
1128
IEICE TRANS. COMMUN., VOL.E92–B, NO.4 APRIL 2009

PAPER Special Section on Internet Technology and its Architecture for Ambient Information Systems

Ethernet Topology Detection from a Single Host without Assistance
of Network Nodes or Other Hosts

Yohei HASEGAWA†a) and Masahiro JIBIKI†, Members

SUMMARY Topology information has become more important for
management of LANs due to the increasing number of hosts attached to
a LAN. We describe three Ethernet topology discovery techniques that can
be used even in LANs with Ethernet switches that have no management
functionality. Our “Shared Switch Detection (SSD)” technique detects the
Ethernet tree topology by testing whether two paths in the network share
a switch. SSD uses only general MAC address learning. By borrowing
MAC addresses from hosts, SSD can be run from a single host. The second
technique determines whether two paths between two pairs of hosts con-
tain a switch. The third reduces the number of shared switch detections.
Simulation showed that these techniques can be used to detect the Ether-
net topology with a reasonable search cost. Examination on a real-world
testbed showed that they could detect an Ethernet topology consisting of
six hosts and two switches within one second.
key words: Ethernet, topology detection, network probing

1. Introduction

The demands for communication quality and connectivity
within LANs have recently become more severe because the
number of hosts in a LAN has been increasing and qual-
ity sensitive applications such as audio and video streaming
have become more popular. For example, in an enterprise
LAN, such as a data center, hundreds of hosts are usually
configured for large-scale service. Even in a home LAN,
various kinds of home electronic devices such as televisions,
video-game machines, mobile phones, and cameras are at-
tached. Therefore, information about the topology of LANs
is becoming more important.

Ordinary topology detection techniques often require
the network routers and end-hosts to have specific function-
alities. For example, some topology detection techniques
need to gather forwarding table information from a network
router and/or switches [5], [6]. Other techniques require
a router to respond [1], [3], [4]. Even an end-host-based
topology detection technique needs other hosts to respond
to packets only for topology detection. However, Ethernet
switches in LANs usually do not support network manage-
ment functionalities for topology detection. And hosts in
LAN, such as network printers, have no special functional-
ity for topology detection.

We thus need topology detection techniques that can
be run using only the generally available functionalities of
hosts and switches. We have developed three techniques for

Manuscript received July 28, 2008.
Manuscript revised November 17, 2008.
†The authors are with System Platforms Research Laboratory,

NEC Corporation Inc., Kawasaki-shi, 211-8666 Japan.
a) E-mail: y-hasegawa@bk.jp.nec.com

DOI: 10.1587/transcom.E92.B.1128

Ethernet topology detection.

• A technique for topology detection, based on shared
switch detection (SSD), that tests whether two paths
share a switch.
• A technique for performing SSD from a single host in

a switched Ethernet network.
• A technique to reduce the number of SSDs needed for

topology detection.

These techniques enable a single host to detect the
topology of an Ethernet network consisting of switches with
no management functionality. They use only basic Ethernet
forwarding functionality and general request-replies (ICMP
ECHO REPLY, TCP SYN-ACK, etc.) from hosts in the net-
work.

The rest of this paper is organized as follows. We
briefly review related work in Sect. 2. We describe our tech-
niques for Ethernet topology detection in Sect. 3. In Sect. 4,
we describe the evaluation of these techniques in a simula-
tion environment and on a test bed system in a real-world
environment.

2. Related Work

We review related work on topology detection by describing
the three main approaches.

In the first approach, the IP forwarding table MIB [13]
(management information base), which contains informa-
tion gathered from routers and/or switches via SNMP [12],
is used. This approach can be adapted to various kinds of
networks including Ethernet ones. Inference techniques [5],
[6] have been proposed for use when a complete forwarding
table with information from all switches and routers is un-
available. However, this approach still needs to access MIB
information for most of the routers and switches in the net-
work through the their management functionalities. This ap-
proach is thus not suitable when that access privilege is not
granted to the one wanting to obtain topology information.
Moreover, this approach cannot be used to detect the topol-
ogy of networks consisting of switches that have no (SNMP)
management functionality.

In the second approach [1], [3], [4], the network topol-
ogy is determined by grouping sets of addresses obtained
using a probing tool such as traceroute on ICMP or Ethernet
OAM [9], [11]. Rocketfuel [3] is a set of techniques that im-
plement this approach/router-level mapping tool where one
of the underlying ideas is to focus on one specific ISP net-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

HASEGAWA and JIBIKI: ETHERNET TOPOLOGY DETECTION FROM A SINGLE HOST
1129

work at the time and to map it as completely as possible.
It uses techniques that reduce the number of probe packets
needed to infer the network topology.

This approach can be used in several situations because
it can be used to detect the network topology without having
network administrator privileges. The recently standardized
Ethernet OAM (IEEE802.1ag [10]) can be used for Ethernet
level probing using, for example, the ping and traceroute
tools. However, Ethernet OAM cannot detect the topology
of a network containing switches without Ethernet OAM
functionality.

In the third approach, the network topology is inferred
by monitoring packet arrival patterns at receiving hosts [7],
[8]. The multicast-based topology detection technique [7]
refers to the packet loss pattern. If multiple hosts did not re-
ceive a particular packet, they are assumed to be in the same
part of the multicast tree and to share the link in which the
packet was dropped. However, this technique still requires
that all the hosts have special functionality for topology de-
tection.

In short, previously reported topology detection tech-
niques are often unable to detect the network topology be-
cause they require that the routers, switches, and/or hosts
support various functionalities. This is especially true for
Ethernet networks because the LAN switches rarely have
network management functionality. Network administrators
need a topology detection technique that does not depend
on the Ethernet switches and end hosts having management
functionality.

3. Proposed Techniques

Our techniques for Ethernet topology detection overcome
the problems described above. The first detects the tree net-
work topology by determining whether two paths in the net-
work share a switch. The second determines whether two
paths between two pairs of hosts contain a switch. The third
reduces the number of shared switch detections.

3.1 Topology Detection Based on SSD

Our topology detection technique is designed to detect a log-
ical Ethernet tree topology constructed using a spanning tree
algorithm. The redundant parts of the network that have no
path branches are omitted. For example, in the three-host
topology shown in Fig. 1(a), all switches except s1 are omit-
ted because they have only two links and no path branch.

We use the following definitions to describe our topol-
ogy detection technique.
Definition 1:
In a network with a known topology, x denotes the num-
ber of hosts, and y denotes the number of switches. Let
ni(i = 1, 2, . . . x) denote hosts that have already been de-
tected, and let s j(j = 1, 2, . . . y) denote switches that have
already been detected. lB

A is a bi-directional link connect-
ing nodes A and B, which are a switch or a host. Note that
lB
A is equal to lA

B. Let PA↔B denote the set of switches and

Fig. 1 Example of determining connecting point of nx+1.

links located on the path between hosts A and B. For ex-
ample, the tree network shown in Fig. 1(a) contains Pn1↔n2

such that Pn1↔n2 = {ln1
s1
, s1, l

s1
n2
}.

Definition 2:
Let Pu (u = 1, 2, . . . xC2) denote the set of switches and links
on a path between known hosts. P is the set of Pus:

P =

xC2∑
u=1

Pu = {Pna↔nb } (a, b) =

(
x
2.

)†
.

P̂v(v = 1, 2, · · ·x) is the set of switches and links on the path
between a known and unknown host, nx+1. P̂ is the set of
possible P̂vs:

P̂ =

x∑
v=1

P̂v = {Pnx+1↔ni } (i = 1, 2, · · ·x).

Definition 3:
The function f(Pu, P̂v) tests whether any switches or links
are in both Pu and P̂v. Although elements in P̂v are actually
unknown, the function f can detect that Pu and P̂v have the
same element. We describe the procedure for function f in
Definition 4. It returns a “1” when two paths share a switch
and “0” otherwise.

f(Pu, P̂v)

=

{
1 ∃sk ∈ Pu : sk ∈ P̂v ‖ ∃lh ∈ Pu : lh ∈ P̂v
0 ∀sk ∈ Pu : sk � P̂v ‖ ∀lh ∈ Pu : lh � P̂v

Definition 4:
Host nx+1 is an unknown host that has not been detected. U
is the set of candidate points (switches and links) to which
nx+1 might be connected. U contains all detected switches
and links in the network. U0 is initial value of U. U0 is
equal to P.

We define procedure F and use it to calculate f for all
possible combinations of Pu and P̂v. For f(Pu, P̂v) = 0,
Pu and P̂v do not have the same elements, so the switches
and links in Pu cannot be connected to nx+1. Therefore,

†(x
2

)
means xC2 pairs chosen; e.g.,

(
3
2

)
is the set of (1,2), (1,3),

and (2,3).

1130
IEICE TRANS. COMMUN., VOL.E92–B, NO.4 APRIL 2009

the switches and links in Pu are excluded from U when
f(Pu, P̂v) = 0. The procedure is as follows.

F(U) {
f or (∀uPu,

∀vP̂v) {
i f (f(Pu, P̂v) = 0) then U = U ∧ Pu

†
} returnU
}

If, after F is applied, candidate set U has only one link,
that link is connecting point t for the unknown host, nx+1.
If it has only one switch and multiple links connected to
the switch, the switch is the connecting point. After the
connecting point has been determined, the unknown host is
added to the network.

1. If the connecting point is a link, the link is divided by
adding new switch sy+1. Host nx+1 is connected to this
switch via new link lnx+1

sy+1
.

2. If the connecting point is a switch, e.g., sl, the unknown
host is connected to the switch via new link lnx+1

sl

Once the connecting point for the unknown host has
been determined, the host is connected to the connecting
point. If there are multiple unknown hosts, this procedure is
repeated for each, one by one.

Let’s consider an example of adding an unknown host
using our topology detection technique. In Fig. 1(a), there
are three known hosts, n1, n2, and n3, connected to switch
s1. Unknown host n4 needs to be added to the network.

We assume that the connecting point for n4 is link ls1
n1

,
as shown in Fig. 1(b). Procedure F is used to examine func-
tion f with some combinations of Pu and P̂v. If Pu and P̂v are
such that Pu = Pn2↔n3 and P̂v = Pn1↔n4 , f is equal to zero:
f(Pn2↔n3 , Pn1↔n4) = 0. Note that Pu contains two links and
one switch: Pu = Pn2↔n3 = {ls1

n2
, s1, l

s1
n3
}. Since set U0 con-

tains the candidate connecting points (switches and links),
U0 = {s1, l

s1
n1
, ls1

n2
, ls1

n3
}. One link is left in U:

U = U0 ∧ Pn2↔n3 = ls1
n1
.

Therefore, the connecting point for n4 is determined to be
link ls1

n1
. New switch s2 is added to that link, and host n4

is connected via new link ln4
s2

. If the connecting point were
another link, as illustrated in Fig. 1(c), the connecting point
would be similarly determined.

If n4 was connected to switch s1, as illustrated in
Fig. 1(d), every path would contain s1. Therefore, no ele-
ment would be excluded from U. However, U has only one
switch after procedure F, so our detection technique judges
that switch s1 is the connecting point of n4. Therefore, n4 is
attached to s1 via new link ln4

s1
.

3.2 Proof for Completeness of Topology Detection

Here we prove that our technique can determine the correct
connecting point for unknown hosts. First, we describe a
case in which there is only one switch in the network. Then,
we extend the proof to the case in which there are y(y ≥ 2)

Fig. 2 Paths between hosts in network with one switch: (a) connecting
point t is a link; (b) t is a switch.

switches in the network.
Case A: One-switch topology
We describe two cases for the one-switch network: the con-
necting point of the unknown host is a link; it is a switch.

A-1: Link connecting point
We assume that unknown host nx+1 is connected to link lni

s1
as

illustrated in Fig. 2(a). The initial candidate for connecting
point U0 is U0 = {s1, l

nk
s1
}(k = 1, 2, · · ·x). The nj and nk

represent hosts except ni (j � k, j � i, k � i). A path from
nj to nk never contains lni

s1
.

Thus, the following Pus and P̂vs do not contain the
same elements, as shown by equation (1).

Pu = {ls1
nj
, s1, l

s1
nk
}

P̂v = {ls1
ni
}

(j, k) =

(
x
2

)
, j � i, k � i (1)

Therefore, with this Pu and P̂v, the function f is always
zero: f(Pu, P̂v) = 0. This means that U can be calculated
using procedure F:

U = U0 ∧ {ls1
nj
, s1, l

s1
nk
}.

With the precondition of equation (1), as

{ls1
nj
, s1, l

s1
nk
} = ls1

ni
.

Finally, U contains only one link:

U = U0 ∧ ls1
ni
= ls1

ni
.

A-2: Switch connecting point
Next, we assume that the connecting point is switch s1, as
illustrated in Fig. 2(b). In this case, the paths between the
unknown host and the known hosts always pass through s1

because all known hosts are connected to switch s1. More-
over, the paths between the known hosts also pass through
s1 because there is only one switch connecting them. Thus,
∀uPu
 s1 and ∀vP̂v
 s1. Therefore, the result of f is always
one.

f = (∀uPu,
∀vP̂v) = 1

This means that candidates will never be excluded from U.
However, suppose that a connecting point could be any link.

†Pu is a complement set of Pu.

HASEGAWA and JIBIKI: ETHERNET TOPOLOGY DETECTION FROM A SINGLE HOST
1131

Fig. 3 Networks with switches: (a) connecting point t is a link; (b) t is a
switch. (c) network with unknown host nx+1 connected to switch sl.

Table 1 List of elements in network with unknown host nx+1 connected
to link lsc1

sp1
.

lsc1
sp1 link that is connecting point t.

sp1 switch connected to root side of lsc1
sp1

sc1 switch connected to leaf side of lsc1
sp1

NWp set of links and switches of root side of lsc1
sp1

sp1, . . . spa switches in NWp

np1, . . . npb hosts connected to links in NWp

NWc set of links and switches of leaf side of lsc1
sp1

sc1, . . . scd switches in NWc

nc1, . . . nce hosts in NWc

There must be case in which f = 0, as illustrated in Fig. 2(a).
Therefore, a connecting point being a link is incompatible
with f = 1 for any Pu and P̂v. This means that the connecting
point must be a switch if f = 1 for any Pu and P̂v.
Case B: Multiple-switch topology
Next, we describe the case in which the network has y
switches. Again, we describe two cases.
B-1: Link connecting point
We assume that unknown host nx+1 is connected to link lsc1

sp1
.

The network topology is shown in Fig. 3(a). The elements
in the network are listed in Table 1.

The initial value of candidate set U containing all links
and switches in the network is

U0 = {lsC1
sP1
,NWp,NWc}. (2)

We use the following theorem, which is true because
the assumed tree network has no loop and all the leaves
of the network are hosts (a detailed proof is given in Ap-
pendix).
Theorem 1: paths from any host in a network to the other
hosts can pass through any switch or link in the network.

∀zPn1↔nz = P

As illustrated in Fig. 3(a), NWp is part of the network.
Let P

′ denote the sum of the links and switches on paths P′u,
which are the paths from root host nP1 to the hosts connected
to NWp. Given theorem 1, we can describe P

′ as

P
′ =

h−1∑
u=1

P′u = {PnP1↔nPh } = NWp.

(h = 2, 3, . . .b) (3)

We choose P̂′v such that

P̂′v = Pnx+1↔nCw ,

where host nCw is connected to NWc.
As evident from Fig. 3(a), P̂′v is obviously always ex-

clusive to NWp. Therefore,

f(∀uP′u, P̂′v) = 0.

Then, with equations 2 and 3, procedure F can subtract all
links and switches from U0:

U1 = U0 ∧ {∀uP′u} = U0 ∧ NWp = {lsC1
sP1
,NWc}.

Similarly, in accordance with theorem 1, the set of links
and switches on the paths between nC1 and nCh(h = 2, . . . e),
as illustrated in Fig. 3(b), includes all links and switches in
NWc.

Let P
′′ denote the sum of P′′u , the set of links and

switches on the path between hosts nC1 and nCh(h =

2, 3, . . . e). Therefore,

P̂
′′ =

e−1∑
u=1

P′′u = {∀hPnC1↔nCh } = NWc.

(h = 2, 3, . . . e) (4)

If we set P̂′′v as follows, P′′u and P̂′′v do not share any
switch.

P̂v
′′
= Pn1↔nx+1

Therefore,

f(∀uP′′u , P̂′′v) = 0,

and procedure F excludes all links and switches in NWc

from U0.

U2 = U1 ∧ {∀uP′′u } = U1 ∧ NWc = {lsC1
sP1
}

Thus, all links and switches in both NWP and NWC are
excluded from U. Only link lsC1

sP1
is left in U.

Since there is only one link left in U, connecting point
t for the unknown host must be that link.
B-2: Switch connecting point Next, we assume that the
connecting point of unknown host nx+1 is switch sl. The
tree network can be drawn as shown in Fig. 3(c). NWp,
NWc, . . . NWz denote parts of the network. NWp is located
on the root side of the network from sl, and NWc, . . . NWz

is located on the leaf side. First, we consider NWc as a leaf-
side element. The other leaf-side elements can be consid-
ered to be the same as NWc. The elements in this network
(Fig. 3(c)) are listed in Table 2.

U0, the initial value of candidate U is as follows.

U0 = {sl, l
sP1
sl
, lsC1

sl
,NWp,NWc}

Similar to the previous case, the links and switches in
NWp and NWc are excluded from U. Given theorem 1, the

1132
IEICE TRANS. COMMUN., VOL.E92–B, NO.4 APRIL 2009

Table 2 List of elements in network with unknown host nx+1 connected
to switch sl.

sl switch that is connecting point t
sP1 switch connected to root side of sl

sC1 switch connected to leaf side of sl

NWc set of links and switches on leaf side of sl via lsc1
sl

paths from n1 to every host in NWp pass through any switch
or link in NWp. On the other hand, the path from the un-
known host to any host in NWc includes no links or switches
in NWp. Therefore, the links and switches in NWp are ex-
cluded from U0.

U1 = U0 ∧ NWp

Next, we consider the paths from host nC1 to every host
nCh(h = 2, 3, . . . e), shown as P′′u in Fig. 3(c). These paths
cover all links and switches in NWc and never include sl. If
we take another path from n1 to nx+1 as P̂′v, this path does
not include NWc. Therefore, NWc is also excluded from U.

U2 = U1 ∧ NWc

Similarly, the other leaf side of the network is excluded.
For example, NWd and NWe are excluded.

U3 = U2 ∧ NWd, U4 = U3 ∧ NWe

Finally, we obtain

U = (((U0 ∧ NWp) ∧ NWc) ∧ NWd) . . . ∧ NWz

= {sl, l
sP1
sl
, lsC1

sl
}.

Thus, only one switch, sl, is left in U, so connecting point t
is uniquely determined.

This discussion proves that our topology detection
technique, procedure F, can determine the connecting point
of an unknown host in a tree network topology.

3.3 Switch Sharing Detection Technique

Next, we explain the details of f, our technique for detecting
whether two paths share a switch. This technique can test
any two paths for which the four edge hosts include a tester
host and three other hosts.

First, the MAC address is learned for each switch on
one of the two paths, called “path A.” Then, an Ethernet
frame with the same MAC address as the destination is sent
along the other path, “B.” If these two paths share a switch,
the Ethernet frame will be forwarded along path A. Then,
which host received the frame is identified.

In our description here, we consider a network with
four hosts: tester host A and hosts B, C, and D. Two paths,
A to C and B to D, are tested. We assume that all switches
have learned all MAC addresses in the network.
Step 1. Host A sends a unicast address resolution protocol
(ARP) request to host C with source address B, as shown by
arrow 1 in Fig. 4(a). The address field in the packet head-
ers is [IP dst: C src: B, MAC dst: C, src: B]. The request
uses MAC source address B so that switches on this path

Fig. 4 Example testing configurations: (a) two paths share a switch; (b)
two paths do not share a switch.

learn that packets with the MAC address of host B should
be forwarded to host A.
Step 2. Host C sends an ARP reply to host A, as shown by
arrow 2 in Fig. 4(a). The address field in the packet headers
is [IP dst:B src:C, MAC dst:B src:C]. Host A needs to be
modified in order to receive the ARP reply packets from the
other hosts. When host A receives a reply from C, it knows
that each switch has learned the MAC address of host B, so
packets for host B are forwarded to host A.
Step 3. Host A sends an ICMP ECHO request with source
IP address B to host D, as shown by arrow 3 in Fig. 4(a).
The address field in the packet headers is [IP dst: D src: B,
MAC dst: D src: A].
Step 4. Host D replies to the ICMP ECHO request. The
reply packets have an IP and MAC destination of host B. If
the path from D to B and that from A to C share a switch,
the packets are forwarded to host A, as shown by arrow 4
in Fig. 4(a). Thus, the two paths are determined to share
a switch if host A receives the ICMP ECHO reply packets
from host D. If the packets are not delivered within a specific
timeout period, the two paths are determined not to share a
switch, as shown by arrow 4 in Fig. 4(b).

During this procedure, none of the hosts can reach host
B because all packets sent to host B are automatically for-
warded to host A. To the sending host, it appears that the
packets were lost somewhere along the path to B. There-
fore, once the testing has been completed, the initial MAC
address for host B must be relearned. This can be done, for
example, by having tester host A send an ICMP ECHO re-
quest packet to host B with an IP source address unused in
the network. Host B will then broadcast an ARP request for
the unused address because it does not know the MAC ad-
dress to which it corresponds. This will cause all switches in
the network to re-learn the correct MAC address for host B.
The SSD procedure can fail if host B sends a packet during
the testing because that would initiate MAC address learn-
ing. In Sect. 5, we will discuss how background traffic af-
fects the accuracy of our technique and how our technique
affects background traffic.

3.4 Reducing Number SSDs

The number of SSDs required by procedure F is an impor-
tant concern because several tens of hosts are usually con-
nected to a LAN. We thus developed a technique for reduc-
ing the number of SSDs required. First, we explain how
many SSDs are needed for basic topology detection, which
we described above as procedure F. Then, we will describe

HASEGAWA and JIBIKI: ETHERNET TOPOLOGY DETECTION FROM A SINGLE HOST
1133

our reduction technique and estimate the number of SSDs
required when it is used.

Procedure F repeats SSD for all combinations of two
paths for which the edges are a tester host and three other
hosts. The number of SSDs is proportional to x3, where x is
the number of hosts.

xC3 =
x(x − 1)(x − 2)

6
= O(x3)

Our reduction technique focuses on one switch at a
time and, using SSD, determines toward which link the un-
known host is connected. It starts by focusing on the switch
nearest the tester host and then recursively determining to-
ward which link the unknown host is connected.

Eventually, these searches are done only for switches
on the path from the tester host to the unknown host. The
location of the unknown host is determined with fewer SSDs
because switches not on the path to the unknown host are not
searched.

To test if a link could be in the direction towards the
unknown host, the SSD is done using two paths, such as a
path passing through the focused switch and a path from the
unknown host to a child host connected through the target
link. As shown in Fig. 2(a), two paths do not share a switch
only when the unknown host is connected through the target
link. Thus, if f = 0, the link to which the unknown host is
connected is known. If f = 1, the unknown host is connected
directly to the target switch.

Let’s look at an example of detecting the location of an
unknown host in a network with four known hosts connected
to the same switch (Fig. 5(a)). Tester host n1 attempts to
detect the location of unknown host n5.
Step 1. The switch nearest n1 is s1, so it is focused on.
The hosts connected to the focused switch via every link are
identified. In this example, all hosts are identified because
each link from s1 is connected to only one host.
Step 2. Next, the link through which the unknown host is
connected is identified. When testing link ln1

s1
, for example,

two paths are selected for SSD: 1) from n2 to n3, where
Pn2↔n3
 s1 and Pn2↔n3 � ln1

s1
and 2) from n1 to n5, where

n1 is connected through ln1
s1

from s1.
If these two paths do not share a switch, i.e., f(Pn1↔n5 ,

Pn2↔n3) = 0, Pn1↔n5 does not contain s1. Therefore, un-
known host n5 is located towards link ln1

s1
, as shown in

Fig. 5(b). The case where f = 0, i.e., the unknown host is
on link ln2

s1
, is shown in Fig. 5(c).

This testing continues with other path combinations
until the combination of paths giving f = 0 is found or all
links have been tested with a result of f = 1.

Since f = 1 for all combinations of paths in this exam-
ple, unknown host n5 is not connected through any of the
tested links from s1. Therefore, it must be connected to s1

via a different link, as shown in Fig. 5(d).
Thus, our SSD technique can detect the link through

which an unknown host is connected through the focused
switch.

If the next hop node from the selected link in step 2

Fig. 5 Example of topology detection: (a) original network, (b) unknown
host n5 connected through ln1

s1
, (c) n5 connected towards ln2

s1
, and (d) n5

connected towards ln4
s1

.

Fig. 6 Hop and degree of switches.

were a switch, it would be set as the new focused switch and
step 2 would be done again. If the next hop node were a
host, the link would be considered a connecting point.

The number of SSDs for detecting the location of an
unknown host basically depends on the number of branches
on the path from the tester host to the unknown host because
each link of each switch on the path from the tester to the
unknown host may be tested. Let’s consider this number in
more detail.

Assume that tester host n1 is attempting to detect the
location of host ni. Let ki denote the number of switches on
the path from n1 to ni, and let di j denote the degree (number
of links) of each switch on the path. The case in which there
are j switches on the path from n1 to ni(ki = j) is illustrated
in Fig. 6. In the worst case, every link of every switch will
be tested in an effort to detect the link towards the unknown
host. Therefore, the number of SSDs for adding one host,
ni, is given by

wi =

ki∑
j=1

di j = d̄iki.

Note that d̄i is the average of di1 to di j. The total number of
SSDs needed for detecting x hosts is given by

W =
x∑

i=1

wi =

x∑
i=1

d̄iki.

Here, we introduce k̄ as the average hop to all hosts to be
detected and d̄ as the average degree of switches. That is,

W = xd̄ k̄.

Note that d̄ and k̄ are averages for the detected parts
of the network only, not the average for the whole network.

1134
IEICE TRANS. COMMUN., VOL.E92–B, NO.4 APRIL 2009

The average degree for the whole network is given by d̄′ =
z/y = (x + y − 1)/y, where x is the number of hosts, y is the
number of switches, and z is the number of links.

The average hop, k̄, is less than the number of switches,
ȳ′, so d̄ ≤ d̄′ and k̄ ≤ ȳ′ ≤ y. This means that the number of
SSDs can be expressed as

W = xd̄ k̄ ≤ xd̄′ȳ′ = x(x + y − 1)/2.

Generally, the number of switches is less than the num-
ber of hosts. Here, however, we assume that the number of
switches is the same as the number of hosts and that the aver-
age degree is half that of the whole network. In this case, the
number of SSDs is proportional to the square of the number
of hosts.

W =
xd̄′ ȳ′

2
≤ x(x + x − 1)

4
=

x(2x − 1)
4

= O(x2)

4. Simulation Tests

We investigated the number of SSDs required by simulation.
We varied the number of hosts and switches and several net-
work settings (tree height, host distribution, etc.).
1. Number of hosts and switches: We first simulated a
network in which each switch has the same number of con-
nected hosts. We used a tree topology with a height of four
or eight hop switches from the root.

The results for when the height was set to eight are
illustrated in Fig. 7(a). The number of SSDs is shown on
the z-axis. Those for a height of four are shown in Fig. 7(b).
The number of SSDs increased in proportion to the number
of hosts. It was higher when there were only a few switches
in the network because the degree of switches was huge. For
both heights, the number of SSDs was around 1000 to 1500
when there were 100 hosts.
2. Degree of switches and hops from tester: In the next
simulation, we varied the average degree of switches and the
average number of hops from the tester to hosts in the net-
work. The results for when the degree was constant through-
out the network are shown in Fig. 8(a). Those for when the
degree was exponentially distributed are shown in Fig. 8(b).
The fewer SSDs with the exponential distribution indicate
that our technique is efficient for actual networks because
the degree of switches is unequal in most networks.

These simulation results demonstrate that our tech-
nique can detect the network topology using fewer SSDs
than the square of the number of hosts for all cases we tested.
For example, 1000 to 2000 SSDs are needed to detect a net-
work topology with 100 hosts.

5. Evaluation on Real-World Testbed

To validate our technique in a real-world environment, we
constructed a testbed on a PC. We used this testbed to also
evaluate the time taken to detect a network topology.

5.1 Real-World Testing

We constructed a network comprising six hosts and two

Fig. 7 Number of SSDs for tree network with height of (a) eight and (b)
four.

Fig. 8 Number of SSDs (a) when degree was constant and (b) when
degree was exponentially distributed.

switches, as shown in Fig. 9. Each host was a Linux 2.6
PC connected via 1000Base/T Ethernet. We used Ethernet
switches with an integrated Broadcom chipset.

The ICMP echo request was used for multicast ad-
dresses (all hosts in the network) to obtain a list of the un-
known hosts in the network. SSD was then run to detect the
network topology. The SSD was run twice, and the results
were accepted only when the same results were obtained for

HASEGAWA and JIBIKI: ETHERNET TOPOLOGY DETECTION FROM A SINGLE HOST
1135

Fig. 9 Network testbed.

Fig. 10 Detection time vs. timeout setting.

both runs as a means to improve accuracy.
The network topology (Fig. 9) was detected correctly

after about 220 packets had been transferred through the net-
work.

5.2 Operation Time Evaluation

As shown in Fig. 10, the time taken to detect the network
topology correctly strongly depended on the timeout setting
with which the tester judged ARP and ICMP packet recep-
tion. We measured the round-trip time in a LAN with hun-
dreds of hosts and tens of switches. All of the times were
less than three ms, and most were within one ms, indicating
that our technique can detect network topology within one
second.

5.3 Effect of Background Traffic on Accuracy

Our detection technique might be unable to detect the cor-
rect network topology if there is background traffic because
it temporarily borrows MAC addresses from hosts in the net-
work. If the original owner of a borrowed MAC address sent
a packet, it could overwrite the MAC address acquisition set
by the tester, resulting in incorrect detection of the network
topology. Since our testbed accepted the SSD results only
when the results were the same for two consecutive SSDs, if
the same incorrect results were obtained twice in a row, the
detection would be incorrect.

When the timeout for SSD was set to 3 ms, it took
15 ms for one SSD. Therefore, our testbed would misde-
tect the network topology if a host from which the MAC
address was borrowed by the tester sent packets at an in-
terval of 15 ms or less. Traffic with a 15 ms packet interval
would flow at 800 kbps if full-segment 1500 byte packets
were used.

VoIP/UDP, for example, traffic usually comprises pack-
ets sent at 50 ms intervals. This means that the probabil-
ity of the same incorrect results being obtained twice in

Table 3 Effect of background TCP traffic on accuracy.

Background Traffic Throughput Accuracy
TCP Recv (RWIN = 85.3 KB) 780 Mbps 0%
TCP Recv (RWIN = 4 KB) 131 Mbps 80%
TCP Recv (RWIN = 2 KB) 90 Mbps 94%
TCP Send (RWIN = 4 KB) 131 Mbps 96%
TCP Send (RWIN = 2 KB) 90 Mbps 76%
TCP Send (RWIN = 4 KB) 50 Mbps 94%
TCP Recv Send (RWIN = 2 KB) 40 Mbps 74%

a row is 9% (15/50 × 15/50 = 0.09). According to the
simulation results in Fig. 7 and Fig. 8, 1000 to 2000 SSDs
are needed to detect the network topology with 100 hosts.
Since our testbed repeat SSD twice, total number of SSDs
are 4000. If we simply assume that each MAC address
is used for 40 SSDs (total 4000 SSDs/100 hosts = 40)
in one topology detection, the possibility when our tech-
nique completes topology detection without SSD’s retry is
15%((1 − (15/50))40 = 0.152).

Background traffic generated by TCP cannot be simply
modeled because of its complicated behavior in terms of rate
control, timeout, etc. Therefore, we evaluated the accuracy
of our testbed using TCP background traffic. We generated
the traffic using the iperf software tool. It was between a
host from which the MAC address was used for SSD and a
host that had been eliminated from the list of known hosts.

The results are summarized in Table 3, which shows
the type of background TCP traffic, the average throughput
of the traffic for 10 seconds, and the accuracy of topology
detection. The type of traffic represents the direction of the
traffic from the view of the host in the network to be de-
tected. We adjusted these size of the TCP receive window
(RWIN) to control the background throughput. Accuracy
represents the probability that the topology was detected
correctly in 50 times tests.

As shown in the table, the accuracy was sufficiently
high when the throughput of the background traffic was
around 100 Mbps. When the throughput was 780 Mbps, the
accuracy was zero because the host did not respond to the
SSD ARP requests due to packet loss. The PCI bus band-
width in the PC was the bottleneck.

On the other hand, our topology detection may degrade
the performance of other traffic flows because it temporarily
borrows host MAC addresses. We will discuss case for UDP
and TCP respectively.

When background traffic was VoIP/UDP, We assume
40 SSDs/host to detect topology as same as the above dis-
cussion. Since we showed that one SSD can be done in
15 ms, our technique will need 60 s (4000 SSDs × 15 ms =
60 s) to detect the whole network. Each host will exprience
30%(15/50 = 0.3) packet loss for total 0.6 s (40 SSDs/host
× 15 ms) during the 60s topology detection.

As for TCP background traffic, due to its rate control
and timeout behavior, degradation of TCP throughput may
be longer than the topology detecting period. We measured
the performance of the TCP traffic without our topology de-
tection. The throughput was 148.8 Mbps (RWIN = 4 KB)

1136
IEICE TRANS. COMMUN., VOL.E92–B, NO.4 APRIL 2009

and 95.4 Mbps (RWIN = 2 KB), corresponding to degrada-
tion of 12%(1 − 131/148.8 = 0.12) and 6%(1 − 90/95.4 =
0.06), respectively. The packet loss rates were supposed to
be less than 12% and 6%, respectively.

These tests demonstrate that our topology detection has
sufficient accuracy in small network despite the existence
of background traffic. They also showed that it does not
significantly affect background traffic.

6. Conclusion

We have described three techniques for detecting the topol-
ogy of Ethernet networks. They can be run on a single host
without the assistance of network nodes and other hosts.
Simulation showed that they can detect the topology at rea-
sonable cost even for a network with 100 hosts. Testing on
a real-world testbed showed that the topology of a network
with six hosts and two switches could be detected within
1 second. The accuracy was sufficiently high when the
throughput of the background traffic was around 100 Mbps.

Compared to other topology detection techniques, our
techniques are easy deployable and quickly operational be-
cause they can be run on a single host. They have other po-
tential applications, such as emergency LAN topology de-
tection when an intrusion is detected.

We are planning to test them in LANs with various
kinds of switches to further evaluate their performance. Our
objective is to improve their accuracy, especially for situa-
tions in which there is background traffic.

References

[1] R. Siamwalla, R. Sharma, and S. Keshav, Discovering Internet
Topology, Cornell University, 1998.

[2] R. Black, A. Donnelly, and C. Fournet, “Ethernet topology discov-
ery without network assistance,” IEEE International Conference on
Network Protocols (ICNP 2004), Oct. 2004.

[3] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP Topolo-
gies with Rocketfuel,” IEEE SIGCOMM 2002, Aug. 2002.

[4] H. Burch and B. Cheswick, “Mapping the Internet,” Computer,
vol.32, no.4, pp.97–98, April 1999.

[5] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, and A.
Silberschatz, “Topology discovery in heterogeneous IP networks,”
IEEE INFOCOM 2000, March 2000.

[6] M. Son, B. Joo, B. Kim, and J. Lee, “Physical topology discovery
for metro Ethernet networks,” ETRI J., vol.27, no.4, pp.355–366,
Aug. 2005.

[7] R. Caceres, N.G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley,
“Loss-based inference of multicast network topology,” IEEE Con-
ference on Decision and Control, Dec. 1999.

[8] N.G. Duffield, J. Horowitz, and F.L. Presti, “Adaptive multicast
topology inference,” IEEE INFOCOM 2001, April 2001.

[9] ITU-T Recommendation Y.1731, OAM Functions and Mechanisms
for Ethernet based Network, 2006.

[10] IEEE Computer Society, “Virtual bridged local area networks —
Amendment 5 connectivity fault management,” P802.1ag, Draft,
Work in Progress.

[11] “Ethernet service OAM: Overview, applications, deployment, and
issues,” Fujitsu Network Communications, 2006.

[12] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP),” IETF, RFC-1157, May 1990.

Fig. A· 1 Example for proof of theorem 1: (a) segment edge is connected
to a host; (b) both segment edges are connected to the network.

[13] A. Bierman and K. Jones, “Physical topology MIB,” IETF, RFC-
2922, 2000.

Appendix: Coverage in Tree Network

In a tree network, paths from any one host to the other hosts
can pass through any switch or link in the network. Suppose
there is a segment X (a link or switch) that is not included
in any of the paths. It is clear that one edge of the segment
must be connected to a switch in the network given that it
is a part of the network. Therefore, we need consider only
the edge on the other side. If the other edge is a host, nx, as
shown in Fig. A· 1(a), a path to nx will include segment X.
On the other hand, if both edges are connected to switches,
as shown in Fig. A· 1(b), the network has a loop L, which is
incompatible with the definition of a tree network. In this
case, segment X cannot exist. This means that the paths
from any one host in a network to the other hosts cover all
switches and links in the network.

Yohei Hasegawa received an M.E. degree
from in computer science from Waseda Univer-
sity, Tokyo, Japan, in 1999. He joined NEC Cor-
poration in 1999 and has since been engaged in
research on active network architectures, over-
lay networks, and network measurement. He
was a visiting scientist in the Computer Science
Department of the University of Massachusetts
at Amherst in 2007.

Masahiro Jibiki received a Ph.D. degree
in systems management from the University of
Tsukuba, Tokyo, Japan. He is currently a re-
searcher in the Central Research Laboratories,
NEC Corporation, and, since 2006, a visiting
professor at the University of Wakayama, Waka-
yama, Japan. His research interests include net-
working, distributed systems, and software sci-
ence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

