 14 dB (right) for both codes.
This was done to enlarge the curves in the low Eb/N0 regime
where they show some interesting behaviour. As it is evident,
the Information Bottleneck decoder with LUT expansion of-
fers the highest net decoding throughput of all implemented
decoders. This is true for the complete range of Eb/N0 and
both codes and is the most important result of this work. The
Information Bottleneck decoder with LUT reduction offers
the second highest decoding throughput. Interestingly, in
a small part of the low Eb/N0 regime from approximately
1.2 dB to 1.6 dB shown in the left subplots in Fig. 5, the fixed

point belief propagation decoder catches up a little to the In-
formation Bottleneck decoders. We found this to be caused
by a slightly smaller number of iterations performed by the
conventional decoder on average. This can be explained by
the slightly better error correction performance of the fixed
point belief propagation decoder in this Eb/N0 range (cf.
Fig. 4). Anyway, following the curves further to the right into
the right subplots reveals that the net decoding throughput
of the Information Bottleneck decoders significantly exceeds
the throughputs of the fixed point belief propagation decoder
and the min-sum decoder on the DSP. This is especially im-
portant when recalling that the bit error rate performance of
the Information Bottleneck decoder is much better than the
one of the min-sum decoder and can compete with the per-
formance of the fixed point belief propagation decoder. To
quantify the throughput gains of the proposed Information
Bottleneck decoders, we have added them in percent values
to the curves in the right part of Fig. 5. Arrows between
the curves mark the respective gains between the distinct
decoders for exemplary Eb/N0.

6. Conclusion

We have presented and investigated an Information Bot-
tleneck approach to design receiver components with low
quantization resolution. The focus of this investigation lay
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on the practical development and evaluation of novel LDPC
decoders in a DSP implementation. The proposed method
yields decoders which completely work on unsigned integers
and implement all signal processing using LUTs. The result-
ing decoders perform better than the min-sum decoder and
offer even higher decoding throughput. They moreover out-
perform a fixed point belief propagation decoder in terms of
net decoding throughput while having almost the same bit er-
ror correction capability. The Information Bottleneck design
method can be extended to other receiver sided signal pro-
cessing problems which require near optimum performance
with low quantization bit width. Therefore, it should be paid
attention to it in design of future communication receivers
with low quantization resolution for 5G.
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