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SUMMARY  Cognitive radio provides a feasible solution for alleviat-
ing the lack of spectrum resources by enabling secondary users to access
the unused spectrum dynamically. Spectrum sensing and learning, as the
fundamental function for dynamic spectrum sharing in 5G evolution and
6G wireless systems, have been research hotspots worldwide. This paper
reviews classic narrowband and wideband spectrum sensing and learning
algorithms. The sub-sampling framework and recovery algorithms based
on compressed sensing theory and their hardware implementation are dis-
cussed under the trend of high channel bandwidth and large capacity to be
deployed in 5G evolution and 6G communication systems. This paper also
investigates and summarizes the recent progress in machine learning for
spectrum sensing technology.

key words: cognitive radio, spectrum sensing, compressed sensing, ma-
chine learning

1. Introduction

With the rapid growth of broadband wireless services, the
demand for spectrum resources has increased substantially.
As 5G entering the commercial stage, it becomes incredibly
urgent, feeding a larger consume of spectrum bandwidth.
At the 2017 IMT-2020 Summit, the promotion group has
forecasted that in the sub-6 GHz frequency band, the overall
demand for 5G spectrum will reach 808 MHz~1078 MHz,
and the demand in high frequency (over 6 GHz) will reach
14 GHz to 19 GHz [1]-[3]. At MWCA2018, the US Federal
Communications Commission (FCC) committee members
stated in a speech at MWCA2018 that 6G will move towards
the era of terahertz frequencies.

As a non-renewable resource, the radio spectrum fre-
quency band used for mobile communication is already ex-
tremely limited. However, some non-technical factors, such
as fixed spectrum policy limitations, slow generational re-
farming process of mobile communications, and high cost
of spectrum acquisition, further aggravate the gap between
spectrum supply and demand [4]-[6]. A great deal of re-
search has indicated that both spatial and temporal utiliza-
tion of the massive licensed spectrum resources is ineffi-
cient. FCC has pointed out that the average utilization rate
of the spectrum at any time and any place does not exceed
5% [7].

Spectrum sharing, as a critical concept in cognitive ra-
dio (CR), refers to the use of electromagnetic spectrum in
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a designated frequency band by two or more users. Shar-
ing users can be divided into primary users (PUs) and sec-
ondary users (SUs) [8]. PUs refer to users who are initially
granted frequency bands and are willing to share resources
with other users; SUs refer to other users who are allowed
to use spectrum per sharing rules. Through the programmed
digital processing engine, the CR device can perceive the
surrounding spectrum environment and correct wireless pa-
rameters accordingly, such as center frequency, bandwidth,
transmission power, etc. Among numerous researches, dy-
namic spectrum access (DSA) makes it possible to reuse the
same spectrum bands between primary and secondary users
[9]. In DSA, the SUs opportunistically access the spectrum
holes which are temporarily not occupied by licensed PUs
[10]. The workflow of SUs can be simply summarized as
repeatedly operating the following 3 steps:

1) Detection. The SUs should confirm the channel status of
the PUs at startup. The detection step is the core mission
of spectrum sensing.

2) Decision. After detecting the available frequency bands,
the CR network needs to determine which free frequency
bands are most suitable for use according to SU’s service
quality requirements and determine the transmission pa-
rameters after selecting the channel. The decision step
can be regarded as the final output of spectrum sensing
module for DSA.

3) Access. The SUs generate the waveforms correspond-
ing to the PUs’ channels and opportunistically switch to
the unoccupied channel detected in step 1 for use accord-
ing to SU’s service quality requirements and determine
the transmission parameters after selecting the channel.
Successful access is the final aim that a spectrum sensing
module should serve.

Spectrum sensing plays a fundamental role in DSA be-
cause it is vital to guarantee the priority of the PUs in ac-
cessing the spectrum anytime [11]. The SUs should keep al-
ternating between spectrum sensing and data transmission.
Once the PUs start accessing, SUs should immediately re-
lease the corresponding channel and switch to another idle
channel.

Over the past 20 years, research into spectrum sensing
techniques has made significant progress, following a con-
stant theme of achieving faster and faultless occupancy de-
tection and characteristics on a broader spectrum of interest.
At its early stage, spectrum sensing studies mainly focus on
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Fig.1 Categories of spectrum sensing and learning techniques.

fundamental decision-making mechanism and distinguish-
ing signal components from noise background in narrow-
bands. With the development of communication technol-
ogy, the wireless signals’ bandwidth has become higher and
higher, putting forward CR devices requirements to work
efficiently under wideband. The sub-Nyquist sampling-
reconstruction technique based on compressed sensing (CS)
theory has been widely studied, taking advantage of broad-
band signals’ sparse frequency domain characteristic. A va-
riety of compressed sampling structures have been proposed
and realized from theory to practice. In terms of reconstruc-
tion algorithms, several studies are also committed to using
lower complexity to achieve more accurate spectrum recon-
struction. Considering the CR network itself has the char-
acteristics of the free configuration of parameters and flexi-
bility working in versatile environments, machine learning,
as a research hotspot in recent years, has been introduced
in CR to address the problem of complex system models
[12]. A series of research has been conducted on spectrum
sensing based on machine learning to increase accuracy and
efficiency.

Following the development process mentioned above,
we provide a brief overview of the mentioned developments
on spectrum sensing and learning techniques for the single
cognitive radio user in the rest of this paper, as shown in
Fig. 1. In Sect.2, narrowband spectrum sensing methods
and basic decision-making mechanisms are introduced. In
Sect. 3, we emphatically surveyed the sub-Nyquist sampling
and spectrum recovery methods for wideband sensing. The
main machine learning methods introduced to improve sens-
ing performance are concluded briefly in Sect. 4, followed
by the conclusion and our prospect of future challenges on
spectrum sensing research in Sect. 5.

2. Narrowband Sensing Schemes

The detection of spectrum holes can be regarded as a prob-
lem based on binary assumptions: Hy means PU does not
exist, and H; means PU exists. Based on a certain standard,
CR device makes a decision between two hypotheses:
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where x(n) denotes the digitized signal received at SU side,
s(n) and w(n) are the sampled value of signal of interest and
additive noise, respectively.

Accuracy is an important criterion of spectrum sens-
ing performance. The key indicators to measure accuracy
include detection probability P, and false alarm probability
Py, which are defined as follows:

Py = Pr{H|H:}

2
Pf = Pr{7‘(1|7'{o} ( )

Usually, it is required that the SUs has the least impact
on regular communications of the PUs. Therefore, the pri-
mary requirement is to ensure that the possibility of the CR
device misjudging an active channel as an idle channel is as
small as possible, that is, Py is close to 1. Secondly, Py is re-
quired to be as small as possible to achieve higher spectrum
utilization efficiency.

There are three basic techniques for local narrowbands
perception: energy detection, matched filter detection and
cyclostationary feature detection.

2.1 Energy Detector

In energy detection, the energy D(x) of the received signal
is measured and compared to a predefined threshold T'.

1 N-1 #H,
_ 2 200\ >
Dm—NZxW;T 3)

n=0 0

If the energy of the received signal exceeds the thresh-
old, it is determined that the PU occupies the channel, oth-
erwise the channel is idle. The energy detection technology
has a simple structure, low complexity, and no prior knowl-
edge of PUs [13]. However, it is susceptible to noise power
uncertainty and cannot distinguish between noise and sig-
nal [14]. Based on Eq. (3), expected improvements include
double threshold detection method and dynamic threshold
detection method [15], [16].

2.2 Matched Filter

The matched filter detection technique assumes that the rel-
evant attributes of the PU signal are known in advance
by SU [17]. For example, modulation type and sequence,
pulse shape and data format. The frequency response of
the matched filter detector is proportionally weighted to the
complex conjugate of the transmitted signal spectrum S (f),
namely

H(f) < S7(f), “

where * refers to complex conjugate operation. The filter
process is usually realized by mixing the received signal
with the known PU signal, and samples the mixer output
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at the bit rate. The rest decision process is similar to the
energy detector.

Compared with the energy detector, the matched filter
can provide the maximum SNR for a given signal and im-
prove the detection probability. Due to the coherence, the
matched filter may require less time and receive signal sam-
ples to obtain higher processing gain. However, if the prior
information, i.e. S (f), cannot be obtained accurately, th de-
tection performance will seriously degrade. In addition, it is
very difficult to achieve accurate signal synchronization, so
this method is not very practical [18].

2.3 Cyclostationary Detection

Cyclostationary detection utilizes the cyclostationary char-
acteristics of the modulated signal to detect the existence of
an authorized signal. The basic idea is to use the difference
in the statistical characteristics of noise and PU signals to
achieve spectrum detection.

A signal is called to be cyclostationary with period T
if its expectation value E[s(¢)] and autocorrelation function
Ry(t,7) = EB[s(t — 7/2)s*(t + 7/2)] show a cyclically stable
change statistically, namely

{ E[s(t + To)] = E[s(D)]

. _ : ®)
s(t+To,7) = Ry(t,7T)

The autocorrelation of a signal component can be ex-
panded as Fourier series

Ry(t,7) = )" RY()e™™, ©)

where @ = m/Ty (m € Z) and the Fourier coefficient R (7)
is also referred to as cyclic autocorrelation function with re-
spect to 7. The cyclic spectrum S¢(f) can be obtained by
calculating the Fourier transform of R§(7), namely

SUf) = f R (1)e /7 dr, @)
where « is called the cyclic frequency and f is called the
angular frequency. While a = 0, the cyclic power spectral
density is the power spectral density. According to the irrel-
evance of noise and signal, we can get

SN =S + S5 ®)

Since the noise signal is not cyclostationary [19], [20], when
a#0,

0 —>H0

S = {S?(f) —H

&)

Therefore, at a lower signal-to-noise ratio (SNR), cy-
clostationary detection can use the autocorrelation function
to calculate the second-order statistics of the signal, thereby
realizing effective detection of the primary user. Cyclosta-
tionary detection technology is based on the cyclic redun-
dancy of sampling and modulation signals, which can ex-
tract the PU signal from the noise, and performs well under
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low SNR [21]. However, the computational complexity of
this algorithm is relatively high, and the prior knowledge of
PU is required [22].

3. Compressive Spectrum Sensing for Wideband Sig-
nals

The development of 5G has brought higher requirements to
CR devices. The enhanced mobile broadband (eMBB), as
one of the three major application scenarios of 5G, pursues
higher speeds by adopting larger bandwidths and increasing
baseband data rate. Another prominent feature of 5G is the
utilization of millimeter wave (mmWave) frequency bands,
which allocated to 5G in most countries are concentrated in
24 GHz/28 GHz/39 GHz/60 GHz. Taking 28 GHz mmWave
as an example, the maximum bandwidth is 1.4 GHz, which
is more than ten times larger than the bandwidth of about
100 MHz for 800 MHz~2600 MHz signals currently used by
4G LTE. FCC committee members stated at MWCA2018
that as networks become denser in the 6G era, blockchain-
based DSA technology is a trend.

Transplanting traditional sensing technology to sense
a broader spectrum puts forward higher requirements on
the analog-to-digital converter (ADC). However, high-speed
ADC is expensive, complex and energy-intensive, which is
not suitable for CR devices [23]. A large part of the research
on wideband spectrum sensing (WSS) based on dividing the
wideband into multiple narrowbands (also called multi-band
sensing or multi-channel sensing) cannot effectively track
the spectrum usage in real-time [24], [25].

The CS method proposed in recent years takes advan-
tage of the signal spectrum’s sparse nature in the frequency
domain and can recover the signal spectrum from the sub-
Nyquist sampling points [26]. The core of CS theory is: if
a signal is sparse or compressible on a specific orthogonal
basis, then the signal can be successfully recovered from a
small amount of linear random measurement values [27].
For wideband multi-band signals that are usually sparse in
the frequency domain, the two most attractive features of
using CS are:

1) Compressed sampling at sub-Nyquist rate can be
achieved;

2) Sampling and compression can be performed simultane-
ously, and The redundant information in the signal sam-
pling is discarded.

The advantage is that the compressed sampling data can be
obtained directly from the simulated continuous-time sig-
nal. Then the compressed data can be processed in the
DSP unit using convex optimization or matching pursuit
methods [28]. Compared to the Nyquist resolutions for
WSS, compressive spectrum sensing (CSS) shifts the bur-
den of high-speed ADCs to back-end spectrum recovery al-
gorithms [29], [30].

WSS’s signal models include multi-band or line spec-
trum signal models, sparse or non-sparse signals, and known
or unknown carrier frequencies. For different signal models,
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the minimum sub-Nyquist sampling frequency required to
reconstruct the spectrum or power spectrum is also different
[31], [32]. Using the statistical characteristics of stationary
signals, Yen et al. studied the power spectrum reconstruc-
tion problem under non-sparse signals based on the multi-
coset sampling scheme. They deduced the necessary and
sufficient conditions for perfect reconstruction of the power
spectrum in noise-free case [33]. D. Cohen et al. Provides a
general framework based on the power spectrum perception
based on Nyquist samples and proposes the power spectrum
reconstruction algorithm required to achieve the minimum
sampling rate [34]. The minimum sampling rate required for
perfect reconstruction of the power spectrum without noise
can be concluded as follows.

1) Non-sparse spectrum. When the spectrum is not sparse,
the minimum sampling rate required is half of the
Nyquist sampling rate.

2) Sparse spectrum and known support. The frequency
spectrum is sparse, and when the carrier frequency is
known, the minimum sampling rate required is half of
the Landau rate, i.e. the Lebesgue measure of the occu-
pied bandwidth [35].

3) Sparse spectrum and blind recovery. When the fre-
quency spectrum is sparse and the carrier frequency is
unknown (blind case), the minimum sampling rate re-
quired is the Landau rate [36].

Usually two steps are required to perform CSS. The
first step is random sampling. The sparse observation matrix
generally needs to satisfy restricted isometry property (RIP),
null space property (NSP), spark’ constraints and coher-
ence constraints [37]-[39]. Several mainstream compres-
sive sampling schemes will be reviewed in Sect.3.1. The
second step is spectrum reconstruction, mainly including
convex optimization and greedy algorithms, which will be
briefly reviewed in Sect. 3.2.

3.1 Compressive Sampling Schemes

In practice, it is challenging to construct a completely ran-
dom measurement matrix in the hardware circuit. There-
fore, a partially-random sensing matrix has been widely
studied [40], [41]. Several sub-Nyquist sampling circuits
have been proposed in practice [42], such as random de-
modulator, modulated wideband converter (MWC) and mul-
ticoset sampler. These designs are widely studied because
of their relatively simple realizability. Random demodula-
tor and MWC achieve partial randomness through the mix-
ing of pseudo-random sequences, while multicoset sampler
achieves partial randomness through different sampling de-
lays. Based on these designs, compressed sampling can be
realized upon traditional sampling circuits with low-speed
ADCs. Software-defined radio (SDR) also provides the ex-
isting physical layer foundation for realizing the spectrum

"The spark of a m x n matrix A is the smallest number k such
that there exists a set of k columns in A which are linearly depen-
dent.
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Fig.2  System diagram of random demodulator.

sensing. With the technological development of antennas,
front-ends, analog-to-digital conversion and digital signal
processing, CSS functions in the physical layer have been
realized in some pioneering research and will be discussed
below.

3.1.1 Random Demodulator

Proposed in 2010, the random demodulator consists of a
multiplier, a pseudo-random sequence generator, a low-pass
filter and a sub-Nyquist rate ADC. The input signal is firstly
multiplied with a Nyquist-rate pseudo-random sequence,
where the signal spectrum is convoluted to the dispersive-
distributed spectrum of the pseudo-random sequence. After
filtering, only the low-frequency components are kept, but
the spectrum information can still be recovered from low-
rate samples x[n] (Fig.2) [43].

Random demodulator has been widely referred to in the
wideband spectrum sensing to reduce the sampling rate re-
quirement and the burden of digital signal processing. Can-
des et al. have present a non-uniform sampling (NUS) sys-
tem embedded in a custom sample-and-hold chip for wide-
band compressive spectrum sensing [44]. The NUS uses a
pseudo-random bit sequence generator to discard some of
the Nyquist sampling points by controlling ADC’s output
switch. With 236 Msps average sample rate, the implemen-
tation can achieve adequate effective instantaneous band-
width (EIBW) of 800 MHz to 2 GHz with up to 100 MHz
information bandwidth. However, a random demodulator is
more sensitive to the signal model and has a better recov-
ery performance on the line-spectrum signal. When there
is a model mismatch, the recovery result will become er-
roneous. On the hardware aspect, the original purpose of
mixers was to up-convert or down-convert single-frequency
signals. In contrast, in a random demodulator, the mixer is
applied to mix a multi-band signal with a pseudo-random
sequence. Due to the mixer’s abnormal use, a large num-
ber of harmonics will be introduced at the mixer’s output
inevitably, which also limits the promotions of the random
demodulator.

3.1.2 Modulated Wideband Converter

In 2010, Yonina C. Eldar et al. proposed the modulated
wideband converter (MWC) and the corresponding recovery
algorithms. MWC scheme starts from the classic Fourier
analysis to build the relationship between the measured
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value and the signal of the system, using the CS recov-
ery algorithm to complete the reconstruction of the signal
[45], [46].

Figure 3 describes the structure of the MWC, includ-
ing multiple parallel channels sampled at the sub-Nyquist
rate. MWC uses a structure similar to random demodula-
tors in parallel. Before sampling, the input signal x(¢) is
split into p ways and then mixed with p different pseudo-
random sequence p(t) to p,(?), respectively. This operation
moves the frequency spectrum of the input signal to the low-
frequency band. Then a low-pass filter array is applied to fil-
ter out high-frequency components, and the filtered signals
are sampled through a low-speed ADC array.

The time-domain reconstruction model of MWC can
be attributed to the multi-measurement vector (MMV) prob-
lem, which has been proved to improve the ability to suc-
cessfully recover the sparse solution compared with the sin-
gle measurement vector (SMV) case introduced by the ran-
dom demodulator [47]-[49].

The MWC-type hardware implementation has been re-
alized on board as Xampling analog-to-digital converter in
2010 [50]. The circuit contains an analog power split-
ter front end and four parallel mixing&filtering instances,
achieving compressive sampling of 2 GHz-band signal with
120 MHz arbitrary spectrum occupancy. The average sam-
ple rate is as low as 280 MHz, namely, 14% of the Nyquist
rate and 2.33 times the Landau rate. Based on the cir-
cuits, a CSS platform is presented with an external FPGA-
based pseudo-random sequence generator and SDR-based
digital signal processor [46], [51]. An on-chip realization
of MWC-type sampler is presented as random modulator
pre-integrator (RMPI) [52]. The RMPI prototype is inte-
grated on a millimeter-scale IBM 90 nm digital CMOS chip
with eight mixing and filtering signal channels. Cooperated
with external ADCs, it can achieve up to 2 GHz EIBW with
320MSPS aggregate digitization rate [53].

3.1.3 Multicoset Sampler

The multicoset sampling method can be implemented on a
time interleaving ADC (TI-ADC) platform. By controlling
the sampling delay of each ADC, a compressed sampling
perception matrix can be constructed. Figure 4 describes the
structure of multicoset sampler. Including p-channel delay
filters and p-channel low-speed ADCs. Each delay filter ap-
ply an exclusive delay c¢;/R (i = 1, ..., p) to the original sig-
nal. In the signal acquisition process, the signal to be mea-
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Fig.4  System diagram of multicoset sampler.

sured enters the ADC for sampling through different delay
filters with randomly-set delays. Therefore, from each chan-
nel, a subset of the Nyquist samples is acquired, and all the
p subsets form a compressed subset chosen non-uniformly
from the Nyquist samples.

Like the reconstruction process of MWC, the recon-
struction of a multicoset sampler can be divided into two
steps. First, the MMV model is constructed through the co-
variance matrix of the p-channel sampling data. The MMV
recovery algorithm is then used to solve the support set of
the wideband sparse spectrum.

The real-time multi-gigahertz processing platform for
muticoset sampler and recovery algorithms working on the
mmWave band is realized based on SDR systems [54].
Both the transmitter and receiver have modular config-
urable hardware operating at mmWave frequency centred at
28.5 GHz. Psuedo-random symbols modulated by 64-QAM
and Verizon 5G OFDM waveform spanning the bandwidth
of 100 MHz can be transmitted with multiple component
carriers of which the frequencies can be reconfigured. A
single high-speed ADC samples the baseband signal at the
receiver by a 3.072 GHz sampling clock. The multicoset
sampler behaviour is simulated by discarding a subset of
raw digital samples acquired by the single 3.072G ADC,
effectively forming parallel signal branches. The platform
is configurable on parameters like active channels and the
center frequency at the Tx side and the co-set number, av-
erage sample rate, channel delays and window length at the
Rx, providing an ideal testing environment for multicoset
sampling and recovery performance under different config-
urations.

3.2 Spectrum Recovery

Given the observation matrix A and the sparse matrix ¢, the
original spectrum can be reconstructed by solving the un-
derdetermined equations

argmin | X[l s.t. [[Y —A¢X]|h <€, (10)

where X and Y refers to the original signal and the com-
pressive measurement, respectively and ¢ is usually treated
as inverse discrete Fourier transform (IDFT). The high-
dimensional original signal X can be reconstructed accu-
rately or with high probability from the compressive mea-
surement Y.

There are mainly two types of methods for solving the
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Table1  Recovery algorithms and corresponding time complexity.
Type Algorithm | Model | Time Complexity
Optimization 3
Algorithm BP SMV OWN")
OMP SMV oM*)
c\2
Greedy SOMP MMV O((k°)"NM)
Algorithm CoSaMP SMV O(NM)
g HTP SMV O(M? log (k°))
JB-HTP MMV O(k°NM)

equations of such underdetermined matrices: one is the con-
vex optimization reconstruction algorithm based on basis
pursuit (BP) [55]. This type of algorithm is mainly the
convex optimization algorithm based on the /; norm mini-
mization constraint [56]. This type of algorithm is charac-
terized by high signal recovery accuracy but high computa-
tional complexity, which is generally the cube of the signal
dimension. Similar /,-minimization method are proposed to
reduce measurements [57].

Another type of algorithm is the greedy algorithm, in-
cluding orthogonal matching pursuit (OMP) algorithm [58]
for SMV model, simultaneous OMP (SOMP) algorithm
[59] for MMV model, compressed sampling matching pur-
suit (CoSaMP) algorithm [60], hard thresholding pursuit
(HTP) algorithm and joint-block HTP (JB-HTP) algorithm
for joint-block sparse signal [61], [62], etc. This type of
algorithms is characterized by low computational complex-
ity, but the reconstruction effect is not as good as the con-
vex optimization algorithm. Greedy algorithms usually re-
quire prior knowledge of signal sparsity to optimize recov-
ery performance and minimize iteration time. In the lack
of prior information, sparsity estimation methods based on
Bayesian information theory are often applied to obtain an
estimation of the signal support [63]. The comparison be-
tween different recovery algorithms is shown in Table 1,
where each algorithm’s time complexity is estimated with
respect to signal length N, compressed data length M and
estimated sparsity k°. For different sensing scenario and dif-
ferent sub-Nyquist sampling parameters, a proper greedy al-
gorithm should be chosen for better performance [61].

4. Learning from the Environment

During the CR system operation, its operating parameters
(such as transmission power, perception strategies, cod-
ing methods, modulation methods, communication proto-
cols, etc.) and the surrounding electromagnetic environ-
ment (channel fading, multipath effects, changes in signal-
to-noise ratio, etc.) are often in change [64], [65]. This
makes it difficult to express the entire system model with
simple models, which affects the accuracy of spectrum sens-
ing results [66]. Compared with traditional spectrum sens-
ing algorithms, the most significant advantage of machine
learning is learning from data and calculating the parame-
ters required for spectrum sensing.

Spectrum sensing based on machine learning can be
regarded as a problem using machine learning algorithms
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to find cognitive radio system models and parameters [67].
Suppose the prior information about the PU signal is known.
In that case, the supervised learning method can better play
the guiding role of prior knowledge in constructing the
cognitive model and training a high-performance spectrum
sensing model. In an unfamiliar electromagnetic environ-
ment, the spectrum sensing technology based on unsuper-
vised learning can explore the surrounding environment’s
characteristics through autonomous learning and calculate
the parameters required by the spectrum sensing system
model adaptively to avoid prior information. The PU sig-
nal is detected in the scene. Therefore, this article will clas-
sify and discuss the machine learning algorithms in spec-
trum sensing from two aspects: supervised learning and un-
supervised learning.

4.1 Supervised Learning

Supervised learning algorithms need to use labeled data for
training, mainly including k nearest neighbours (KNN), sup-
port vector machine (SVM) and artificial neural network
(ANN).

KNN is one of the simplest models in supervised learn-
ing. The data points with similar characters are generally
in close proximity according to a specific distance metric,
regardless of the distribution of the data points [68]. The
KNN first divides the training data set into several groups,
where each group corresponds to a unique decision or ac-
tion. When a new signal arrives, it will be classified in a
specific group, and the proper decision will be made. For
example, the received PU signal’s power strength is used as
the core radio environment data for the spectrum detection
or even PU localization in CR networks [69], [70].

When the signal of the learning data set is not linearly
separable, KNN is no longer applicable. Using kernel func-
tions, the SVM algorithm maps the data from its original
space to a higher dimension where the data becomes linearly
separable. The SVM algorithm is based on the structural
risk minimization criterion. By adding a regularization term
or penalty term representing the complexity of the model
to the empirical risk, the over-fitting problem is avoided to a
certain extent, and it shows superior performance, especially
for relatively small training examples [71]. SVM model for
medium access control (MAC) protocol identification has
been proposed to enable the CR devices to distinguish four
types of MAC protocol, namely TDMA, CSMA/CA, pure
ALOHA and slotted ALOHA, of any existing transmissions
to avoid potential interference to PUs and existing SUs [72].
Under a low-SNR scenario and limited training data, SVM
is proved to have high efficiency in successive spectrum hole
detection.

ANN is an adaptive system, which has been widely
used in cognitive radio. It can simulate arbitrary nonlin-
ear mapping by modeling the relationship between input and
output. The basic mathematical expression can be expressed
as
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N
0= f() wax) (11)
n=1

where x1,X,...,xy are inputs of ANN and wy,wy,...,wy are the
relative weights learned from the labelled data. The proper
decision or action towards new signals will be decided by
its output 0. The ANN algorithm is based on the empirical
risk minimization criterion. Training network parameters
can reduce the metric distance between the network output
and the training data label to minimize the empirical risk.
A related approach has shown that multi-layer perceptron
can effectively reduce sensing energy and improve spectrum
utilization [73]. The convolutional-neural-network (CNN)-
based spectrum sensing model is proven to provide higher
detection probability than cyclostationary detection in the
—20dB range[74].

4.2 Unsupervised Learning

In CR, SU needs to operate on any available frequency band,
any time and any place, so it is very likely that the radio
frequency environment’s working conditions, such as noise
or interference level, noise distribution or user traffic, are
known in advance [75]. Therefore, the CR device must
learn independently in an unknown RF environment without
training samples and independently explore the radio envi-
ronment in which it is located, then dig out the observed
data laws to find out the possible spectrum holes. There-
fore, compared to supervised learning, unsupervised learn-
ing is more suitable for cognitive radio application scenarios
[76]-[78].

The unsupervised learning classification algorithm is
also known as the clustering algorithm [79]. It can automati-
cally divide samples into multiple disjoint clusters according
to their inherent properties without requiring labelled train-
ing data set. Commonly used unsupervised learning algo-
rithms include the K-means algorithm and Gaussian mixture
model (GMM) algorithm.

The K-means algorithm’s goal is to find a specific clas-
sification method so that the classified data has a higher de-
gree of similarity within the class. For data with ordered
attributes, the optimization strategy is to minimize the sum
of Minkowski distance within the classified cluster, namely

argmin Z dist, (x;, )} (12)
c x;,x;€C
where dist,,(x;, x;) = (Qg=p Xk — xjk|l)% denotes the

Minkowski distance between x; and x;, [ is integer and
usually picked as 2 (Euclidean distance). The smaller the
Minkowski distance is, the more similar the data sets are.
An empirical mode decomposition and k-means based ap-
proach has been proposed to remove the redundant noise
components in the nonstationary or nonlinear sampling sig-
nal and shows improvement in sensing performance [80].
The K-means algorithm built on the minimum description
length principle can further eliminate the false alarm rate
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Table 2  Different machine learning algorithms and their features.
Category Algorithm Characteristics
KNN One-to-one mapping
Supervised Applicable for linearly separable data
Learning SVM One-to-one mapping

Applicable for linearly non-separable data
Better mapping relationship between data
ANN and action
Overfitting problem
Non-gradient optimization algorithm
Hard decision
Requires relatively independent

Unsupervised | K-means

Learning input variables
Sensitive to initial setup
Soft decision
GMM Requires knowledge of data distribution
Overfitting problem
[81].

Unlike the K-means algorithm, GMM uses Gaussian
distribution to describe the distribution of data in clusters. It
assumes that each cluster corresponds to a Gaussian proba-
bility distribution. For a sample of data, each cluster may
have a corresponding generation probability. The poste-
rior likelihood will determine the cluster division of the
data. The posterior probability gives the probability that
each Gaussian model produces the sample data. The most
considerable posterior probability model can be considered
the cluster that the sample data should be divided into. In the
unsupervised case, the GMM model’s training can generally
be realized based on the expectation-maximization (EM) al-
gorithm [69], [82]. For better comparison, the commonly
used machine learning algorithms in spectrum sensing men-
tioned above and their features are summarized in Table 2.

5. Conclusion and Future Challenges

This paper has tried to provide a brief overview of spec-
trum sensing techniques for cognitive radio users. Follow-
ing the demand driven by wireless communication devel-
opment, we started from the fundamental narrow-band de-
tection and decision mechanism. Afterwards, compressive
spectrum sensing is investigated from theory to practice
as a promising approach enabling CR devices to work in
wideband scenario. Moreover, the recent advancements in
machine-learning-based spectrum sensing have been char-
acterized, which has provided CR devices with better adap-
tivity and higher flexibility under complex radio environ-
ments.

Still, the performance demands placed on spectrum
sensing will create many different challenges. The SU can-
not perform spectrum sensing while sending data, and the
sensing period determines the degree of degradation of PU
performance. It is desirable to spend as little time as possible
for spectrum sensing to improve data transmission through-
put and increase spectrum monitoring frequency to prevent
PU from being affected. Therefore, a conflict always ex-
ists between the CR data transmission rate and the spectral
sensing time resolution, and the situation is even aggravated
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when the SU number increases. Therefore, a corresponding
spectrum management mechanism is required to limit the
secondary user’s transmission activity and power based on
the primary receiving user’s detection sensitivity.

Under a wideband sensing scenario, the performance of
CSS based on a single node under low SNR is still not ideal.
When the SNR is lower than 5 dB, the performance of blind
sensing basically cannot meet the requirements of practical
applications [83]. Therefore, it is a topic worthy of study
to achieve a high probability reconstruction of the spectrum
support without increasing the hardware complexity.

Spectrum reconstruction based on greedy algorithm re-
quires prior knowledge of spectrum sparsity as input. How-
ever, in many application backgrounds, the spectrum sup-
port is unpredictable, and the communication parameters
(such as modulation mode, transmit power, data rate, etc.)
of each PU multiple numbers are different. In the case of
blind sampling, the CSS algorithm must adjust the neces-
sary parameters for other channels and estimate the spec-
trum support, causing a more serious computational burden.

Additionally, the occupancy rate of the spectrum is of-
ten changing. If the average compressed sampling rate can-
not reach the required minimum threshold, the detection will
fail. Suppose a higher compressed sampling rate is always
used (for example, using more channels in the multicoset
sampler). In that case, it will cause a waste of resources
and significantly increase the cognitive terminal’s energy
consumption. Although adaptive algorithms, such as cross-
validation, give the CSS system the ability to adjust the com-
pressed sampling rate autonomously according to the signal,
the cross-validation still causes additional resource overhead
for parameter estimation [57], [84].

The sparsity of spectrum utilization is a prerequisite for
the implementation of compressed sensing methods. How-
ever, if many CR users share a broadband spectrum with
the PUs, this assumption may not hold. Therefore, how to
distinguish PU from many SUs is a coexistence problem in
CSS.

For the learning-based studies, the radio models used in
many research works are still too simple to be applied in a
real environment. In practical applications, the noise model
and the received signal strength distribution are difficult to
obtain accurately. It is necessary to comprehensively con-
sider the wireless environment characteristics such as trans-
mitter power leakage, spectral correlation, transmission path
loss, channel multipath loss, and burst noise. Besides, the
learning and training data of existing research is mostly col-
lected in a short period. With more realistic research scenar-
ios and more complex models, it is necessary to collect and
organize data on a longer time scale for specific frequency
bands.
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