IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Technology Trials and Proof-of-Concept Activities for 5G and Beyond
Indoor and Field Experiments on 5G Radio Access for 28-GHz Band Using Distributed MIMO and Beamforming
Daisuke KURITAKiichi TATEISHIDaisuke KITAYAMAAtsushi HARADAYoshihisa KISHIYAMAHideshi MURAIShoji ITOHArne SIMONSSONPeter ÖKVIST
Author information
JOURNAL RESTRICTED ACCESS

2019 Volume E102.B Issue 8 Pages 1427-1436

Details
Abstract

This paper evaluates a variety of key 5G technologies such as base station (BS) massive multiple-input multiple-output (MIMO) antennas, beamforming and tracking, intra-baseband unit (BBU) hand over (HO), and coverage. This is done in different interesting 5G areas with a variety of radio conditions such as an indoor office building lobby, an outdoor parking area, and a realistic urban deployment of a 5G radio access system with BSs installed in buildings to deploy a 5G trial area in the Tokyo Odaiba waterfront area. Experimental results show that throughput exceeding 10Gbps is achieved in a 730MHz bandwidth using 8 component carriers, and distributed MIMO throughput gain is achieved in various transmission point deployments in the indoor office building lobby and outdoor parking area using two radio units (RUs). In particular, in the outdoor parking area, a distinct advantage from distributed MIMO is expected and the distributed MIMO gain in throughput of 60% is achieved. The experimental results also clarify the downlink performance in an urban deployment. The experimental results show that throughput exceeding 1.5Gbps is achieved in the area and approximately 200 Mbps is achieved at 500m away from the BS. We also confirm that the beam tracking and intra-BBU HO work well compensating for high path loss at 28-GHz, and achieve coverage 500m from the BS. On the other hand, line of sight (LoS) and non-line-of sight (N-LoS) conditions are critical to 5G performance in the 28-GHz band, and we observe that 5G connections are sometimes dropped behind trees, buildings, and under footbridges.

Content from these authors
© 2019 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top