
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020
155

PAPER
Malicious Code Detection for Trusted Execution Environment
Based on Paillier Homomorphic Encryption

Ziwang WANG†, Member and Yi ZHUANG†a), Nonmember

SUMMARY Currently, mobile terminals face serious security threats.
A Trusted Execution Environment (TEE) which can provide an isolated
execution environment for sensitive workloads, is seen as a trusted relay for
providing security services for any mobile application. However, mobile
TEE’s architecture design and implementation strategy are not unbreakable
at present. The existing researches lack of detect mechanisms for attack
behaviour and malicious software. This paper proposes a Malicious code
Detection scheme for Trusted Execution Environment based on Homomor-
phic Encryption (HE-TEEMD), which is a novel detection mechanism for
data and code in the trusted execution environment. HE-TEEMD uses
the Paillier additive homomorphic algorithm to implement the signature
matching and transmits the ciphertext information generated in the TEE
to the normal world for detection by the homomorphism and randomness
of the homomorphic encryption ciphertext. An experiment and security
analysis proves that our scheme can achieve malicious code detection in
the secure world with minimal cost. Furthermore, evaluation parameters
are introduced to address the known plaintext attack problem of privileged
users.
key words: trusted execution environment, malicious code detection, mo-
bile security

1. Introduction

The Trusted Execution Environment (TEE), whose
hardware-assisted security architecture provides greater se-
curity, integrity, and confidentiality guarantees, is widely
used to provide an isolated execution environment for sensi-
tive workloads. Under the guidance of the Global Platform
standard [1] which is a secure area of the main processor,
TEE implements rich security services like sensitive infor-
mation storage, encryption and decryption, and security au-
thentication based on various applications deployed in the
secure world. Generally, the main idea of TEE is to min-
imize the Trusted Computing Base (TCB) and reduce the
attack surface. Typical examples of TEE are ARM Trust-
Zone technology [2] for mobile platforms and Intel Software
Guard Extensions (SGX) technology [3] for desktop plat-
forms.

ARM TrustZone is viewed as a de-facto standard for
implementing a TEE on mobile devices, and also is a hard-
ware security architecture for building an isolated execution
environment in ARMv6 and all subsequent mobile processor
chips [4], [5]. Thanks to the fact that TrustZone technology

Manuscript received April 5, 2019.
Manuscript revised August 13, 2019.
Manuscript publicized September 20, 2019.
†The authors are with Department of Computer Science and

Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China.

a) E-mail: zy16@nuaa.edu.cn
DOI: 10.1587/transcom.2019EBP3098

has been applied to most ARMmobile processor chips since
2001, more than 70 percent ofmobile phonesworldwide have
integrated TrustZone processor chips [6]. With the develop-
ment of the Internet of Things (IoT), the TrustZone module
was also embedded in the newARMCortex-M series proces-
sor in 2015 [7]. Different from a common operating system
running in the normal world, the TrustZone is intended to
run a small and reduced kernel which is isolated from the
rich OS, a.k.a. The secure world. TrustZone’s powerful iso-
lation capabilities and security sensitivity make it become
an interesting topic for security researchers and mobile se-
curity practitioners. However, several vulnerabilities have
been discovered, which could compromise the security of
the TEE in TrustZone [8], [9].

The attack surface of TEE software mainly lies in the
security vulnerabilities of the interface linking to the nor-
mal world and the trusted applications running in the secure
world. Unlike trusted roots [10], TEE needs to provide
rich trusted computing services for the normal world such
as dynamic installation, dynamic updates, and interactions.
On the one hand, service integration requires the creation
of communication channels between the two worlds to share
data, so it must accept inputs made by direct transfer or mem-
ory sharing from non-secure worlds and untrusted software.
On the other hand, the increase of TCB also inevitably result
in vulnerabilities that can be utilized by attackers. Fuzzing is
an important way of implementing software attacks, which
finds a vulnerability in the TEE by triggering an internal
abnormal state or behavior of the secure world in the Client
API and the TEE driver. In more cases, attackers implement
code injection attacks based on the known vulnerabilities or
problematic APIs. Hence, to address the serious risk of soft-
ware attack for the TEE, it is necessary to study themalicious
code detection mechanism.

There are two implementation strategies for providing
malicious code detection services for the secure world. 1)
Deploying detection programs in the secure world. However,
this strategy is almost impractical for the following three
reasons. First, a cropped microkernel running in the secure
world cannot provide a runtime environment for the detection
program. Second, implementing a complex detection pro-
gram in TEE needs to extend the secure OS kernel to satisfy
the detection program, but this operation can not only in-
crease the TEE’s attack surface but also affect the efficiency
of the TrustZone. Finally, the update process of the virus
database is inevitably complex and unbearable. 2) Deploy-
ing detection programs in the normal world. However, using

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

156
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

a low-security environment to provide detection services for
a high-security environment will obviously bring a signifi-
cant security risk. Therefore, we present a Malicious code
Detection scheme based on Paillier Homomorphic Encryp-
tion in the Trusted Execution Environment (HE-TEEMD)
which can effectively solve the facing problems of strategy
two.

The Paillier homomorphic cryptosystem and first ho-
momorphic algorithm support any times of additions based
on the problem of computing n-th residue classes that de-
termine it has higher encryption and decryption efficiency.
HE-TEEMD transfers the data to be detected from the secure
world to the normal world by the homomorphism and ran-
domness of the Paillier homomorphic encryption ciphertext.
A ciphertext malicious code detection scheme has been es-
tablished. More specifically, HE-TEEMD encrypts the data
to be detected in the secure world with Paillier encryption
algorithm and transmits the ciphertext data to the normal
world. A detector application running in the normal world
discover the malicious code from the ciphertext data.

We have envisaged two application scenarios for this
proposal. First, malicious code analysis is implemented,
which means that the malicious code fragments contained
in the data encapsulation or shared memory are detected by
signature matching. Second, in order to identify virus files
and applications, we have two different strategies to deal with
a suspicious file. For quick detection, we can distinguish
whether the file to be detected in the secure world is a virus
file by matching the MD5 hash. For deep detection, we can
search byte by byte for malicious code fragments contained
in the target file or program.

We believe that this is the first implementation of mali-
cious code detection against TrustZone. Our main contribu-
tions in this paper are summarized below.

• First, a novel TEE malicious code detection scheme
based on Paillier homomorphic encryption is proposed.

• Second, by introducing the evaluation variables, the
competition of modifying and integrity verifying of the
detector is solved.

• Third, the solution has been evaluated to measure the
impact on the real-time performance of the system. Ex-
perimental results show that HE-TEEMD achieves a
minimum of TCB and a small performance cost.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews relevant researches and explains the necessity
of our work. Section 3 briefly describes ARM TrustZone
and Paillier Homomorphic encryption. Section 4 discusses
the threat model and assumptions of this work. A novel
malicious code detection architecture, HE-TEEMD, is illus-
trated in Sect. 5. Section 6 details the implementation of the
algorithm. We also present the validity of our algorithm and
the evaluation of the performance in Sect. 7. Section 8 is the
conclusion.

2. Related Work

Because the current mobile TEE’s architecture design and
implementation strategy are not unbreakable, a mechanism
to detect the data and code in the trusted execution envi-
ronment is necessary. With the wide application of TEE
technology, the research on attacks against TEE has be-
come a hotspot of current security research. The secu-
rity threats of TEE on mobile platforms are mainly divided
into two aspects: 1) Attacks on the TEE’s security archi-
tecture or its implementation strategy. Many researchers
have tried to achieve attacks on the TEE’s architecture. For
example, CLKSCREW [9] attack uses software-exposed fre-
quency and voltage hardware regulators to extract keys, and
this mechanism loads self-signed applications in commercial
TEE to destroy TrustZone security. Armageddon [8] points
out that TrustZone’s cache activity can be detected from nor-
mal world, and researchers use Prime+Probe cache attack to
distinguish whether a fake key is valid. 2) Attacks on the
program running in the TEE [11], [12]. On the one hand,
because the security of the TEE depends on the integrity of
the trusted applications and the secure world OS kernel, any
software error would cause the secure world collapse. On
the other hand, due to the strong interactivity of TEE, the
universal TEE architecture directly exposes the secure world
interface to non-privileged users in the non-secure world
[2], which means that any non-privileged user can attack the
TEE. Additionally, a lot of attacks exploit vulnerable error
codes to destroy TEE security [13], [14]. Multiple secu-
rity vulnerabilities have been discovered in the TEE kernel
of major vendors [15]–[19]. Dosomder et al. [16] found a
security vulnerability in the Qsee Communicator program
file that could allow an attacker to exploit the vulnerability
with a specially crafted application. In [17], the authors pro-
posed that if the attacker obtains the root permission of some
Huawei mobile devices, it is possible to implement a denial
of service (secure world OS crash) or implant and execute
malicious code in the secure world OS by transmitting an
abnormal address to the TEE. In the open-source TEE solu-
tion OP-TEE [18], [20] proposed a security vulnerability in
the encrypted dynamic library file code that an attacker can
be used to recover the private key.

However, the malicious code or data not only could be
installed by exploiting vulnerabilities mentioned above, but
also can trick users installing into the secure world directly.
So, how to identify the suspicious code and data is one of
the objectives of this study. Researchers have tried to build
solutions for TEE in different ways, but existing implemen-
tations still rely on the non-secure world operating system
to disinfect any input before passing it to the secure world
[11]. In [11], Zhenyu Ning et al. proposed that damaged
TEE can be detected by TEE’s execution mode exceptions,
such as sending sensitive memory pages, frequently calling
security services, and keeping the secure world for a long
time. Formalization of the API can also increase the secu-
rity of the TEE [21]. Although Global Platform requires that

WANG and ZHUANG: MALICIOUS CODE DETECTION FOR TRUSTED EXECUTION ENVIRONMENT BASED ON PAILLIER HOMOMORPHIC ENCRYPTION
157

the TEE solution certified by its specification must pass the
functional API specification certification testing, the API’s
security for user-installed trusted applications still cannot be
guaranteed.

Recently, a few researchers have attempted to build ma-
licious code detection services in the secure world directly.
T2Droid [22] is a malware dynamic analysis scheme on
Android-based mobile devices, which attempts to deploy the
APK detection program into the TEE for a higher-privilege
detector. T2Droid sharply increases the trusted computing
base of the secure world, which consequently increases the
risk of having security vulnerabilities. Similarly, TZ_KPM
[23] implements kernel code integrity checking and mali-
cious processes detection for the normal world by a series
of complex mechanisms in TEE. Building a detection pro-
gram in the secure world to provide malicious code detection
services for the normal world (android) has a certain prac-
tical significance. However, it cannot be used to improve
the security of the secure world itself. The reason is that
the scheme itself is sure to reduce the security of the TEE
greatly. To the extent of our knowledge, literature [11] is the
only architecture present that declares to provides security
detection services for the TEE. However, it can only deter-
mine whether the secure OS kernel is damaged based on
some indirect data such as calling frequency anomalies but
cannot directly read the original data of the secure world for
malicious code analysis.

LOCAL, a mechanism which builds the detector in the
secure world, is implemented in our research work. In fact,
there is not any manufacturer or researcher to deploy ma-
licious code detection programs in TEE to improve the se-
curity of TEE. On the one hand, it is not advisable due to
those reason mentioned in the previous paragraph. On the
other hand, for a long time, TEE has been considered to pro-
vide adequate security for low-value devices or low-resource
things. However, with the popularity of devices with TEE
and a growing number of attacks against TEE, malicious
code detection mechanisms are indispensable.

To the best of our knowledge, HE-TEEMD is the only
attempt to provide malicious code detection services to the
secure world, with minimal TCB and performance cost. It
should be pointed out that HE-TEEMD does not directly
defend against those existing attacks mentioned above for
TEE, it only works for inject attacks and a small number of
known attacks, such as FUZZING attack and replay attack.
Similarly to anti-virus software, the more significant role of
HE-TEEMD is to discover the fact of attack that is already
present in the TEE.

3. Background

This section provides background information about the
main technologies of HE-TEEMD. Initially, an introduction
to ARM TrustZone is given. Then follows a discussion on
the supporting technology of the proposed mechanism, the
Homomorphic Encryption algorithm and theMalicious code
analysis technique. Furthermore, we exhibition the reason

Fig. 1 The architecture of TrustZone.

why static analysis techniques are more suitable for Trusted
Execution Environments.

3.1 ARM TrustZone

Being a hardware security architecture, ARM TrustZone
virtualizes two completely isolated execution environments
through hardware assistance [2], the secure world and the
normal world. TrustZone virtualizes the CPU into two cores
in a time-division manner. The underlying hardware re-
sources (registers, physical memory, peripherals, etc.) are
also dynamically divided into secure and non-secure. It
switches between those two cores through monitor mode. In
general, the normal world runs the Rich Operating System
(ROS), such as Linux. The secure world runs a lightweight
and trusted operating system called a TEE. This architec-
ture is widely adopted by Android, iOS and other mobile
operating systems.

The architecture of TrustZone is shown in Fig. 1. Trust-
Zone controls the switching between the two worlds through
hardware logic. When actually running, the user program
first calls the TEE Client API, which enters the kernel-mode
from the user mode through the system call, finds the rela-
tive TEE driver according to the corresponding parameters,
and then triggers the runtime system in monitor through the
SMC or interrupt. The runtime system saves the context
of the normal world and changes the Non-Secure (NS) bit
to switch to the secure world so that it can enter the TEE
Trusted OS [4], [5].

The TrustZone Protection Controller (TZPC) technol-
ogy allows for restricting the system devices to the secure
world or the normal world, which dedicates one bit to each
individual device. TZPC allows the secure world to have
exclusive control of security-critical peripherals so that the
secure world can explicitly configure and access peripherals.
TZPC also supports dynamically assigns security-critical pe-
ripherals to one of two environments and prevents non-secure
access.

158
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

3.2 Homomorphic Encryption

Homomorphic encryption [24] refers to a special type of
encryption algorithm that allows performing a specific al-
gebraic operation, generating an encrypted result which
matches the result of performs the same operation on the
plaintext. Homomorphic encryption allows the computing
party to calculate ciphertext data without knowing the orig-
inal plaintext. Simply put, the value of x1 ~ x2 can be
calculated directly in the case where only the ciphertext data
Y1 and Y2 are known and the x1, x2 is unknown [25]. Homo-
morphic encryption technology has been widely used in the
fields of trusted computing and cloud computing.

The Paillier cryptographic algorithm is a public-key
cryptosystem with semantic security, additive homomor-
phism and ciphertext randomness. Its theoretical security
is built on the Computational Composite Residuosity As-
sumption (CCRA). Semantic security means that for a given
plaintext m1 and m2, and one of the plaintext correspond-
ings to ciphertext C, there is no polynomial algorithm to
prove to which plaintext the ciphertext C corresponds. Ad-
ditive homomorphism means that given any unclear x and y,
Epk (x; r1) · Epk (y; r2) = Epk (x + y; r1r2) is satisfied. Ci-
phertext randomness means that the same plaintext does not
generate the same ciphertext, so the attacker cannot crack and
obtain information through statistical analysis of ciphertext.

3.3 Malicious Code Analysis

There are many ways to detect malicious code on a mobile
platform. These methods can be broadly divided into two
types: static and dynamic analysis [26]. The static analy-
sis method detects whether the application or instruction is
malicious by examining the code or metadata. Virus signa-
ture scanning technology is the most common static analysis
technology. Firstly, analyze the malicious code to extract the
signature different from other programs, and then keep the
signature into the signature database and use this signature
as the code flag to scan the specific virus. Static analysis has
low requirements for the running environment, thus can save
the system resources of analysis and scanning. Dynamic
analysis detects malicious programs according to the spe-
cific behavior and execution results of the program during
execution. It can identify unknown types of attacks but will
cost a lot.

However, dynamic analysis is not suitable for the trusted
execution environment, as shown in Table 1. On the one
hand, as amore complex and energy-intensive detection tech-
nology, dynamic malicious code analysis technique usually
has a huge amount of code, which could significantly in-
crease the TCB of the secure world. Then a time-consuming
detect program cannot provide runtime services for the se-
cure world. On the other hand, the feature of TEE limits
the dynamic analysis technique as an optional option. First,
programs in TEE typically do not produce complex behav-
ioral models, simple behavioral samples cannot support the

Table 1 The result of performance comparison.

ANALYSIS
METHOD POSITIVE NEGATIVE

Dynamic Unknown attacks
Huge TCB

Lack of training samples
Time Consuming

Static More effective
Small TCB Unknown attacks

implementation of dynamic detection techniques. Second,
the OS in TEE is usually difficult to update for known vul-
nerabilities, the static analysis method is more efficient for
a known attacks activity. Third and most importantly, mo-
bile platforms generally are low-value, we need to study how
to survive from mass homogenization attacks (such as Bot-
net) with minimal cost, instead of studying more accurate
detection models.

3.4 OP-TEE

OP-TEE is an open-source TEE operating system running
on ARM TrustZone, which follows the Global Platform’s
TEE System Architecture Specification [20]. In the OP-TEE
architecture, an application is divided into two parts. One
is the Client Application running in the ROS, and the other
is the Trusted Application running in the TEE. This means
that security-sensitive services are extracted to a separate
security environment to run.

4. Threat Model and Assumptions

This section describes the threat model and assumptions
pertaining to the HE-TEEMD architecture.

4.1 Assumptions

As mentioned in prior sections, HE-TEEMD is built on
the TrustZone hardware-assisted universal TEE architecture
to provide a malicious code detection implementation with
minimal TCB. We first explain the main idea of our design
and then explain the security mechanism.

4.2 Threat Model and Assumptions

We assume that the mobile device is equipped with an ARM
TrustZone.

First, we consider that there is a lightweight, trusted OS
running in the secure world, and a fully compromised rich
OS running in the normal world—amalicious user with root
privileges exists in the normal world.

Second, assume that the original components running in
the TEE are entirely trusted, including all components in the
secure world side in our scheme. The application installed
by the user is considered suspicious, this means that even if
an application is successfully installed into the secure world,
we still need to detect it.

WANG and ZHUANG: MALICIOUS CODE DETECTION FOR TRUSTED EXECUTION ENVIRONMENT BASED ON PAILLIER HOMOMORPHIC ENCRYPTION
159

Third, the attacker has complete control over all the
software in ROS.

Fourth, an attacker with ROOT privileges can create
a malicious process that continuously sends requests with
well-designed parameters to discover the vulnerabilities of
the secure world kernel and applications through the API or
shared memory calls provided by the trusted application.

Fifth, an attacker may listen to the crossing-data be-
tween the secure world and the non-secure world to steal
sensitive information.

Finally, we assume that the attacker did not implement
physical access to the mobile device.

4.3 Threat Model

Threat models for HE-TEEMD involve two main aspects.
The first one is any attacks to the component which runs in
the normal world. The second involves attacks from the evil
data transmitted to the secure world. For the first aspect, a
privileged user can destroy the availability and integrity of
any client application running in the normal world, but the
confidentiality can be protected by encrypting and confusing.
For the second aspect, two kinds of data are consideredwhich
pose the main threat to the security of the secure world: one
is the crossing-data between the two worlds, including the
payload contained in the request message from the normal
world to the secure world, or the memory address of a file to
be invoked by the secure world. Another one is the source
code or data of trusted applications installed by the users in
the secure world.

To mitigate the FUZZING or replay attacks, any
crossing-data from the normal world to the secure world
should perform a real-time detection process. To detect a
file or program, which is commonly more than 10 kb, a bet-
ter choice is to deal with it as a free time task.

5. Architecture and Design

5.1 Our Design

The security of TEE depends not only on small TCB and
strong isolation but also on the security of the code running
in the secure OS. How to achieve malicious code detection
with minimal TCB growth cost is the focus of HE-TEEMD
design.

In a general TEE architecture based on TrustZone, the
user program CAi sends the security service request and data
through the API encapsulation to the TEE driver. TEE driver
achieves the switch to the secure world and transfers data to
the trusted OS in the secure world. The trusted OS loads
the corresponding security service program TAi according
to the UUID in the request and transmits the data, and then
TAi performs security services and returns the results. Its
standard transmission path is shown in Fig. 2(a).

In the above process, the trusted OS does not perform
malicious code detection on the incoming data of the trusted
application, or only performs simple verification, which

Fig. 2 The path of data transmission.

Fig. 3 The architecture of HE-TEEMD.

could not guarantee the security of the data. Unlike the
general architecture, HE-TEEMD detects malicious code by
encrypting plaintext information in the secure world and
outsourcing it to a detector program running in the normal
world, only the data that the detector determines to be be-
nign will be sent to the trusted application for execution. Its
transmission path is changed as shown in Fig. 2(b).

Figure 3 shows the architecture ofHE-TEEMD inwhich
ROS and trusted OS are running in the normal and secure
world respectively. The communication between the two
worlds is realized through shared memory. In HE-TEEMD,
we modify the code of the TEE Communication Agent so
that it can obtain and encrypt the data to be detected, and
then send ciphertext to the detector running in the normal
world. The detector is running in the non-secure environ-
ment with no guarantee of confidentiality and availability.
And we use homomorphic encryption and evaluation pa-
rameters to establish a trusted communication link between
the two worlds.

For comparison, we built a malicious code detection
program running in the secure world, called LOCAL. The
result of the comparative analysis between the LOCAL and
the HE-TEEMD is illustrated in Table 2. It was clear that
LOCAL is unfeasible. First, LOCAL will cost huge stor-
age and update cost. On the one hand, the virus signature
database can only be stored in secure memory to prevent
attackers from editing it. On the other hand, writing a virus
database into the secure world requires complex authentica-
tion protocols, and the virus database is a component that
requires frequent updates in a detection system. Second, LO-
CAL will cause the TCB swift growth, the program of the

160
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

Table 2 The comparison of LOCAL and HE-TEEMD.

SCHEME HASHCHECK SIGNATURE
MATCHING SOLUTIONS

LOCAL
TCB Growth
Storage Cost
Update Cost

TCB Growth
Storage Cost
Update Cost
Time Consuming

Expand
Hardware

HE-TEEMD Confidentiality Confidentiality
Time Consuming

Homomorphic
Encryption

Fig. 4 The execution flow chart of HE-TEEMD.

detector will also cause some new vulnerabilities. To solve
these problems, this paper proposed a complete malicious
code detection architecture based on Paillier homomorphic
encryption with minimal TCB and performance cost.

HE-TEEMDonly adds a detector component to the user
mode of the normal world without needing to customize
and add any complex security components to the secure OS,
whichmeans that the proposedmechanism can be used in any
commercial TEE solution. The detector is located in the user
mode of the normal world. Its availability and confidentiality
can not be guaranteed, so the data out of the secure world
must be ciphertext, and the ciphertext calculation requires
ciphertext with operability. Since it is not transparent to
TEE driver in the transmission process of ciphertext, which
means TEE driver can have both plaintext and ciphertext
information of crossing-data, the ciphertext is required to
have randomness.

HE-TEEMD implements the operability and random-
ness of ciphertext through the homomorphic encryption al-
gorithm. With the HE-TEEMD, the suspicious data in the
secure world can be encrypted and transmit to the normal
world for a malicious code detection services.

Assuming there is a communication data m, its execu-
tion flow is shown in Fig. 4. The encryption calculation Enc
is implemented in Fig. 4 1O and the homomorphism calcula-
tion Cal for a ciphertext at 2O, a ciphertext fragment whether
contains any malicious code is determined according to the
calculation result. In 3O, the decryption calculation Dec is
implemented, the ciphertext segment of the malicious code

is decrypted, and then whether the data m can be transmit-
ted to the trusted application for execution can be judged
according to the plaintext.

HE-TEEMD can detect malicious code for the follow-
ing three types of data: 1) Payload in the interaction data of
two world. No matter what the data structure TEE Driver
transmits to the secure world, its payload is usually a collec-
tion of parameter variables or string fragments. This kind of
data generally less than 1KB, which could produce a small
delay in real-time detection. 2) A file or its memory address.
To detect a file can either perform a rough detection by Hash
or a deep detection byte-by-byte, the latter is not suitable as
a real-time service. User programs in the secure world are
typically single-function, with the size of the code usually
not more than 1MB. It is feasible to scan malicious code sig-
natures for trusted applications code under the architecture
of HE-TEEMD. And 3) Internal function output, especially
the decryption component. If a trusted application gets a
ciphertext data from the normal world, the secure OS should
intercept the output of the decryption function for detection.
In the static detection process, the detection algorithms of
the above three kinds of data are the same. However, in the
actual application scenario, data type 1 as the main entrance
for malicious code to enter the secure world, not only re-
quires an effective detection mechanism but also needs to
generate a brief delay when processing data 1 to provide
real-time detection service. Therefore, the interaction data
is used as the detection load in the subsequent verification
and implementation process.

5.2 Component

HE-TEEMD mainly consists of five components: the client
applications, the TEE driver, the TEE communication agent,
the detector, and the trusted applications.

The Client Applications. The client applications is a
program running in the normal world and are the initiator of
the security service request. In fact, the detector is also a
client application. In this paper, the client application refers
specifically to the initiator of the security service request.

The TEE Driver. The TEE Driver runs in the kernel
of the normal world for handling requests and correspond-
ing commands when switching between the two worlds of
TrustZone. It contains the crossing-data of this two world,
which means that the crossing-data of the two worlds under
the general TrustZone architecture is not transparent to the
TEE Driver. Each TEE has a dedicated, non-trusted TEE
Driver, each of which uses its own unique calling conven-
tion and data structure for data transferring. In this article,
we simulate an attacker capability model with root privi-
leges through a fully compromised TEE Driver. It is means
that the attacker can monitor and modify the crossing-data
between the two worlds and can prevent the detector from
serving the secure world.

The TEE Communication Agent. The TEE com-
munication agent is a module running in the secure world.
HE-TEEMD requires some lightweight modifications to the

WANG and ZHUANG: MALICIOUS CODE DETECTION FOR TRUSTED EXECUTION ENVIRONMENT BASED ON PAILLIER HOMOMORPHIC ENCRYPTION
161

traditional TEE communication agent component, the new
functions of the TEE communication agent is mainly used to
intercept the data to be detected, such as the corrosing-data
from the normal world to the secure world, the code fragment
of the trusted applications program, and the output of TEE
internal function. The trusted kernel guarantees that the data
entering the trusted application will pass through the TEE
communication agent module. The plaintext information to
be detected intercepted by the TEE communication agent
will be homomorphically encrypted and sent to the detector
in the normal world to obtain the detection result.

The Detector. The detector is the main component of
the HE-TEEMD running in the normal world, performing
static malicious code analysis on the input data. Software
protection technology is used to ensure its integrity.

The Trusted Applications. The trusted applications is
a program running in the secure world and is a provider and
responder of security services.

To sum up, HE-TEEMD only needs to modify the TEE
Communication Agent component to intercept the data to
be detected, and then send the cipertext back to the normal
world. A normal Detector installed to the normal world,
running a variety of static analysis programs, such as signa-
ture matching, string statistics, similarity comparison and so
on. In the following chapters, the Homomorphic Encryption
Algorithm and the Evaluation Variables are used to ensure
the availability and security of HE-TEEMD. We prove that
Paillier homomorphic encryption algorithm can achieve sig-
nature matching in ciphertext domain by using mathematical
proof (chapter 6.1). Briefly speaking, if the character strings
to be detected is format into a sequence of integers {i}, there
must be a negative integer sequence {−i} to make the cipher-
text product of the two equal 0. And then, we evaluated
the performance of the detection algorithm (chapter 7), the
result shows that HE-TEEMD can realize a certain strength
signature matching within a few milliseconds.

6. Protection Mechanisms

Threemechanisms implemented to guarantee the availability
and security of HE-TEEMD: the homomorphic encryption,
the ciphertext detection algorithm, and the evaluation pa-
rameters. The homomorphic encryption and the ciphertext
detection algorithm not only ensure that the operability, the
confidentiality and the privacy of the data outsourcing to the
normal world, but prevent attackers from performing statis-
tics and analysis on ciphertext data. The availability of the
detector running in the normal world is the most important
attributes, HE-TEEMD defends the availability attack and
the forgery attack to the detector by the evaluation variables.
This section will describe them in detail.

6.1 The Paillier Homomorphic Encryption

In this paper, the Paillier homomorphic encryption technol-
ogy is used to process the information to be detected into a
ciphertext sequence. And the ciphertext is transmitted to the

Fig. 5 The homomorphic encryption flow chart.

normal world for detection. It is required that the security
should be guaranteed even if the TEE driver is not trusted. To
achieve this security, ciphertext information must meet the
operability and randomness. Homomorphic encryption is a
good way to implement the required security attributes, as it
allows a specific algebraic operation of ciphertext to obtain
the same result as the operation of plaintext. HE-TEEMD
can achieve similarity-based detection algorithms such as
signature matching with the addition homomorphism of the
paillier homomorphic encryption algorithm [27]. It does not
need to restore the data to be detected into plaintext, which
can satisfy both homomorphism and randomness.

The process of implementing a complete homomorphic
encryption algorithm by HE-TEEMD needs to be switched
between the secure world and the normal world. As shown
in Fig. 5, the signature ciphertext database is generated by
the trusted service provider first, they encrypt their plaintext
virus database into a ciphertext database by using the user
public key and pushes it to the user local. The signature
of the malicious code is divided into fixed-length fragments
that represent each piece of plaintext information as a unique
integer. Finally, it only needs to decrypt the product of the
ciphertext and verify whether the decrypted result is 0 or
not to determine whether the plaintext segment m matches
the feature segment f . Further, we propose a matching
check function, which can quickly determine whether the
result of the homomorphism calculation function is 0without
decrypting the clear text result. The specific steps are as
follows:

6.1.1 Build Paillier Homomorphic Encryption

Two large random primes p and q are generated to meet
gcd
(
p · q, (p − 1) ·

(
q − 1

))
= 1. The product n = p · q

is calculated and generate random number g
(
gεZn2

∗
)
, set

162
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

gεZn2
∗ where Zn2

∗ represents a set of integers in Zn2 that
are mutually prime with n2. µ =

(
L
(
gλ mod n2

))−1
mod n

is required to exist, where L is a function of µ, denoted as
L (µ) = µ−1

n . 〈n, g〉 is the user’s public key and 〈λ, µ〉 is the
user’s private key, where λ = lcm

(
p − 1, q − 1

)
.

In theory, a larger value of p and q means that the cryp-
tographic algorithm will have higher security. The optimal
size of p and q is 128 bits for Paillier, which gives a high-
security level andminimal performance loss [28]. Therefore,
in our experiment code, both p and q are set to 128 bits.

6.1.2 Paillier Encryption Function

Grouping payload M into a number of fixed-length mes-
sages, each of which can be represented as a unique integer
M = m1m2m3 · · ·mi . Calculate the ciphertext using the en-
cryption algorithm demonstrated in Eq. (1) [27], where ri is
a random number.

ci = E (mi) = gmi · rin mod n2 (1)

6.1.3 Paillier Homomorphic Calculation Function

The calculating method of verifying ciphertext information
to meet the paillier addition homomorphism is shown in
Eq. (2) [27]. Where ri and r j are random numbers.

E (mi) E
(

f j
)
= ci · cfj = g

mi · rin · g fj · r j n mod n2

= gmi+ fj ·
(
ri · r j

)n
mod n

= E
(
mi + f j

)
(2)

According to Eq. (2), we can get the corollary 1.

Corollary 1: if mi + f j = 0 is true, then E(mi)E(f j) =
E(0) is also true.

6.1.4 Paillier Decryption Function

Paillier decryption function is shown in Eq. (3) [27].

D (c) =
L
(
cλ mod n2

)
L
(
gλ mod n2) mod n (3)

6.1.5 Matching Check Function

HE-TEEMDsend the public key 〈n, g〉 to the service provider
to generate the signature database, and the public key is un-
known to the local normal world. Part of the private key will
be sent to the detector in the normal world to judge weather
the plaintext fragment m is matched with the signature frag-
ment f according to the Eq. (4).

L
(
cλ mod n2

)
mod n = 0 (4)

It can be known from Eq. (4) that all the data required to
complete a matching operation in the normal world is 〈n, λ〉.
According to Eqs. (1), (2) and (3), it is safe to disclose such
information to the non-secure world.

6.2 The Ciphertext Detection Algorithm

As is mentioned above, when a and b are negative on the
integer field, the product of their Paillier homomorphic ci-
phertext E (a) ∗ E (b) must be 0 on the integer field after
decryption. This means that we only need to convert the
data to be detected and its signature to a sequence of inte-
gers, it is possible to determine the result is matching based
on whether or not the products plaintext of the two cipher-
texts is 0. So when Eq. (4) is true, the result of matching
must be true according to Eq. (3). In fact, Eqs. (3) and (4)
time consumption is the same as a check function. Besides,
through the isolation of hardware peripherals by TrustZone,
a homomorphic encryption chip can serve both the secure
world and the normal world. On the one hand, the encryption
chips format the result of Eq. (3) to 0 or 1, and output them
to the normal world. On the other hand output the original
result of Eq. (3) to the secure world. This can reduce the
time consumption of repeatedly computing the same data in
both worlds. And most importantly, it eliminates the TCB
growth that implements homomorphic encryption in the se-
cure world. To achieve a minimized TCB, we implemented
a performance evaluation by software-simulating switchable
hardware peripherals in the experiment in Sect. 7.

The detector, as the executor of the homomorphic ci-
phertext matching algorithm, receives the data to be detected
and implements themalicious code detection algorithm. The
detector mainly achieves the following two functions: using
Hash to identify virus files and matching malicious code
signature fragments. The trusted service provider can fur-
ther generate some simple ciphertexts of logical code, such
as count the times of calling to the LibTomCr ypt dynamic
library TimesLibTomCrypt in a period of time.

Generally, being a component that needs to be updated
frequently, the detector has a complex iterative check mech-
anism which will not only increases the risk of compromise
but also can not guarantee its timeliness. Sileshi D. Y. et
al. [22] proposed that the use of complex integrity verifica-
tion protocols for detector running in the non-secure world
would introduce the competition of modifying files multiple
times. In order to implement a detector in the non-secure
world, HE-TEEMD uses the homomorphism and random-
ness of the ciphertext to reduce the security requirements of
the detector.

It has to be noted that there is only the typical static anal-
ysis function has been build in this paper, such as signature
matching, similarity comparison, and call frequency statis-
tics. The focus is to demonstrate the feasibility and security
of the ciphertext detection mechanism based on Paillier ho-
momorphic encryption.

WANG and ZHUANG: MALICIOUS CODE DETECTION FOR TRUSTED EXECUTION ENVIRONMENT BASED ON PAILLIER HOMOMORPHIC ENCRYPTION
163

6.3 The Evaluation Variables

Availability is another crucial requirement for the detector to
provide a trusted service. The evaluation variable is used to
ensure the availability of the detector. Briefly speaking, the
correct detection result can only be output to the evaluation
variables when the detector is available.

Since the communication data of the two worlds are
transmitted by TEE driver, the TEE Driver may have both
plaintext and ciphertext for the detected data in the detector.
It is still able to predict the output of the detector through a
known-plaintext attack in the case of an unknown encryption
key, and forge the detector output.

Supposing a malicious user injects an attack code e
into the data M (m1,m2,m3, e,m4, ...) passed to trusted ap-
plication, the information that can be stolen by the attacker
through TEE driver includes the plaintext M , the ciphertext
C (M), and the ciphertext fragment C (e) of the malicious
code e that the detector feeds back to the TEE communi-
cation agent. An attacker with root privileges can prevent
the secure world from obtaining the correct detection results
by tampering or forging a communication process. HE-
TEEMD addresses the above-mentioned attacks by adding
evaluation variables, which means adding several strings
A (a1, a2, a3, a4...) with known detection results after the
plaintext information M . Makes the malicious code that the
secure world gets from C (e) to C (e) + C (A). Because of
the randomness of homomorphic ciphertext, it is guaranteed
that the attacker cannot distinguish the ciphertext generated
by different plaintexts or even the ciphertexts generated by
the same plaintext at different times. This means that an
attacker cannot forge the detection result of malicious code
e.

The secure world further determines whether the de-
tector’s detection result for the payload M is reliable by the
accuracy of the detection result of the evaluation variables,
which could avoid the competition for the integrity check of
detectors running in the normal world.

We assume that an attacker can forge or tamper with the
output of the detector, and pass the cryptographic verifica-
tion successfully. However, an attacker cannot just tamper
with the information they want to hide and retain the in-
formation they want to maintain. First, the attacker cannot
get the correct detection result of the evaluation variables by
constructing a fake detector program. Second, the attacker
also cannot identify which part of the detection result is gen-
erated by the evaluation variables. This means that only true
and available detector programs can output correct results,
and abnormal detection results equal to an abnormal detector
or ROS. Once the wrong or unreached detection results are
found, some security operations should be performed in the
normal world, such as system initialization.

7. Evaluation

We cross-compile an OP-TEE trusted execution environ-

ment for the QEMU platform in the Ubuntu 14.04.1 system.
Ubuntu runs on a single-core 2.7GHz, 4G memory hard-
ware platform, on which a prototype of a malicious code
detection scheme for trusted execution environments based
on homomorphic encryption is established.

First, we implemented the experimental environment
and verified the effectiveness of the detection algorithm. And
then we analyze the system performance of the HE-TEEMD
scheme.

7.1 Validity Verification

In the experiment, we compiled a trusted application in the
secure world of OP-TEE, and a client application running
in the normal world. We send a random integer a to the
trusted application from the client application, such as 4973.
Trusted application inverts the received integer data to an
unsigned long integer b, where b=18446744073709546643.
The trusted application encrypts a and b by Paillier homo-
morphic encryption and sends the ciphertext back to the
client application. The client application multiplies the ci-
phertext, decrypts and verifies whether the result is a specific
value to determine whether the two ciphertexts match.

In Fig. 6, the picture shows the output of the normal
world and the secure world of OP-TEE, The results show
that any integer and its negative numbers satisfy Corollary
1, the result of decrypting the product of its ciphertext is
0 on the integer domain. It takes 0.012ms to perform a
homomorphic computation and decryption operation in the
normal world, where it costs 0.488ms to perform an en-
cryption operation in the secure world. When the database
contains 3,801 signature, 1.27 seconds time-consuming will
be generated to detect 100 bytes data, and 0.21 seconds for 50
bytes data. This means that HE-TEEMD enables transparent
real-time detection to users.

The detection accuracy is an important indicator for
evaluating malicious code detection mechanisms, the suc-
cessful detection rate of HE-TEEMD is totally depended on
the ability of the signature database. The detector download
the ciphertext signature database from the trusted security

Fig. 6 The result of the validity verification.

164
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

Table 3 The result of performance comparison.

Scheme TCB Inc.
(KB)

Time Cons.
(ms)

Storage Cons.
(KB)

Update
Cost

HE-TEEMD 1.4 244.7 NONE

LOCAL 248.9 0.3 26.7 HIGH

services provider, any signature that exists in the database
will be detected 100%.

7.2 Performance Verification

After verifying the function of our method, we build a plain-
text database containing 3801 rows of signature strings of ar-
bitrary length in the normal world, and test the performance
of the signature comparison operation under theHE-TEEMD
scheme. In the experiment, we encrypt the plaintext infor-
mation byte by byte, and find the character string fragment
that can match the signature in the database by a brute-force
search. In order to eliminate the influence of other factors,
we do not perform other data operations in the experiment.
We added time logging at the beginning and the end of the
process and printed out the time delay. We implement a ma-
licious code detection program that runs locally in the secure
world (LOCAL). The LOCAL perform signature matching
for plaintext directly. The data is compared mainly in terms
of the time consumption and TCB growth. The comparison
result is shown in Table 3.

As indicated in the table above, HE-TEEMD has appar-
ent advantages in the increment of TCB generated. Unlike
the LOCAL scheme, the TCB increment of HE-TEEMD
scheme does not increase with the iteration of function and
version. It should be pointed out that the HE-TEEMD
scheme will generate a code increment of about 200KB for
homomorphic encryption. In our experiments, we simulate
a switchable peripheral which means that the code incre-
ment for homomorphic encryption does not count toward
the growth of the TCB. This is because the hardware chip
does not meet the definition of Trusted Computing Base
(TCB) for trusted OS which is neither a security protection
mechanism for the secure OS nor increases the security risk
of the secure world.

In terms of storage overhead, the LOCAL scheme needs
to store all malicious code signature database in the secure
world, which will result in corresponding storage overhead.
On the other hand, we encrypt 50 bytes of plaintext informa-
tion and perform the signature comparison operation with
the 3801 line of arbitrary length signature strings, result-
ing in a delay of about 214ms. Compared with the LOCAL
scheme, the static malicious code analysis results in a certain
time delay. Therefore, it is possible to real-time detect a tiny
blob of data which is less than 1Kb, such as crossing-data
between the two worlds. A free time mode is suitable for a
bigger load such as programs and files analysis.

In order to test the impact of the introduction of eval-
uation variables on performance, we perform the signature

Fig. 7 The performance cost for different lengths of plaintext.

comparison operation for different lengths of plaintext, and
the test results are shown in Fig. 7.

As shown in Fig. 7, when using a signature comparison
algorithm with brute-force search, increasing the length of
the plaintext to be detected will consume more time, which
means that the added evaluation variable should be kept on a
scale smaller than the length of the plaintext to be detected.

7.3 Security Analysis

We had validated the effectiveness of the malicious code
detection scheme. In the end, we analyze the security of
HE-TEEMD by discussing how it defeats security threats.
As mentioned in Sect. 4, we assume that the components
running in the TEE are entirely trusted, but the application
installed by the user is considered suspicious. The threats
of HE-TEEMD come from the attacks against the Detector
in the Normal World and the attacks against the Commu-
nications between of the two worlds, so availability attack
and masquerade attack are the primary security risk to HE-
TEEMD.

Since the detection decisions are made by the detector
in the normal world, the security of the detector is the cor-
nerstone for the HE-TEEMD architecture to work properly.
We achieved integrity availability and confidentiality by in-
troducing the Evaluation Variables and the Homomorphic
Encryption.

Integrity. A root privileged user is free to change the
configuration and files of the user program, which can de-
stroy integrity. As we mentioned in Sect. 6.3, we believe that
any behavior that undermines the integrity of the detector
will result in a deviation of the detection result. Assume that
the data to be detected is datacontent , which contains thema-
licious code fragment blockevil . We add the evaluation vari-
ables dataeval to the detection queue, which also contains a
malicious code fragment block

′

evil
. Since the randomness of

the ciphertext of the homomorphic encryption, an attacker
cannot distinguish between datacontent and dataeval , that is
it is impossible to tamper or hide the blockevil while out-
putting the correct block

′

evil
. Therefore, any behavior that

destroys integrity will be discovered because of differences

WANG and ZHUANG: MALICIOUS CODE DETECTION FOR TRUSTED EXECUTION ENVIRONMENT BASED ON PAILLIER HOMOMORPHIC ENCRYPTION
165

in the detection results of the Evaluation Variables.
Availability. Availability attack is the biggest threat of

the detector which is running in the normal world, an attacker
can block and spoof the communication between the Detec-
tor and the secure world. However, Similar to the integrity
attack, an attacker cannot identify the part of the detected
content that belongs to the Evaluation Variables, nor can it
create a Detector copy to output the correct detection result
for the Evaluation Variables. On the one hand, when the
attacker’s intent is to obtain sensitive data from the secure
world, blocking communication between the detector and
the secure world will cause the attackers exposed themselves
which is useless and not sensible. On the other hand, since
the secure world has higher permissions, resetting the De-
tector program or even the normal world kernel can easily
solve such attacks.

Confidentiality. The homomorphic ciphertext of the
data to be detected has randomness, even if the attacker has
the ciphertext of the data to be detected and some possible
plaintext, the plaintext cannot bematchedwith the ciphertext.
Therefore, the data to be detected is transparent to the normal
world. On the other hand, the confidentiality of the detector
program itself can be protected by a lot of perfect software
protection mechanisms, such as confusion.

To sum up, any behavior that destroys the integrity and
availability of the detector will manifest itself as an abnormal
detection result to the Evaluation Variables. Since the secure
world has higher privileges, it can operate on the detector
program and the normal world kernel when an exception is
detected, such as initialization the Detector program and the
normal world system. Therefore, the security of the Detector
and the communication is guaranteed.

8. Conclusion

This paper proposed an innovative application of the paillier
homomorphic encryption technology to the TEE to achieve
a malicious code detection scheme with a minimal TCB and
interaction delay. The focus is to demonstrate the feasibility
and security of the proposed architecture. The plaintext data
is encrypted into ciphertext and outsourced to the normal
world for malicious code detection with the randomness and
homomorphism of the ciphertext of the homomorphic en-
cryption algorithm. The feasibility of this scheme is verified
by constructing the experiment environment. We further
make performance evaluation, finding that the HE-TEEMD
scheme has obvious advantages in terms of TCB increment,
storage and update cost. At the same time, we found that
with the increase of the payload to be detected, the time de-
lay will also increase obviously. When performing complex
detection tasks, the HE-TEEMD scheme can be used as a
free-time task in addition to real-time detection. To the best
of our knowledge, this is the first and only existing solution.
In our future work, an advanced detection algorithm is the
focus of our research work, which is more suitable for the
HE-TEEMD and the signature matching algorithm.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (General Program) under Grant No.
61572253, the 13th Five-Year Plan Equipment Pre-Research
Projects Fund under Grant No. 61402420101HK02001, and
the Aviation Science Fund under Grant No. 2016ZC52030.

References

[1] G.D. Technology, “TEE Internal API Specification,” http://
www.globalplatform.org/specificationsdevice.asp, 2011. [Available
Online;].

[2] J. Winter, “Trusted computing building blocks for embedded linux-
based arm trustzone platforms,” Proc. 3rd ACM Workshop on Scal-
able Trusted Computing, STC’08, pp.21–30, New York, NY, USA,
ACM, 2008.

[3] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, p.108, 2016.

[4] ARM, “ARM Security Technology: Building a Secure System using
TrustZone Technology ARM,” ARM white paper, p.108, 2009.

[5] T.Alves andD. Felton, “Trustzone: Integrated hardware and software
security,” ARM white paper, vol.3, no.4, pp.18–24, 2004.

[6] “Arm annual reports,” http://ir.arm.com/phoenix.zhtml?c=197211&
p=irolreportsannual, (Accessed on 10/01/2018).

[7] J. Yiu, “ARMv8-M Architecture Technical Overview,” ARM white
paper, vol.10, 2015.

[8] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, S. Mangard, M. Lipp,
D. Gruss, R. Spreitzer, and S. Mangard, “ARMageddon: Cache
attacks on mobile devices this paper is included in the proceedings
of the ARMageddon: Cache attacks on mobile devices,” USENIX
Security, pp.549–564, 2016.

[9] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing
the perils of security-oblivious energy management,” 26th USENIX
Security Symposium (USENIX Security 17), pp.1057–1074, 2017.

[10] E. Gallery and C. Mitchell, “Trusted mobile platforms,” Foundations
of Security Analysis and Design IV, pp.282–323, 2007.

[11] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position paper: Challenges
towards securing hardware-assisted execution environments,” Proc.
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), pp.1–8, 2017.

[12] F. Zhang and H. Zhang, “SoK: A study of using hardware-assisted
isolated execution environments for security,” Proc. Hardware and
Architectural Support for Security and Privacy 2016 on - HASP
2016, pp.1–8, 2016.

[13] D. Rosenberg, “Qsee trustzone kernel integer over flow vulnerabil-
ity,” Black Hat conference, pp.1057–1074, 2017.

[14] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens,
R. Wang, A. Bianchi, Y.R. Choe, C. Kruegel, and G. Vigna,
“BOOMERANG: Exploiting the semantic gap in trusted execution
environments,” Proc. 2017 Network and Distributed System Security
Symposium, 2017.

[15] “Bugs in htc’s tee,” http://atredispartners.blogspot.com/2014/08/
here-be-dragons-vulnerabilities-in, (Accessed on 09/15/2018).

[16] “Cve-2016-3931-android open source project,” https://source.androi
d.com/security/bulletin/2016-10-01.html, (Accessed on 09/15/2018).

[17] “Cve-2015-4422 two privilege escalation vulnerabilities in huawei
mate 7 smartphones,” https://www.huawei.com/en/psirt/security-
advisories/hw-432799, (Accessed on 09/15/2018).

[18] “Cve-2017-1000412,” https://www.op-tee.org/security-advisories/,
(Accessed on 09/15/2018).

[19] “Qsee privilege escalation vulnerability and exploit (cve-2015-
6639),” http://bits-please.blogspot.com/2016/05/qsee-privilege-esca
lation-vulnerability.html, (Accessed on 09/15/2018).

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://dx.doi.org/10.1145/1456455.1456460
http://dx.doi.org/10.1145/1456455.1456460
http://dx.doi.org/10.1145/1456455.1456460
http://dx.doi.org/10.1145/1456455.1456460
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
http://ir.arm.com/phoenix.zhtml?c=197211&p=irolreportsannual
http://ir.arm.com/phoenix.zhtml?c=197211&p=irolreportsannual
http://dx.doi.org/10.1007/978-3-540-74810-6_10
http://dx.doi.org/10.1007/978-3-540-74810-6_10
http://dx.doi.org/10.1145/3092627.3092633
http://dx.doi.org/10.1145/3092627.3092633
http://dx.doi.org/10.1145/3092627.3092633
http://dx.doi.org/10.1145/3092627.3092633
http://dx.doi.org/10.1145/2948618.2948621
http://dx.doi.org/10.1145/2948618.2948621
http://dx.doi.org/10.1145/2948618.2948621
http://dx.doi.org/10.1145/2948618.2948621
http://dx.doi.org/10.14722/ndss.2017.23227
http://dx.doi.org/10.14722/ndss.2017.23227
http://dx.doi.org/10.14722/ndss.2017.23227
http://dx.doi.org/10.14722/ndss.2017.23227
http://dx.doi.org/10.14722/ndss.2017.23227
http://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in
http://atredispartners.blogspot.com/2014/08/here-be-dragons-vulnerabilities-in
https://source.android.com/security/bulletin/2016-10-01.html
https://source.android.com/security/bulletin/2016-10-01.html
https://www.huawei.com/en/psirt/security-advisories/hw-432799
https://www.huawei.com/en/psirt/security-advisories/hw-432799
https://www.huawei.com/en/psirt/security-advisories/hw-432799
https://www.op-tee.org/security-advisories/
https://www.op-tee.org/security-advisories/
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html

166
IEICE TRANS. COMMUN., VOL.E103–B, NO.3 MARCH 2020

[20] “Github - op-tee/optee_os: Trusted side of the tee,” https://github.
com/OP-TEE/optee_os, (Accessed on 09/19/2018).

[21] “Globalplatform tee internal core api specification v1.1.2,” https://
globalplatform.org/specs-library/tee-internal-core-api-specification-
v1-1-2/, (Accessed on 09/15/2018).

[22] S.D. Yalew, G.Q. Maguire, S. Haridi, and M. Correia, “T2Droid: A
TrustZone-based dynamic analyser for Android applications,” 2017
IEEE Trustcom/BigDataSE/ICESS, 2017.

[23] X. Zheng, Y. He, J. Ma, G. Shi, and D. Meng, “TZ-KPM: Kernel
protection mechanism on embedded devices on hardware-assisted
isolated environment,” High Performance Computing and Com-
munications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference
on, pp.663–670, IEEE, 2016.

[24] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gor-
bunov, S. Halevi, J. Hoffstein, K. Lauter, S. Lokam, et al., “Homo-
morphic encryption standard,” 2018.

[25] D. Okunbor and C. Sarami, “Homomorphic encryption: A survey,”
ReviewofBusiness andTechnologyResearch, vol.14, no.1, pp.1941–
9414, 2017.

[26] G. Tuvell and D. Venugopal, “Malware detection system and method
for mobile platforms,” US Patent 9,104,871, Aug. 11 2015.

[27] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), pp.223–238, 1999.

[28] R.A. Al-Shibib, Performance Analysis for Fully and Partially Homo-
morphic Encryption Techniques, Ph.D. thesis, Middle East Univer-
sity, 2016.

ZiwangWang received the M.S. degrees in
computer science and technology from Guizhou
Normal University, Guiyang, China, in 2016. He
is currently a Ph.D. candidate of the College of
Computer Science and Technology at Nanjing
University of Aeronautics and Astronautics in
China. His research includes mobile security
and system security.

Yi Zhuang graduated from the Depart-
ment of Computer Science, Nanjing University
of Aeronautics and Astronautics in 1981. Now
she is a professor and Ph.D. supervisor of the
College of Computer Science and Technology
at Nanjing University of Aeronautics and Astro-
nautics. Her research interests include network
distributed computing, information security and
dependable computing.

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-1-2/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-1-2/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-1-2/
http://dx.doi.org/10.1109/trustcom/bigdatase/icess.2017.243
http://dx.doi.org/10.1109/trustcom/bigdatase/icess.2017.243
http://dx.doi.org/10.1109/trustcom/bigdatase/icess.2017.243
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://dx.doi.org/10.1109/hpcc-smartcity-dss.2016.0098
http://homomorphicencryption.org/wp-content/uploads/2018/08/HomomorphicEncryptionStandard2018-08-30.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/08/HomomorphicEncryptionStandard2018-08-30.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/08/HomomorphicEncryptionStandard2018-08-30.pdf
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1007/3-540-48910-x_16

