
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022
657

PAPER
Maximum Doppler Frequency Detection Based on Likelihood
Estimation With Theoretical Thresholds

Satoshi DENNO†a), Senior Member, Kazuma HOTTA†, Nonmember, and Yafei HOU†, Member

SUMMARY This paper proposes a novel maximum Doppler frequency
detection technique for user moving velocity estimation. The maximum
Doppler frequency is estimated in the proposed detection technique by
making use of the fact that user moving velocity is not distributed contin-
uously. The fluctuation of the channel state information during a packet
is applied for the proposed detection, in which likelihood estimation is
performed by comparing the fluctuation with the thresholds. The thresh-
olds are theoretically derived on the assumption that the fluctuation is dis-
tributed with an exponential function. An approximated detection tech-
nique is proposed to simplify the theoretical threshold derivation. The per-
formance of the proposed detection is evaluated by computer simulation.
The proposed detection accomplishes better detection performance as the
fluctuation values are summed over more packets. The proposed detection
achieves about 90% correct detection performance in a fading channel with
the Eb/N0 = 35 dB, when the fluctuation values are summed over only
three packets. Furthermore, the approximated detection also achieves the
same detection performance.
key words: Doppler spread, the maximum Doppler Frequency, probability
density function, threshold, detection blackerror rate

1. Introduction

Lots of devices around us are going to connect with the in-
ternet via wireless communications in order to improve the
quality of our lives [1]. Those systems are called as inter-
net of things (IoT). Not only devices held by users but also
those attached to machines communicate with servers on the
internet to collect information from those devices and to pro-
vide services based on the information. The requirements
for those services depend on device environments such as
devices carried by users or those attached to cars. There-
fore, such device environments are necessary to detect for
providing necessary services. For the purpose, many tech-
niques have been proposed. Doppler radars and MIMO
radars have been considered to detect locations and veloc-
ities of devices [2]–[4]. Wearable devices, accelerometers,
and video cameras have been utilized to detect user activi-
ties [5]–[7]. Activity analysis techniques have been investi-
gated, for instance, machine learning and support vector ma-
chines, which classify activities with information given by
sensing devices such as radars and Doppler sensors [8]–[10].
Many techniques have been proposed to detect the location
and trajectory of user terminals [11]–[13]. Especially, the
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velocity of devices has been focused on in some literature.
Most of the literature applies wireless communications for
the velocity estimation [14], [15], because wireless commu-
nication functionalities are supposed to be installed on sen-
sors for the IoT. The estimation performance has also been
confirmed by the field experiments [16]. Since user activi-
ties are changing, it is desired to detect activities as fast as
possible.

This paper proposes a maximum Doppler frequency
detection technique for user velocity estimation. The pro-
posed detection estimates the maximum Doppler frequency,
exploiting the fact that user mobility is not continuously dis-
tributed. The fluctuation of the channel state information
(CSI) during a packet is applied for the proposed maximum
Doppler frequency detection. The proposed detection com-
pares the fluctuation with the thresholds to detect the max-
imum Doppler frequency, which implements likelihood es-
timation with small complexity. The thresholds are derived
on assumption that the probability density function of the
fluctuation is distributed with an exponential function. We
also propose an approximated theoretical threshold deriva-
tion technique, which simplifies the derivation of the theo-
retical thresholds. If we detect the maximum Doppler fre-
quency, the user moving velocity can be estimated based on
the relationship between the user velocity and the maximum
Doppler frequency. The proposed detection carries out the
CSI estimation to obtain the channel fluctuation during a
packet length, and compares the fluctuation with the theo-
retical thresholds. Because the thresholds can be obtained
in off-line calculation, the proposed detection can be imple-
mented with small computational complexity∗. We show
that the proposed detection achieves superior detection per-
formance even with a few packets.

Next section introduces a system model, and the pro-
posed detection is explained in Sect. 3. Section 4 evaluates
the performance of the detection, and concluding remarks
are finally presented in Sect. 5.

Throughout the paper, E
[
ζ
]

and c∗ represent the en-
semble average of a variable ζ and complex conjugate of a
complex number c.

2. System Model

We assume that a user terminal with an antenna moves at a
∗Computational complexity is defined as the amount of on-line

calculation in this paper. In other words, off-line calculation is not
counted in computational complexity.
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constant speed around an access point with an antenna. The
terminal sends packets to the access point to start associa-
tion with the access point. Lc pilot signals are attached at
the beginning and the end of the packet for channel estima-
tion, which sandwich information signals†. In a word, 2Lc
pilot signals are included in the packet. The access point
estimates the CSI with the received packet to detect the in-
formation signals. In addition, the access point estimates the
velocity of the terminal with a proposed technique described
in the following section.

When a transmitter moves while sending signals, the
signals are frequency-shifted by the Doppler frequency. The
Doppler frequency is spread in mobile communication en-
vironment, even when the velocity of the transmitter is con-
stant [17]. The maximum value of the Doppler frequency
is called as the maximum Doppler frequency fD, which is
defined as fD = v

c fRF where v, c and fRF denote velocity of
the user terminal, that of the electromagnetic wave, and car-
rier frequency of the electromagnetic wave. If the maximum
Doppler frequency is estimated, the velocity of the terminal
can be estimated. However, since every packet is affected
by different Doppler frequency, the maximum Doppler fre-
quency can not be estimated with a single packet in princi-
ple.

On the other hand, user moving velocity is not always
continuously distributed. For instance, a user walking veloc-
ity is about 5 km/h, while a user runs at the speed of about
10 km/h. If such user activities are taken into account, it
is enough to select a velocity out of candidate velocities,
such as 0 km/h and 5 km/h. Next section proposes a max-
imum Doppler frequency detection technique with only a
few packets, which can be implemented with small compu-
tational complexity.

3. Maximum Doppler Frequency Detection

3.1 Principle of Detection

We assume that velocity of a user terminal varies discretely,
for instance, v1 and v2; v1 is bigger than v2, i.e., v1 > v2. As
the user moving velocity gets higher, i.e., v1, higher Doppler
frequency is expected to be measured from the packets re-
ceived at the access point, even if the Doppler frequency is
spread. The proposed technique evaluates the fluctuation to
detect the Doppler frequency as follows. Since the pilot sig-
nals are attached at the beginning and the end of a packet,
our proposed technique first carries out the CSI estimation at
the beginning and the end of the packet. A metric defined in
the following section is evaluated that is in proportion to the
fluctuation. Because we can expect that the CSI is fluctuat-
ing dynamically in a packet as the Doppler frequency gets
higher, if the metric is bigger than the threshold, we con-
clude that the terminal moves at the velocity v1. Otherwise,
the terminal velocity is decided to be v2. As is described

†Since we assume that the proposed technique explained in
Sect. 3 is applied to the advertising mode packets of the Bluetooth
low energy (BLE), single carrier modulation is used.

above, the threshold plays an important role in our proposed
detection technique, which is derived in the following sec-
tion.

Let h̄0 (k) ∈ C and h̄N−1 (k) ∈ C denote estimated CSIs
at the beginning and the end of the kth packet respectively,
where N represents the number of the information signals
sandwiched by the pilot signals at the beginning and the end
of the packet, we define an instantaneous metric expected to
be proportional to the fluctuation as follows.

ε(k) =
∣∣∣h̄N−1 (k) − h̄0 (k)

∣∣∣2 (1)

In the above equation, ε(k) ∈ R indicates the instantaneous
metric of the kth packet. Let h0 (k) ∈ C and hN−1 (k) ∈ C rep-
resent CSIs at the beginning and the end of the kth packet,
when the least-squares estimation [18] is applied for the
channel estimation, the ensemble average of the instanta-
neous metric can be derived as follows.

E [ε (k)] = E
[∣∣∣h̄N−1 (k) − h̄0 (k)

∣∣∣2]
= 2E

[∣∣∣h̄0 (k) − h0 (k)
∣∣∣2]

+ 2
(
E

[
|h0 (k)|2

]
− E

[
<

[
h0 (k) h∗N−1 (k)

]])
= 2σ2

c + 2 (1 − J0 (2π fDT (N − 1))) (2)

In (2), J0(x) ∈ R and σ2
c ∈ R indicate the Bessel function

of the first kind and the ensemble average of the channel

estimation error defined as σ2
c = E

[∣∣∣h̄m (k) − hm (k)
∣∣∣2] = 2σ2

LC

where 2σ2 ∈ R and m ∈ N denote the AWGN power and a
time index ranging from 0 to N − 1, i.e., 0 ≤ m ≤ N − 1.

3.2 Probability Density Function of Channel Fluctuation

As is described in (2), the maximum Doppler frequency fD
is included in the Bessel function, while the other term in the
right hand is a function of the AWGN power. In a word, the
metric consists of terms caused by the maximum Doppler
frequency and the AWGN. This means that the instanta-
neous metric ε(k) can be decomposed into two parts, i.e.,
εc (k) ∈ R and εd (k) ∈ R, which represent a channel devia-
tion caused by the AWGN and a fluctuation value caused by
the Doppler frequency.

ε(k) = εc (k) + εd (k) (3)

Because the AWGN is distributed with the Gaussian distri-
bution, the probability density function (PDF) of the devi-
ation εc (k) can be written by an exponential function. As
is described above, the channel fluctuation in a packet is
different packet by packet, even if the maximum Doppler
frequency is constant. If we assume that the channel fluctu-
ation varies randomly just like Gaussian random variables,
the fluctuation εd (k) will be distributed with an exponential
function. Let PPDF (εc) ∈ R and PPDF (εd) ∈ R indicate PDFs
of εc (k) and εd (k), those functions can be expressed as,

PPDF (εc) = kce−kcεc , (4)
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PPDF (εd) = kde−kdεd . (5)

kc ∈ R in (4) and kd ∈ R in (5) represent a reciprocal of the
mean value of the deviation εc (k) and that of εd (k). If (2) is
taken into account, they can be defined as follows.

1
kc

= 2σ2
c (6)

1
kd

= 2 (1 − J0 (2π fDT (N − 1))) (7)

Since the metric is a sum of the deviation value and the
fluctuation value as shown in (3), the PDF of the metric,
PPDF (ε) ∈ R, can be expressed as,

PPDF (ε) =
kckd

kd − kc
(e−kcε − e−kdε), kc , kd. (8)

The PDF PPDF (ε) also consists of the two exponential func-
tions.

3.3 Theoretical Thresholds

As is described above, when the terminal moves at the ve-
locity v1 or v2, the maximum Doppler frequency of the re-
ceived signal spectrum becomes fD1 = v1

c fRF or fD2 = v2
c fRF,

respectively. The PDFs of the metrics for the two velocities
are expressed as,

P(v1)
PDF (ε) =

kckd1

kd1 − kc
(e−kcε − e−kd1 ε), (9)

P(v2)
PDF (ε) =

kckd2

kd2 − kc
(e−kcε − e−kd2 ε). (10)

In the above equations, P(v1)
PDF (ε) and P(v2)

PDF (ε) indicate PDFs
of the metric when the terminal moves at the velocity of
v1 and v2, respectively, where kdi i = 1 or 2 represents a
reciprocal of the ensemble average of the fluctuation value.
The reciprocal of the ensemble average kdi i = 1 or 2 is
defined as,

1
kd1

= 2
(
1 − J0

(
2π fD1 T (N − 1)

))
, (11)

1
kd2

= 2
(
1 − J0

(
2π fD2 T (N − 1)

))
. (12)

When the PDFs for the two maximum Doppler frequencies
are defined, the cumulative density function (CDF) and the
complementary cumulative density function (CCDF) can be
easily calculated based on the following formulae.

P(vi)
CDF (ε) =

∫ ε

0
P(vi)

PDF (t) dt, P(vi)
CCDF (ε) =

∫ ∞

ε

P(vi)
PDF (t) dt (13)

Let ε0 represent the threshold, when the terminal moves at
the velocity v2, for instance, the detection error rate can be
expressed as P(v2)

CDF (ε0) †. On the other hand, when the termi-
†The detection error rate is defined as a probability that the ve-

locity v1 is detected, even if the velocity of the terminal is v2. On
the other hand, since most conventional velocity estimation tech-
niques estimate the velocity v̄2, the performance is evaluated by
the detection error δv2 = |v2 − v̄2|. Therefore, the detection perfor-
mance of the proposed technique can not be easily compared with
conventional techniques.

nal velocity is v1, the detection error rate can be defined as
P(v1)

CCDF (ε0). As the threshold ε0 is set to a smaller value, the
detection error rate P(v2)

CDF (ε0) is reduced, while the detection
error rate P(v1)

CCDF (ε0) gets worse. There is a trade-off between
the two detection error rate performances with respect to the
threshold. This means that there is the optimum threshold,
which can be defined as,

P(v1)
CCDF (ε0) = P(v2)

CDF (ε0) . (14)

When the PDF is defend in (8), the CDF P(vi)
CDF (ε) is a mono-

tonically increasing function with respect to ε, while the
CCDF P(vi)

CCDF (ε) is a monotonically decreasing function.
Therefore, the optimum threshold exists uniquely. The the-
oretical detection error rate is defined as P(v1)

CCDF (ε0).

3.4 Channel Fluctuation Aggregation

When a PDF P (x) is defined as an exponential function,
its CDF is increasing gradually as x increases. Because
the functions P(v1)

PDF (ε) and P(v2)
PDF (ε) are expressed with ex-

ponential functions, the theoretical detection error rate per-
formance P(v1)

CCDF (ε0) can not be reduced enough when the
maximum Doppler frequency fD2 is close to fD1 . To im-
prove the theoretical detection performance, we propose to
apply multiple packets for the metric generation, which is
expected to get P(vi)

CDF (ε) steep with respect to ε.
Let M denote the number of the packets used for the

metric generation, an instantaneous metric εM (k) ∈ R made
from the M packets can be defined as,

εM (k) =

M−1∑
m=0

∣∣∣h̄N−m (k − i) − h̄0 (k − m)
∣∣∣2

=

M−1∑
m=0

ε (k − m) (15)

Even if the consecutive M packets are applied, the correla-
tion of the metric ε (k − m) between the two packets is ex-
pected to be small because there is usually some packet in-
terval between two packets. If the correlation is neglected,
the PDF of the metric εM ∈ R can be obtained with the fa-
mous formula as follows.

P(vi)
PDF (εM)=

∫ ∞

0
· · ·

∫ p(M−2)
(1)

0

M−1∏
n=1

P(vi)
PDF (εn)P(vi)

PDF

εM −

M−1∑
i=1

εi

M−1∏
n=1

dεn,

(16)

where p(M−2)
(l1) ∈ R is defined as p(M−2)

(l1) = εM −

M−2∑
i=l1

εi.

Because the PDF defined in (8) consists of the two expo-
nential functions, the mathematical expression of the PDF
P(vi)

PDF (εM) gets more complex as the number of the packets
M increases. We shows some examples as follows.

• M = 2

P(vi)
PDF (ε2) =

(
kdi kc

kdi − kc

)2 {(
ε2 −

2
kdi − kc

)
e−kcε2
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−

(
ε2 +

2
kdi − kc

)
e−kdi ε2

}
i = 1, 2 (17)

• M = 3

P(vi)
PDF (ε3) =

(
kdi kc

kdi − kc

)3

•


 ε2

3

2
−

3ε3

kdi − kc
+

6(
kdi − kc

)2

 e−kcε3

−

 ε2
3

2
+

3ε3

kdi − kc
+

6(
kdi − kc

)2

 e−kdi ε3


i = 1, 2 (18)

The PDF P(vi)
PDF (εM) comprises some component functions in

the form of the exponential functions multiplied with less
than Mth power of εM . The CDF P(vi)

CDF (εM) also consists of
the linear combination of those component functions.

Some mathematical manipulation is necessary to ob-
tain the PDF P(vi)

PDF (εM). The following section proposes a
technique to simply obtain the PDF P(vi)

PDF (εM).

3.5 Noise Ensemble Average Approximation

As is described in (3), the metric ε(k) consists of the chan-
nel fluctuation εd (k) and the deviation εc (k). While the fluc-
tuation is greatly dependent on the maximum Doppler fre-
quency and changes packet by packet, the deviation is dis-
tributed with the Gaussian distribution in every packet. We
propose to replace the deviation εc (k) with its mean value.

εM (k) =

M−1∑
m=0

(εd (k − m) + εc (k − m))

≈

M−1∑
m=0

εd (k − m) + 2Mσ2
c (19)

In the above approximation, εc (k) is replaced with 2σ2
c in

(19). Because the term 2σ2
c is constant, the approximated

PDF can be easily derived based on (16) for any number of
the packet M as follows.

P(vi)
PDF (εM)=

kM
di

(εM−2Mσ2
c)M−1

(M−1)! e−kdi (εM−2Mσ2
c) εM > 2Mσ2

c

0 εM ≤ 2Mσ2
c

(20)

As is shown in (20), the approximated PDF is reduced to the
Chi-square distribution. We can easily obtain the CDF and
the CCDF based on the formulae in (13) in spite of the num-
ber of the packets M, because the CCDF and the CDF of a
Chi-square distribution are well-known. The easy calcula-
tion of the CCDF and the CDF reduces the effort to derive
the theoretical thresholds†.

†The CDF and the CCDF of a Chi-square distribution are easy
to derive, while those of the PDF defined in (16) are a little bit more
difficult to derive as the number of the aggregation packets M in-
creases. Because the CDF and the CCDF are necessary to calculate
the theoretical thresholds, the proposed approximation can relieve
system developers from the difficult off-line calculation. This is
the benefit of the proposed ensemble average approximation.

Table 1 Simulation parameters.

Modulation BPSK/Single Carrier
No. of antennas on terminal 1

No. of antennas on access point 1
Channel model Rayleigh fading

Channel estimation Least-squares estimation
Velocity of terminal 0 km/h, 5 km/h, 10 km/h

RF frequency 2.4 GHz
Symbol rate 1 MHz

The number of information signals in a packet 120
The number of pilot symbols Lc 30

4. Simulation

The performance of the proposed detection is verified by
computer simulation. The binary phase shift keying (BPSK)
modulation is applied. The number of antennas on a termi-
nal and an access point is only 1 as described above. The
least-squares estimation is applied for the channel estima-
tion [18] as is described above. The channel between the
terminal and the access point is modeled with Rayleigh fad-
ing based on Jakes’ model [17]. Carrier frequency fRF and
symbol rate 1/T are 2.4 GHz and 1MHz, respectively. Two
scenarios are utilized for the performance evaluation. In one
scenario, the terminal velocity is switched back and forth
between 0 km/h and 5km/h with equal probability, packet
by packet. The terminal velocity is changed between 5 km/h
and 10 km/h with equal probability, packet by packet in the
other scenario. The simulation parameters are summarized
in Table 1.

4.1 Cumulative Distribution Functions

Before the performance evaluation of the proposed detec-
tion, the PDF theoretically derived above is compared with
that obtained by the computer simulation. Figure 1 shows
the comparison in the first scenario, i.e., v1 = 5 km/h,
v2 = 0 km/h. In the figure, the solid line and the dotted
line represent the theoretical PDF and the PDF obtained by
the computer simulation, respectively. The abscissa is the
metric ε3, and the right ordinate and the left ordinate are the
CDF and the CCDF, respectively. In the figure, the CDF
P(v1)

CDF (ε) and the CCDF P(v2)
CCDF (ε) are shown. The number of

the packets M is set to 3 and the Eb/N0 = 15 dB. The the-
oretical threshold derived above is also added in the figure.
The theoretical CCDF well agrees with the CCDF obtained
through the computer simulation, while the CDF obtained
by the computer simulation is slightly deviated from the the-
oretical CDF. Although the proposed detection with the the-
oretical thresholds is expected to achieve the best detection
performance, the detection error rate is about 0.5.

Figure 2 shows the comparison in the first scenario with
the Eb/N0 = 35 dB. The other parameters are the same to
those of Fig. 1. While the theoretical CCDF well agrees
with that obtained by the computer simulation, the theoreti-
cal commutative distribution function P(v1)

CDF (ε) is a little bit
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Fig. 1 Cumulative density functions at Eb/N0 = 15 dB with M = 3.

Fig. 2 Cumulative density functions at Eb/N0 = 35 dB with M = 3.

different from the function obtained by the computer simu-
lation.

This performance gap is caused by the correlation be-
tween the deviation εc(k) and the fluctuation εd(k). Al-
though the correlation is assumed to be zero in the theoret-
ical derivation described previously, actually, they are made
correlated with each other in the CSI estimation. On the
other hand, since the theoretical CCDF is derived without
the channel fluctuation, there is no correlation in principle.
This is the reason why the theoretical CCDF well agrees
with the CCDF obtained by the computer simulation. Con-
sequently, because the correlation is not taken into account
in the theoretical CDF derivation, the theoretical CDF is a
little bit different from the CDF obtained by the computer
simulation.

Figure 3 shows the comparison in the first scenario with
the Eb/N0 = 55 dB. The other parameters are the same to
those of Fig. 1. The theoretical performances well agrees
with the performances obtained through the computer simu-
lation. Since the AWGN is negligibly small, the correlation
between the deviation and the fluctuation can be negligibly

Fig. 3 Cumulative density functions at Eb/N0 = 55 dB with M = 3.

small. The CDF is dominated by that of the fluctuation.
Therefore, the theoretical CDF well agrees with the CDF
obtained by the computer simulation.

4.2 Detection Performance

The detection error rate performance of the proposed detec-
tion is shown in Fig. 4. The first scenario is applied in the
figure, i.e., v1 = 5 km/h and v2 = 0 km/h. The abscissa
and the ordinate are the number of the packets M and the
average detection error rate, respectively. The detection per-
formances in the channel with the Eb/N0 = 15 dB, 35 dB
and 55 dB are drawn in the figure. As the number of the
packets M increases, the detection error rate performance is
improved in the channel with the Eb/N0 = 35 dB and 55 dB,
although the detection error rate performance is kept same
despite of the number of the packets M in the channel with
the Eb/N0 = 15 dB†. The detection error rate is reduced to
less than 10−3 when the Eb/N0 = 55 dB if the number of the
packets is more than 2.

Figure 5 shows the detection error rate performance in
the second scenario, i.e., v1 = 10 km/h and v2 = 5 km/h.
The abscissa and the ordinate are the number of the packets
M and the average detection error rate, respectively. Al-
though the detection error rate is kept constant in spite of
the number of the packets M when the Eb/N0 = 15 dB, the
detection error rate performance is improved as the num-
ber of the packets M is incremented in the channel with the
Eb/N0 = 35 dB and 55 dB. However, the detection error rate
performance in the second scenario is worse than that in the

†Figures 1, 2 and 3 suggest that the CDF at the threshold ε0
tends to get high as the Eb/N0 is decreased. As is shown in Fig. 1,
in particular, the CDF at threshold ε0 is approximately 0.5, which
degrades the detection error rate to about 0.5, when the Eb/N0 is
15 dB. As long as the Eb/N0 is 15 dB, the CDF performance is not
improved even if the number of the packets increases. When the
CDF performance is the same, in principle, the proposed technique
achieves the same detection performance. This is the reason why
the detection performance is not improved even if the number of
the packets increases.
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Fig. 4 Detection error rate performance v.s. number of packets (v2 =

0 km/h | v1 = 5 km/h).

Fig. 5 Detection error rate performance v.s. number of packets (v2 =

5 km | v1 = 10 km/h).

first scenario. The detection performance is improved as
the number of the packets M increases in spite of the sce-
nario when the Eb/N0 is not less than 35 dB. In a word, the
proposed detection achieves higher detection performance
in the channel with higher Eb/N0.

Figure 4 and Fig. 5 show that the proposed tech-
nique can distinguish the velocities 0 km/h and 5 km/h, and
5 km/h and 10 km/h, respectively. This means that the pro-
posed technique can distinguish 3 velocities such as 0 km/h,
5 km/h and 10 km/h with the two theoretical thresholds used
in the Figs. 4 and 5. Let εM,0 (n) denote a threshold for
detecting the velocities vn and vn+1, the velocities vm m =

1 · · · n + 1 can be detected if theoretical thresholds εM,0 (m)
m = 1 · · · n are obtained based on the techniques described
in Sect. 3.

4.3 Noise Ensemble Average Approximation

Since the channel deviation variables are replaced with their
ensemble average in the noise ensemble average approxi-

Fig. 6 Detection error rate performance of noise ensemble average ap-
proximation (v2 = 5 km | v1 = 10 km/h).

mation, the slope of the CDF or the CCDF depends on the
distribution of the fluctuation εd. The theoretical PDF is
not useful when the velocity is zero, because the fluctuation
is reduced to zero in the derivation of the theoretical PDF.
Therefore, the noise ensemble average approximation can
not be applied to detect the Doppler frequency in the first
scenario, because the velocity v2 is 0 km/h in the first sce-
nario. Figure 6 shows the detection error rate performance
of the noise ensemble average approximation in the second
scenario, i.e., v1 = 10 km/h and v2 = 5 km/h. Though the
instantaneous deviation εc is replaced with its ensemble av-
erage in the approximation, as is shown in the figure, the
proposed approximation achieves almost the same detection
performance to the proposed detection shown in Fig. 5.

5. Conclusion

This paper has proposed a maximum Doppler frequency de-
tection technique for user mobility estimation. The pro-
posed detection estimates the maximum Doppler frequency,
exploiting the fact that user mobility is not continuously
distributed. The fluctuation of the channel state informa-
tion during a packet is applied for the proposed maximum
Doppler frequency detection based on the likelihood estima-
tion. The proposed detection detects a Doppler frequency
from discretely distributed Doppler frequency candidates
based on likelihood estimation, assuming that user moving
velocity is discretely distributed. The CSI fluctuation dur-
ing a packet is verified and is compared with the theoretical
thresholds in the proposed detection, which is regarded as
a simple implementation of likelihood estimation. This pa-
per derives the theoretical thresholds on assumption that the
fluctuation is distributed with an exponential function. Fur-
thermore, this paper proposes a noise ensemble average ap-
proximation to simplify the theoretical threshold derivation,
in which the instantaneous CSI estimation errors caused by
the AWGN are replaced with its ensemble average. Because
the thresholds can be obtained in off-line calculation, the
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proposed detection can be implemented with small compu-
tational complexity.

The performance of the proposed detection is evaluated
by computer simulation. The proposed detection achieves
better performance as the Eb/N0 increases. The detection
performance is also improved as more packets are applied to
calculate the fluctuation in the detection. When the user mo-
bility is switched back and forth between staying at a same
place and moving at the velocity of 5 km/h, the proposed de-
tection achieves more than 90 percent successful detection
performance with only three packets as long as the Eb/N0 is
not less than 35 dB. The approximation technique achieves
the same classification performance.

Summarizing, the proposed techniques attain such su-
perior performance within very short time period, such as
time length required to receive 3 packets, even though the
proposed techniques can be implemented with small com-
putational complexity.
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