
論文 / 著書情報
Article / Book Information

論題(和文)

Title(English) Local Optimal File Delivery Scheduling in a Hop by Hop File Delivery
System on a One Link Model

著者(和文) 鶴見宏美, 宮田高道, 山岡克式, 酒井善則

Authors(English) Hiromi Tsurumi, Takamichi Miyata, Katsunori Yamaoka, Yoshinori
Sakai

出典(和文) , vol. E92-B, No. 01, pp. 34-45

Citation(English) IEICE Transactions on Communications, vol. E92-B, No. 01, pp. 34-45

発行日 / Pub. date 2009, 1

URL http://search.ieice.org/

権利情報 / Copyright 本著作物の著作権は電子情報通信学会に帰属します。
 Copyright (c) 2009 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

34
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

PAPER Special Section on Networking Technologies for Dependable Networks

Local Optimal File Delivery Scheduling in a Hop by Hop File
Delivery System on a One Link Model

Hiromi TSURUMI†a), Student Member, Takamichi MIYATA†b), Katsunori YAMAOKA†c),
and Yoshinori SAKAI†d), Members

SUMMARY Many content distribution systems such as CDN and P2P
file sharing have been developed. In these systems, file-type contents re-
quire downloads to be completed before they can be played and they have
no value before the download finishes. Therefore, a user’s satisfaction de-
pends on the length of the service latency. That is, the length of time from
when the user issued a request until the user received an entire file. Re-
ducing the sum of that time is necessary for the whole delivery system to
satisfy users and maintain dependability on system performance. We dis-
cuss a hop-by-hop file delivery system suitable for delivering file contents
whereby the sum of service latency is reduced by using the request con-
ditions. Moreover, we propose a file delivery scheduling algorithm for a
one-link model given that the content request frequency is unknown. The
algorithm is based on a local optimal strategy. We performed a characteris-
tic analysis by computer simulation. The results showed that our algorithm
performs at nearly the theoretical efficiency limit of the hop-by-hop system
when the request frequency distribution of each content has a deviation.
key words: file delivery, scheduling, optimization, hop by hop

1. Introduction

With the significant increase in network traffic, cache tech-
nologies, which can enhance the performance of systems
by load balancing, have been implemented on a P2P (Peer-
to-Peer) file-sharing system, CDN (Content Delivery Net-
work), and Web server proxy system, for example [1]–[5].
In these systems, multiple copies of content from an orig-
inal node (i.e., node means “peer” in the P2P file sharing
system, and “server” in CDN and Web server proxy system)
that has the original content are stored in caches of some
other nodes. Then, the number of nodes, which can serve the
same content, increases. Therefore, by storing many multi-
ple copies of the same content in geographically dispersed
caches, we can reduce the server’s load, network congestion,
and latencies experienced by users.

Storing multiple copies of content in caches of mul-
tiple nodes, which are located on a delivery path to users,
has been implemented as a method of dispersing content
on many kinds of systems. That method has been inves-
tigated in reported in studies, e.g., Freenet [1] and Winny,
which are kinds of P2P file sharing systems, the transparent

Manuscript received April 30, 2008.
Manuscript revised August 21, 2008.
†The authors are with Tokyo Institute of Technology, Tokyo,

152-8552 Japan.
a) E-mail: hiro@net.ss.titech.ac.jp
b) E-mail: miyata@ss.titech.ac.jp
c) E-mail: yamaoka@ss.titech.ac.jp
d) E-mail: ys@ss.titech.ac.jp

DOI: 10.1587/transcom.E92.B.34

proxy system, which is a kind of structure of a Web server
proxy system and CDN [4], [5]. In these systems, nodes that
can provide content are capable of intercepting user requests
and forwarding the requests to another node if the requested
content is not present in their local cache. When content is
found on a cache of a node, that content is delivered hop
by hop through some nodes from which the request arrives
(i.e., delivery path), and stored in their caches. This method
effectively disperses many multiple copies over the network
by following demands for the content. To avoid causing am-
biguity, we call this delivery method “hop-by-hop content
delivery,” and it is illustrated in Fig. 1.

In the system that uses hop-by-hop content delivery,
there are two basic types of content-delivery methods: me-
dia streaming, which includes video file streaming and live
video streaming, and file downloading. While streaming
enables the buffered downloaded content to be played be-
fore the download is completed, file downloading requires
that the content be completely downloaded before it can be
played, and it has no value before this. Therefore, the user’s
satisfaction depends on the length of the service latency, that
is, the length of time from when he or she issued the request
until he or she received the entire file, and reducing the sum
of that time (a comprehensive performance indicator with
mean service latency per request) is necessary for the whole
delivery system to satisfy users. Some of the most important
techniques to improve the total service latency are caching
algorithms that decide how to maintain files to achieve high
hit rates, file-placement algorithms that decide where we
should place files, and file-delivery schedulings that decide
how to deliver files. However, in this paper, we address the
problems of file-delivery scheduling of hop-by-hop file de-
livery (“hop-by-hop content delivery” for files) to reduce the

Fig. 1 Hop-by-hop file delivery system.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
35

Fig. 2 Transmission methods.

total service latency. We leave the other components to other
research [5], [6].

When there is a node at which a large number of re-
quests arrive and which should deliver some of each file
corresponding to each request through the same link, the
link becomes a bottlenecked link. On bottlenecked links,
the scheduling problem is important because it governs de-
ciding which files should be delivered and how to deliver
them, and that has a direct effect on the total service la-
tency. Poor file-delivery scheduling can result in consid-
erably longer service latencies, which impair dependability
on system performance, while good scheduling can shorten
those latencies and efficiently utilize resources such as net-
work bandwidth. In this paper, we address the problems
from the following perspectives.

1. File transmission method: Two file-type transmission
methods can be used when one node is processing mul-
tiple requests for different files simultaneously. In par-
allel transmission, the bandwidth is divided to execute
parallel file delivery. In sequential transmission, the
files are delivered sequentially. Sequential transmis-
sion is better suited for delivering file content because
the total service latency is generally shorter. We illus-
trated this in Fig. 2.

2. Order in which the files are transmitted: With sequen-
tial transmission, the total service latency for the whole
delivery system depends on the order in which the files
are transmitted when one node is processing multiple
requests for different files simultaneously, because the
value of serving the file is determined by the popular-
ity of the file. For example, suppose node 1 has file A
and file B, and node 1 receives more requests for file
A than file B from node 2, which is located beyond a
bottlenecked link almost simultaneously. In this case,
if both file sizes are the same, node 1 should deliver
file A first and then file B to node 2 to minimize the
total service latency experienced by users. Moreover,
if file A is very popular, i.e., many requests of file A
will arrive afterward and file A will be sent in the or-
der at each node on the delivery path, we can derive a
large benefit from the cache. That is because file A can
be dispersed faster over the network and users can get
it from any cache of nodes near users or from their lo-
cal caches directly with a considerably shorter service

latency.
3. Dynamic scheduling: In an actual network environ-

ment, request arrival times are not known in advance,
and the file transmission order that has already been de-
cided will not always be appropriate afterward. There-
fore, the scheduling should be changed appropriately
in the middle of transmission to reduce the total ser-
vice latency.

2. Related Work

Techniques to improve the total service latency include
caching algorithms [7], [8], content-placement algorithms
[5], [6], and content-delivery schedulings [9]–[18]. Our re-
view in this section focus on the studies on content-delivery
scheduling.

Some studies on the content-delivery scheduling focus
on either a parallel transmission that downloads a content
from multiple servers [9], [10] or transmission that down-
loads a content from single server [11]–[18].

[9] and [10] focus on parallel file delivery scheduling
that downloads a file from multiple servers with caches in a
P2P file-sharing system over links that have asymmetric up-
load and download bandwidths like those of an asymmetric
digital subscriber line (ADSL). In the network, a file is di-
vided into blocks, and each node has a portion of the blocks
and nodes exchange blocks with other nodes. This method
of file delivery reduces the completion time at which each
node finishes collecting all blocks of a file. However, it does
not account for the popularity of each block of a file. There-
fore, this method does not work well for our purpose, al-
though our method does regard one block as one file.

[11] and [12] focus on file delivery from single server
and dynamic file delivery scheduling in a P2P file sharing
system and in CDN with cache. In [11], there are nodes that
have video files (servers), and servers provide those video
files for nodes that request the video files. Requests arrive
at the servers dynamically. Service latency is reduced by
changing the server that provides the video file and by avoid-
ing congestion at the server during downloading. In [12],
the authors focus on the tree-based file delivery in a P2P file
sharing system in which the links have different capacities,
and they propose efficient algorithms to dynamically reor-
ganize the structure of network so as to enhance distribution
efficiency. These papers focus only on the server and net-
work structure, and do not consider the order in which the
files are transmitted.

[15]–[19] investigate file delivery scheduling with the
shortest remaining processing time (SRPT) algorithm at the
Web server or satellite link to determine the serving order,
where SRPT is primarily the optimal scheduling algorithm
to minimize the mean response time of jobs at a single pro-
cessor by changing the processing order of jobs. SRPT de-
termines the order according to the remaining processing
time of the jobs and gives higher priority to the job that has
shorter remaining processing time. SRPT can be extended

36
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

to scheduling on a Web server by regarding the remaining
file transmission time as remaining processing time. How-
ever, it is not effective to adapt SRPT to scheduling on a
hop-by-hop file delivery system because the value of serv-
ing a file is determined by the popularity of the file and we
should consider the benefits of caches of nodes that have fin-
ished downloading files. Moreover, because SRPT gives the
optimal mean service latency on Web server, the authors of
[15]–[19] mainly focus on the trade-off between the fairness
of each serving and mean service latency. However, in this
paper, we only focus on the scheduling minimizing the to-
tal service latency to clarify the characteristic of hop-by-hop
file delivery system.

[13] and [14] investigate scheduling on the link be-
tween the satellite and satellite dish. [13] focuses on uti-
lization of satellite broadcast links and modem unicast links
by considering the benefits of caches and the popularity of
each file. In online scheduling to utilize broadcast links and
to improve service latency, they determine the order of trans-
mitted files. However, they do not consider interruption of
file transmission with online scheduling. Therefore, their
method is not suitable for a hop-by-hop file delivery system.

3. Problem Definition

In a CDN or transparent proxy system, there are interme-
diate nodes that have a cache respectively and have roles of
both server and client. Each original server, which has origi-
nal files, has the role of server, and each node on which users
are placed has the role of client. However, in major P2P file-
sharing systems, each node has a cache and has roles of both
server and client. Therefore, we assume that each interme-
diate node, which is located on delivery path in hop-by-hop
file delivery system, has a cache function and file-delivery
capability from its local cache to another node. In actual
delivery systems, cache-storage capacity is limited, so some
suitable algorithms are used for removing files from a cache.
Here we assume unlimited cache capacity (i.e., stored files
are never removed) because our focus is the scheduling al-
gorithm for file delivery.

Moreover, to avoid causing ambiguity, we define a “re-
questing node” as one that has users who request files, and a
“providing node” as one that provides each file correspond-
ing to each request. In this network, there are initially no
duplicate files on any node and only the original providing
nodes have the original files. A requested file is sent from
the original providing node to the requesting node. A copy
of the file is stored using the cache function at each node
on the delivery path. Subsequently, if a node has a neigh-
bor node that has a requested file in its cache, the node can
get the file from the neighbor node rather than the original
providing node.

3.1 Discussion about Performance Indicator

To satisfy each user in the system that is opened to the gen-
eral public, reducing mean service latency per request is

important because file downloading requires that the con-
tent is completely downloaded before it can be played. Par-
tially downloaded data has no value, as mentioned above in
Sect. 1. Shortening the mean service latency improves us-
ability for each user of the system in the long term.

We treat the total service latency of all requests instead
of mean service latency per request as a performance in-
dicator of file-delivery scheduling because total service la-
tency is a performance indicator coequal with mean service
latency per request, i.e., there is a relationship in which,
“mean service latency per request × the number of requests
= total service latency of all requests.” When mean service
latency increases and the number of requests is fixed, the to-
tal service latency also increases coequally. Therefore, they
are coequal performance indicators, which denote coessen-
tial performance of the system.

Another well-known performance indicator is “fair-
ness,” which is treated in [15]–[19]. The authors of [15],
[16] propose SRPT scheduling in consideration of the trade-
off between “service latency” and “fairness.” They claim
that although SRPT, which gives priority to servings of
small files, can minimize service latency, it may cause an
unfair situation, “starvation,” where servings of large files
are harmed due to giving priority to servings of small files.
However, the influence of the trade-off is not always large
when we consider an actual network environment. That is,
there are some cases where a scheduling can produce both
small service latency and high fairness although the schedul-
ing is only intended to minimize service latency. For exam-
ple, there was analytical verification that servings of large
files are seldom harmed in terms of fairness when SRPT
is applied under lower-load situations [18], [19]. Moreover,
under a transient overload, there was verification by an im-
plementation study that servings of large files by SRPT ex-
perience only negligibly higher service latency than those by
FAIR scheduling, which is a traditional scheduling on a web
server and which allocates resources fairly among servings
[17]. In particular, the authors claim that the effects are ac-
centuated under heavy-tailed file-size distribution (approxi-
mated file-size distribution in an actual network) [17].

These examples demonstrate that the relationship be-
tween service latency and fairness is not generically strong,
and latency and fairness can be investigated independently.
Therefore, our proposed scheduling, which focuses on only
service latency could be enhanced to produce both good ser-
vice latency and good fairness when our proposed schedul-
ing produces good results and they are utilized. In this paper,
we focus on minimizing the total service latency and leave
investigating fairness to future work.

3.2 Transmission Method

There is a sequential transmission method, as mentioned
above, when a node is handling multiple requests. Sequen-
tial transmission is suitable for file delivery. Sequential
transmission methods are categorized as interruption dis-
abling or interruption enabling. Interruption enabling meth-

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
37

ods allow the interruption of file transmission even if the
transmission has not finished. That is, transmission can be
interrupted and another file can then be transmitted before
the current file transmission is completed. The interruption-
disabling methods do not allow file transmission to be in-
terrupted before the current file transmission has been com-
pleted. That is, another file cannot be transmitted before the
current file transmission has finished.

The theoretical optimal value of the total service la-
tency (the minimum value of the sum of the service laten-
cies) can be calculated if all the request arrival times are
known in advance. This optimal value is given when we
use the interruption disabling method. When there are more
interruptions during a file transmission, the total service la-
tency for the whole delivery system is longer. The proof is
shown as Appendix A. However, in an actual network en-
vironment, the request arrival times are not known in ad-
vance. Furthermore, the number of outstanding requests
changes moment to moment. This causes the “appropriate
order of file transmission update problem” described in the
next section, and there are some cases in which the total ser-
vice latency is shorter with interruptions than without them.
Therefore, we discuss the interruption enabling method and
describe a file-delivery scheduling algorithm that interrupts
a current file delivery in such a way that the total service
latency for the whole delivery system is reduced.

4. File-Delivery Scheduling

The requirements for file-delivery scheduling are best un-
derstood through examples. First, we consider the case in
which a providing node has multiple requests for certain
files, as illustrated in Fig. 3. The providing node, node 1
in this case, has to determine the order for delivering each
file so as to minimize the total service latency. For example,
suppose it receives two requests for file A, one from user 2
and one from user 3, and one request for file B from user 1.
If the files sizes are the same, it should deliver file A first
and then file B to minimize the total service latency.

Next, let us consider the case in which the providing
node receives a request for a file while it is transmitting an-
other file. For example, suppose that users 2 and 3 each
request file B while the node is transmitting file A to node2
for user 1. If a remaining part of file A which is not yet
transmitted is large enough, it should suspend transmission
of file A and transmit file B to node2 for users 2 and 3 to
minimize the total service latency.

Finally, we consider the case in which there are inter-
mediate nodes on the delivery path, and a copy of each file
arriving at all of these nodes is stored there because of a be-
havior of hop-by-hop file-delivery systems. This means that
it is possible to suspend delivery of a file stored on an inter-
mediate node to expedite delivery of another file and thereby
minimize the total service latency. For example, still look-
ing a Fig. 3, let us consider the case in which users 2 and 3
request file A and users 1 and 4 request file B at the same
time. First, the providing node (again node 1) sends file A

Fig. 3 Multi-link network.

to node 2. Node 2 then sends the file to node 4, and, at the
same time, the providing node sends file B to node 2. If a
new request does not arrive, node 2 next sends the file to
node 3 for user 4. If a new request does arrive, the node 2
should determine whether delivery of file B be suspended or
not. For example suppose a request for file A from user 5 ar-
rives. Node 2 should deliver file A to node 3 prior to sending
file B to node 3 to minimize the total service latency.

These examples show that we need to consider the or-
der in which the files for each outstanding request are deliv-
ered, whether to suspend delivery of the current file in order
to deliver a newly requested file, and how the file passing at
nodes on the delivery path should be scheduled. From these
considerations, we identified three requirements.

1. Determine the order of file delivery so that the total
service latency is minimized.

2. Suspend current file delivery and deliver a newly re-
quested file if doing so will reduce the total service la-
tency.

3. Schedule file passing at nodes on the delivery path so
that the total service latency is minimized.

Moreover, there are two methods for resuming trans-
mission of suspended files: resume at the point where trans-
mission was suspended or resend the entire file. The re-
sumption model has better transmission efficiency because
the node does not have to send data that has already been
sent. However, the resumption model requires the system to
keep track of the states for each uncompleted file transmis-
sion. This means the system bears a heavy load when many
files are suspended simultaneously. Since the reset model
does not impose this requirement, the system does not bear
a heavy load even if many files are suspended simultane-
ously. However, the node needs to resend data it had already
sent, so the transmission efficiency is worse. We therefore
focused on the resumption model in order to reduce the total
service latency for the whole delivery system.

If the number of suspensions is large, the behavior of
the system is similar to that of one using parallel transmis-
sion. That is, the transmission completion time is later. This
adversely affects the system from the viewpoint of the total
service latency. Therefore, we should appropriately deter-

38
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

mine when to suspend current file delivery in order to expe-
dite delivery of another file in response to a new request.

5. File-Delivery Scheduling Algorithm for One-Link
Network

For a basic study, we analyzed the performance character-
istics of our file-delivery scheduling method for a one-link
network (Fig. 4) without an intermediate node on the path
between the providing and requesting nodes, i.e., we fo-
cused on only one link between neighboring nodes on the
delivery path. Thus, we did not consider how the files are
passed at the nodes on the delivery path (requirement (3)
above). Therefore, our analysis only focused on require-
ments (1) and (2). When scheduling is performed effec-
tively on a one-link network, it can be extended to a version
adapted for a multi-link network and performs effectively
by considering requirement (3). We discuss the feasibility
of our proposed one-link scheduling algorithm in Sect. 5.2
below.

We made three assumptions in our basic analysis. First,
the load on the transmission link is constant over time, re-
gardless of cross traffic, et al. Second, transmission of sus-
pended files is resumed at the point where transmission was
suspended, which results in higher transmission efficiency
and a shorter total service latency for the whole delivery sys-
tem. Finally, the request frequency distribution for each file
is unknown.

5.1 Details of Algorithm for One-Link Network

To describe the file-delivery scheduling algorithm clearly,
we define parameters below. Let U = { f ile 1, f ile 2, · · · ,
f ile m} be a set of files that the providing node has, and each
f ile i has two parameters: the remaining file size fi, which
has not been transmitted, and the number of requests ri. Let
Fo be a set of files, which has been requested before the
algorithm starts, i.e., Fo ⊆ U and ri � 0, for ∀ f ile i ∈ Fo.

First, to satisfy requirement (1), the providing node cal-
culates total service latency g for Fo and determines the file
delivery order so that g (Seq. (1)) takes a minimum value
gmin:

Fig. 4 One-link network.

g =

n∑
i=1

rΦT (i,Fo)

i∑
j=1

fΦT (j,Fo)

b
, (1)

whereΦT (I, S) is a file number χ of f ile χ, which is in the I-
th place in the transmission order of all files in a subset S ⊆
U. Equation (1) takes a minimum value when ΦT (I, Fo) =
ΦD(I, Fo), for 1 ≤ I ≤ n, where n is the number of elements
of Fo, i.e., |Fo|, and ΦD(I, S) is a file number χ of f ile χ
whose place is I-th in the descending order of rχ

dχ
of all files

in a subset S ⊆ U, where di =
fi
b and b is the bandwidth of

the transmission link. (The proof is given in Appendix B.)
Relationships among these parameters are shown in Fig. 5.

Now, requests will arrive at a providing node after
transmission of a file of Fo has started. Let f ile T ∈ U be a
file that is being transmitted, and let F ⊆ U be a set of files
in which ri � 0, fi � 0 and i � T , for ∀ f ile i ∈ F, during the
transmission of f ile T .

Next, to satisfy requirement (2), when a new request
arrives, the providing node decides whether to suspend the
current file delivery, i.e., transmission of f ile T , and trans-
mit the requested f ile A (f ile A ∈ F or F ← F + { f ile A},
i.e., F is replaced by F + { f ile A}, if f ile A is the first re-
quested file, i.e., f ile A had no request before the new re-
quest came) instead of f ile T . Since we assume that the
request frequency distribution of each file is unknown, the
providing node calculates the local optimal solution for the
period between the moment when a request arrives and the
moment when the next request arrives. The result is used to
determine whether to suspend the current file delivery, i.e.,
transmission of f ile T , and start delivery of the newly re-
quested file, i.e., f ile A. The determination is made using
Eqs. (2) and (3) and Relationship (4).

w′ =
fA + fT

b
rT +

(
ts +

fA

b

)
rA − ts

+

l−1∑
i=1

rΦT (i,F′)

⎛⎜⎜⎜⎜⎜⎜⎝
i∑

j=1

fΦT (j,F′)

b
+

fT
b
+

fA

b

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

w =
fT
b

rT − ts

Fig. 5 Relationships among parameters for minimizing total service
latency.

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
39

Fig. 6 Relationships among parameters for deciding whether to suspend
current file delivery when new request arrives.

+

l∑
i=1

rΦT (i,F)

⎛⎜⎜⎜⎜⎜⎜⎝
i∑

j=1

fΦT (j,F)

b
+

fT
b

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

wmin > w
′
min (4)

The w′ and w respectively denote the total service la-
tency for the whole delivery system, when the current file
delivery is suspended and when it is not, from the time when
transmission of f ile T starts until the time when transmis-
sions of all files of F+{ f ile T } end under the situation where
each ri of f ile i in F + { f ileT } will not change afterward.
We determine the delivery order so that each of them takes
a minimum value: w′min and wmin. Equation (2) takes a min-
imum value when ΦT (I, F′) = ΦD(I, F′), for 1 ≤ I ≤ l − 1,
where F′ is a set of files, which is F − { f ile A}. Equa-
tion (3) takes a minimum value when ΦT (I, F) = ΦD(I, F),
for 1 ≤ I ≤ l. The ts is the time from starting transmission
until transmission is suspended because a new file request
arrives and l is the number of elements of F, i.e., |F |. Rela-
tionships among these parameters are shown in Fig. 6.

If Relationship (4) holds when the current file delivery
is suspended and a newly requested file is delivered, the total
service latency would be reduced by suspending the deliv-
ery. In this case, F ← F − { f ile A} + { f ile T } if fT � 0, or
F ← F − { f ile A} if fT = 0, and T ← A. In addition, this
new delivery of f ile T could also be suspended by the above
determination using Equations (2) and (3) and Relationship
(4) due to another newly requested file.

5.2 Feasibility of Algorithm for One-Link Network

Our proposed algorithm for the one-link network, which is
described above, can be effectively applied to a bottlenecked
link between a neighboring node and a super node, which
is one-link. The super node is like a hub at which a large
number of requests arrive and must serve a large number
of files. Moreover, the algorithm also can be applied to a
delivery path which is configured using multi-link.

The algorithm requires only two parameters: the num-
ber of requests and remaining file size which is not yet trans-
mitted. Remaining transmission time is predicted by the lat-

ter parameter when cross traffic has little influence. There-
fore, by using values of those parameters that a super node
has, the algorithm can be implemented in file delivery on a
link between the super node and neighboring node. On the
link, the super node is regarded as the providing node, and
the neighboring node is regarded as the requesting node.

Moreover, each node on a delivery path can get values
of the parameters because the delivery path in a hop-by-hop
file-delivery system is a path through which requests have
passed once, as described in Sect. 3. That is, each node can
get the number of requests for each requested file by count-
ing when each request arrives and each node knows each re-
maining file size because nodes transmit the files. Therefore,
by using the values, the algorithm can be adapted for and be
implemented in file delivery on multi-link of a delivery path
where each link between neighboring nodes on the delivery
path is regarded as one-link, and each node is regarded as
performing both roles: providing node and requesting node.
This implementation reduces total service latency so that it
can satisfy a part of requirement (3). However, the imple-
mentation is just one example of implementation for a multi-
link network. The implementation can be enhanced by con-
sidering peculiar elements of multi-link networks, e.g., time
when each intermediate node on the delivery path starts file
transmission to the next node (starts when whole file is re-
ceived completely or not. We leave problems of the multi-
link algorithm to future work.

6. Simulation and Performance Analysis

We evaluated the performance of the algorithm described in
Sect. 5 by computer simulation.

6.1 Simulation Conditions

We used the one-link network shown in Fig. 4. The pro-
viding node had files, and the requesting nodes had clients.
The requesting nodes sent requests for each file indepen-
dently so that the requests arriving at the providing node
followed a Poisson distribution. To take into account the ef-
fect of the deviations in popularity among files, the average
arrival rate of the requests for each file was given by one of
three distributions: equivalent, uniform, or Pareto. To in-
vestigate scheduling effectiveness when the load on the pro-
viding node is high, we chose 1.80 [requests/sec] as average
requests rate [20]. Note that a Pareto distribution approx-
imates the distribution of the number of requests for each
content on the Internet [20]. The cumulative distribution
function of the Pareto distribution is expressed by

F(x) = 1 −
(

k
x

)α
, x ≥ k. (5)

To take into account different file types, e.g, audio,
video, and document, we selected a lognormal distribution
as the file size distribution. The cumulative distribution
function of the Pareto distribution is expressed by

40
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

F(x) =
∫ x

0

1√
2πσy

exp

[− (log y − ζ)2

2σ2

]
dy (6)

and we set ζ to 1.2 and σ2 to 0.2 [21].
We compared three file delivery scheduling algorithms

with our algorithm:

1. file delivery scheduling algorithm with FIFO.
2. file delivery scheduling algorithm with SRPT.
3. file delivery scheduling algorithm which calculates the

optimal solution when all arrival times of requests are
known in advance.

Here, 1) is a scheduling method whereby files are delivered
in the order in which requests arrive at the node. 2) is an
SRPT scheduling applied to file delivery. Recall that SRPT
is the optimal scheduling policy to minimize the mean re-
sponse time of jobs at single processor by changing the pro-
cessing order of jobs. 3) is a scheduling which calculate the
minimum sum of service latencies in the whole hop-by-hop
file delivery system when the arrival times of all requests are
known before the algorithm starts. Obviously, this would
not be possible in an actual network, but it does show the
theoretical efficiency limit of a hop-by-hop file-delivery sys-
tem.

6.2 Simulation Results

Figures 7, 8 and 9 plot the average service latency per re-
quest against the number of files to be sent when the aver-
age arrival rates were equivalent, followed a uniform distri-
bution, or followed a Pareto distribution for the proposed,
FIFO, SRPT, and optimal solutions. The relationship be-
tween the average service latency per request and number
of files was almost linear for all three distributions. The re-
sults of the proposed algorithm were better than FIFO.

The results of the proposed algorithm, SRPT and opti-
mal scheduling in Fig. 7 are almost same when the average
arrival rates were equivalent, and the proposed algorithm’s
solutions include worse part than those of SRPT. This is be-
cause the requests have the little influence of rescheduling
requests on the results when the average arrival rates for in-
dividual file requests are equivalent and the number of the
requests has no deviation over time; Hence, our algorithm’s
scheduling behavior resembles that of SRPT by mainly be-
ing affected by file size. Although our scheduling focuses
on both file size and the number of requests while SRPT
scheduling focuses on only file size, the small influence of
requests causes this similarity. Moreover, when the average
request arrival rates are equivalent, the number of suspen-
sions is larger than for the other distributions (Fig. 10), and
the suspensions created by our algorithm negatively affect
the results (As mentioned in Sect. 1, when the transmitting
completion orders of each file are the same, the total ser-
vice latency when there are suspensions is longer than when
there are no suspensions.).

As shown in Figs. 8 and 9, when the average arrival
rate follows a Pareto or uniform distribution, our scheduling

Fig. 7 Equivalent: arrival rate = 1.80 [request/sec].

Fig. 8 Uniform distribution: arrival rate = 1.80 [request/sec].

algorithm’s solution is close to the optimal one and further
from those of FIFO and SRPT. This means our algorithm
can appropriately change the file transmission order to min-
imize the total service latency by following both the popu-
larity and file size of each content. If the average arrival rate
follows a Pareto distribution, the fewer the files, the farther
the solution is from the optimum one. This is because all
average request arrival rates per file are easy to apply to the
long tail of the Pareto distribution (the portion of the tail that
corresponds to few requests and does not make much differ-
ence in the values) when there are few files. Therefore, the
difference in the values decreases and the results approach
those when the average arrival rates are equivalent. How-
ever, when the number of files to be sent is large, our algo-
rithm is effective even for the Pareto distribution, because
the difference in the values increases with the number of re-
quests for each file. Since a Pareto distribution approximates
the distribution of the number of requests for content on the
Internet, our algorithm should be effective in an actual net-
work.

Figures 11, 12 and 13 plot the average service latency
per request of each scheduling against the load when the av-

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
41

Fig. 9 Pareto distribution: arrival rate = 1.80 [request/sec].

Fig. 10 Distribution of requests vs. number of suspensions.

Fig. 11 Equivalent: the number of files = 5.

erage arrival rates were equivalent, followed a uniform dis-
tribution, or followed a Pareto distribution, and the number
of file was 5. The results of the proposed algorithm, SRPT
and optimal scheduling in Fig. 11 are almost same when the

Fig. 12 Uniform distribution: the number of files = 5.

Fig. 13 Pareto distribution: the number of files = 5.

average arrival rates were equivalent, and the proposed al-
gorithm’s solutions include worse part than those of SRPT.
This is because of the same reason mentioned above, the lit-
tle influence of rescheduling requests on the results when the
average arrival rates for individual file requests are equiva-
lent and the number of the requests has no deviation over
time. However, in Figs. 12 and 13, our scheduling algo-
rithm’s solution is close to the optimal one for the whole
load range, whereas FIFO and SRPT give solutions far from
the optimum one. We also evaluated the performance of
them with the various number of files by computer simula-
tion and the trend of the results are same as the figures.

These results show that our algorithm performed at
nearly the theoretical efficiency limit of a hop-by-hop sys-
tem by using a local optimal strategy when the request
frequency distribution for each file had a deviation, even
though we did not consider the request frequency distribu-
tion.

7. Conclusion

We discussed delivery of file-type content that cannot be

42
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

played before it has been completed downloaded in a hop-
by-hop file delivery system. We proposed a new file delivery
scheduling method for the system. As a basic study, we de-
veloped a new file delivery scheduling algorithm that works
when the frequency of requests for each file is unknown in
the one-link model. We evaluated its performance character-
istics in a simulation. The results indicate that the algorithm,
which uses the local optimal solution until the next request
arrives, performed nearly at the theoretical efficiency limit
of the hop-by-hop system when the request frequency dis-
tribution for each content had a deviation.

In the future, we will investigate a dynamic algorithm
for varying conditions such as the request frequency distri-
bution. We will also investigate fairness. We will also val-
idate an extended version of the algorithm adapted for the
caching algorithm and multi-link network. We mentioned
in Sect. 5 that our proposed algorithm for the one-link net-
work can be adapted for and implemented in an actual net-
work without any change. Moreover, the algorithm can be
enhanced by considering peculiar elements of a multi-link
network. We will enhance it by considering the following
perspectives.

1. Time of starting file transmission: Consider which
starting time is the best choice when each intermedi-
ate node on the delivery path starts file transmission to
the next node. That is, the node starts file transmission
to the next node when the node gets the whole file from
the previous node on the delivery path or the node gets
a part of the file from the previous node on the delivery
path.

2. Delivery path routing: Consider which next node is the
best choice to receive a file when some nodes on the de-
livery path are very crowded or the number of hops of
a delivery path is very large. Moreover, we should in-
vestigate how nodes not on the delivery path can know
the information to decide that.

3. Pair of providing node and requesting node: Consider
which providing node is the best choice when many
nodes have copies of original content. Moreover, con-
sider which requesting node has the highest priority to
receive content when a node has caching and forward-
ing capability and another node does not have that.

References

[1] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “A distributed
anonymous information storage and retrieval system,” Designing
Privacy Enhancing Technologies, LNCS 2009, pp.46–66, Springer-
Verlag, 2001.

[2] J.S.K. Chan, V.O.K. Li, and K.-S. Lui, “Performance comparison
of scheduling algorithms for peer-to-peer collaborative file distribu-
tion,” IEEE J. Sel. Areas Commun., vol.25, no.1, pp.146–154, Jan.
2007.

[3] S. Ganguly, A. Saxena, and S. Banerjee, “Fast replication in content
distribution overlays,” IEEE INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies,
vol.25, no.4, pp.2246–2256, March 2005.

[4] X. Jia, D. Li, H. Du, and J. Cao, “On optimal replication of data ob-
ject at hierarchical and transparent Web proxies,” IEEE Trans. Par-
allel Distrib. Syst., vol.16, no.8, pp.673–685, Aug. 2005.

[5] P. Rodriguez, C. Spanner, and E.W. Bjersack, “Analysis of
Web caching architectures: Hierarchical and distributed caching,”
IEEE/ACM Trans. Netw., vol.9, no.4, pp.404–418, Aug. 2001.

[6] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt, “Con-
strained mirror placement on the Internet,” IEEE J. Sel. Areas Com-
mun., vol.20, no.7, pp.1369–1382, Sept. 2002.

[7] J.E. Smith and J.R. Goodman, “Instruction cache replacement poli-
cies and organizations,” IEEE Trans. Comput., vol.C-34, no.3,
pp.234–241, March 1985.

[8] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy cache algo-
rithms: Design implementation, and performance,” IEEE Trans.
Knowl. Data Eng., vol.11, no.4, pp.549–562, July/Aug. 1999.

[9] J.S.K. Chan, V.O.K. Li, and K.-S. Lui, “Performance comparison
of scheduling algorithms for peer-to-peer collaborative file distribu-
tion,” IEEE J. Sel. Areas Commun., vol.25, no.1, pp.146–154, Jan.
2007.

[10] P. Felber and E.W. Biersack, “Cooperative content distribution:
Scalability through self-organization,” in Self-star Properties in
Complex Information Systems, ed. O. Babaoglu, et al., pp.343–357,
Springer-Verlag, Berlin, Heidelberg, 2005.

[11] Y. Cai, A. Natarajan, and J. Wong, “On scheduling of peer-to-peer
video services,” IEEE J. Sel. Areas Commun., vol.25, no.1, pp.140–
145, Jan. 2007.

[12] M. Schiely, L. Renfer, and P. Felber: “Self-organization in coopera-
tive content distribution networks,” IEEE International Symposium
on Network Computing and Applications, pp.109–118, July 2005.

[13] M. Agrawal, A. Manjhi, N. Bansal, and S. Seshan, “Improving
Web performance in broadcast-unicast networks,” IEEE Infocom,
pp.229–239, March 2003.

[14] E. Modiano, “Scheduling algorithms for message transmission over
a satellite broadcast system,” IEEE MILCOM 97, vol.2, pp.628–
634, Nov. 1997.

[15] L. Cherkasova, “Scheduling strategy to improve response time for
Web applications,” High-Performance Computiong and Networking
International Conference and Exhibition, LNCS, vol.1401, pp.305–
314, 1998.

[16] M.A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and
stretch metrics for scheduling continuous job streams,” Proc. Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp.270–
279, 1998.

[17] B. Schroeder and M. Harchol-Blter, “Web servers under overload:
How scheduling can help,” ACM Trans. Internet Technology, vol.6,
no.1, pp.20–52, Feb. 2006.

[18] N. Bansal and M. Harchol-Balter, “Analysis of SRPT scheduling:
Investigating unfairness,” ACM Sigmetrics/Performance, pp.279–
290, 2001.

[19] A. Wireman and M. Harchol-Balter, “Classifying scheduling poli-
cies with respect to unfairness in an M/GI/1,” ACM Sigmetrics In-
ternational Conference on Measurment and Modeling of Computer
Systems, pp.238–249, June 2003.

[20] M. Nabe, K. Baba, M. Murata, and H. Miyahara, “Analysis and
modeling of WWW traffic for designing Internet access networks,”
IEICE Trans. Commun. (Japansese Edition), vol.J80-B-I, no.6,
pp.428–437, June 1997.

[21] M. Andreolini and R. Lancellotti, “Analysis of peer-to-peer systems:
Workload characterization and effects on traffic cacheability,” IEEE
MASCOTS’04, pp.94–105, Oct. 2004.

[22] H. Tsurumi, T. Miyata, K. Yamaoka, and Y. Sakai, “A basic study
of a file delivery scheduling in a hop by hop file delivery system on
one link model,” IEEE PACRIM’07, pp. 446–449, Aug. 2007.

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
43

Appendix A: Proof of Disadvantage of Interruption

The theoretical optimal value of the total service latency (the
minimum value of the sum of the service latencies) can be
calculated if all the request arrival times are known in ad-
vance. This optimal value is given when we use the inter-
ruption disabling method. The total service latency for the
whole delivery system is longer when there are more inter-
ruptions of file transmission.

[Proof]
Label files according to the order of transmission finish

time, i.e., f ile 1, f ile 2, . . . , f ile m. Let the sizes of the files
be f1, f2, . . . , fm, and the whole download periods of files
with no interruption be h1, h2, . . . , hm, respectively. When
bandwidth b is constant, hi =

fi
b . The transmission finish

times of each file when there is no interruption are thus de-
noted as t1, t2, . . . , tm, respectively, and the transmission
finish times of each file when there are interruptions are t́1,
t́2, . . . , t́m, respectively.

Let αi be the transmitting period during t′i−1 < t < t′i
except the transmitting period of file i and αi, j be the trans-
mitting period of f ile j during αi.

The transmission finish time of the first file when an
interruption is allowed is the sum of the transmitting peri-
ods of f ile 1 and the other interrupted files. Therefore, the
transmission finish time of the first file when an interruption
is allowed (t́1) is expressed as

t́1 = h1 + α1 (A· 1)

The transmission finish time of the second file when an
interruption is allowed is the sum of the transmitting periods
of f ile 1, f ile 2, and the other interrupted files. Therefore,
the transmission finish time of the second file when an inter-
ruption is allowed (t́2) is expressed as

t́2 = h1 + h2 + (α1 − α1,2) + α2 (A· 2)

Similarly, the transmission finish time of the n-th file
when an interruption is allowed (t́n) is expressed as

t́n =
n∑

i=1

hi + (α1 − α1,2 − α1,3, . . . ,−α1,n)

+(α2 − α2,3 − α2,4, . . . ,−α2,n)

+, . . . ,+(αn−1 − αn−1,n) + αn

=

n∑
i=1

hi +

n∑
i=1

αi −
n∑

i=1

n∑
j=i+1

αi, j (A· 3)

The interruption finish time of the n-th file when an
interruption is not allowed (tn) is expressed as

tn =
n∑

i=1

hi (A· 4)

Here, because 0 ≤ ∑n
j=i+1 αi, j ≤ αi, one gets

∑n
i=1 αi −∑n

i=1
∑n

j=i+1 αi, j ≥ 0. Therefore, we get Eq. (A· 5) as follows:

t́n =
n∑

i=1

hi +

n∑
i=1

αi −
n∑

i=1

n∑
j=i+1

αi, j ≥
n∑

i=1

hi = tn (A· 5)

Therefore, the relation between ti and t́i is always ex-
pressed by Eq. (A· 6).

t́n ≥ tn (A· 6)

Here, ta(j, i) is the arrival time of the i-th request for
f ile j, é j is the number of requests which arrived before t́ j

of the number of the requests for f ile j, and l is the total
number of the files for which requests arrived.

The sum of service times ś is

ś =
l∑

j=1

é j∑
i=1

(t́ j − ta(j, i)) (A· 7)

On the other hand, the sum of service times s is
Eq. (A· 8) when an interruption is not allowed and the order
of file transmission is the same as above.

s =
l∑

j=1

e j∑
i=1

(t j − ta(j, i)) (A· 8)

Here, according to Eq. (A· 6), the transmission finish
time of each file when an interruption is allowed is later
than or the same as when an interruption is not allowed.
Therefore, the relation between é j and e j is expressed by
Eq. (A· 9).

é j ≥ e j (A· 9)

According to Eq. (A· 6), Eq. (A· 7), Eq. (A· 8), and
Eq. (A· 9), the relation between ś and s can be expressed
as

ś ≥ s (A· 10)

Therefore, the theoretical optimal value of the sum of
service latencies is only attainable when there is no interrup-
tion. If the transmitting periods of files except the transmit-
ting periods of files which finished transmission before tn in-
crease before tn, then

∑n
i=1 αi −∑n

i=1
∑n

j=i+1 αi, j in Eq. (A· 3)
increases. According to Eq. (A· 7), this causes the sum of
service latencies in the whole system to grow.

The above indicates that we cannot expect the interrup-
tion enabling method to reduce the total transmission time
if file transmissions can be interrupted.

[End of Proof]

Appendix B: Proof of Local Optimal Solution

The algorithm described in Sect. 5 should determine the
transmission order of files so that g, w, and w′ (Eqs. (1), (2),
and (3), respectively) take minimum values. That is, the al-
gorithm should determine the file transmission order so that
the total service latency for the whole delivery system takes
a minimum value when the number of requests for each file
remains unchanged. We found the determination method;

44
IEICE TRANS. COMMUN., VOL.E92–B, NO.1 JANUARY 2009

otherwise we must do a full-search [22] to determine that.
The method is as follows.

The g takes a minimum value when ΦT (I, Fo) =
ΦD(I, Fo), for 1 ≤ I ≤ n. The w takes a minimum value
when ΦT (I, F) = ΦD(I, F), for 1 ≤ I ≤ l, and the w′
takes a minimum value when ΦT (I, F′) = ΦD(I, F′), for
1 ≤ I ≤ l − 1. The proof is as follows.

[Proof]
Label files in accordance with the descending order of

ri

di
, i.e., f ile 1, f ile 2, · · · , f ile m. Let the number of requests

for the files be r1, r2, · · · , rm, and the total download times
for the files without interruption be d1, d2, · · · , dm, respec-
tively. If bandwidth b is constant and the remaining size of
f ile i is fi, di =

fi
b .

[Step 1. When the number of files is 2]

Let the total service latency be s′ when the files are trans-
mitted in order f ile 1, f ile 2, and let it be s′′ when the files
are transmitted in order f ile 2, f ile 1.

s′ = d1r1 + (d1 + d2)r2 (A· 11)

s′′ = d2r2 + (d1 + d2)r1 (A· 12)

s′′ − s′ = d2r1 − d1r2 ≥ 0

(
�

�

�

r1

d1
≥ r2

d2

)
(A· 13)

Therefore, if the number of files is two, the total service
latency takes a minimum when the files are transmitted in
descending order in terms of ri

di
.

[Step 2. When the number of files is k + 1]

We assume that the total service latency takes a minimum
when the number of files is k and the files are transmitted in
descending order in terms of ri

di
(Assumption 1). Under this

assumption, label files in accordance with the descending
order of ri

di
, i.e., f ile 1, f ile 2, · · · , f ile k.

Let the (k+1)−th f ile be f ile x, the number of requests
for the file be rx, and the total download period for all files
without interruption be dx.

B.1 When rx

dx
≥ r1

d1
(rx

dx
is the largest value for all files)

Under this condition, the minimum total service latency
when f ile x is first transmitted, s′, is calculated by minimiz-
ing the sum of the service latency of the k files transmitted
after the first file is transmitted. Given Assumption 1 above,
the transmission order of files that results in the minimum
total service latency is that corresponding to the descending
order of ri

di
, i.e., f ile x, f ile 1, f ile 2, · · · , f ile k.

s′ = dxrx +

k∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx +

i∑
j=1

d j

⎞⎟⎟⎟⎟⎟⎟⎠ (A· 14)

Next, we calculate the minimum total service latency,
s′′, when f ile x is not transmitted first. Let the file that is
transmitted first be f ile a (1 ≤ a ≤ k). Under this condition,

according to Assumption 1 and rx

dx
≥ r1

d1
, f ile x is selected to

be transmitted next. The remaining files are transmitted in
the order f ile 1, f ile 2, · · · , f ile a − 1, f ile a + 1, f ile a + 2,
· · · , f ile k.

s′′ = dara + (dx + da) rx +

a−1∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx + da +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠

+

k∑
i=a+1

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠ (A· 15)

s′′ − s′ = (darx − dxra) +

⎛⎜⎜⎜⎜⎜⎝
a∑

i=1

dari −
a∑

i=1

dira

⎞⎟⎟⎟⎟⎟⎠ ≥ 0

(
�

�

�

rx

dx
≥ ra

da
,

ri

di
≥ ra

da
(1 ≤ i ≤ a)

)
(A· 16)

Therefore, if Assumption 1 and rx

dx
≥ r1

d1
hold, the total

service latency takes a minimum when f ile x is transmitted
first and the order of the k remaining files transmitted after
the first file is f ile 1, f ile 2, · · · , f ile k, i.e., in descending
order corresponding to ri

di
.

Therefore, if Assumption 1 and rx

dx
≥ r1

d1
hold, and the

number of files is k + 1, the total service latency takes a
minimum when the k + 1 files are transmitted in descending
order corresponding to ri

di
.

B.2 When rx

dx
< r1

d1
(r1

d1
is the largest value for all files)

Under this condition, the minimum total service latency
when f ile 1 is transmitted first, s′, is calculated by mini-
mizing the sum of the service latency of the k files trans-
mitted after the first file is transmitted. Given Assumption
1 above, the transmission order of k + 1 files that results in
the minimum total service latency is that corresponding to
the descending order of ri

di
, i.e., f ile 1, f ile 2, · · · , f ile b − 1,

f ile x, f ile b, f ile b + 1, · · · , f ile k.

s′ =
b−1∑
i=1

ri

i∑
j=1

dj +

⎛⎜⎜⎜⎜⎜⎜⎝dx +

b−1∑
i=1

⎞⎟⎟⎟⎟⎟⎟⎠ rx +

k∑
i=b

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠
(A· 17)

Next, we calculate the total service latency when f ile 1
is not transmitted first: s′′1 when r1

d1
≥ ra

da
≥ rx

dx
and s′′2 when

r1
d1
≥ rx

dx
≥ ra

da
. Let the first transmitted file be f ile a (1 < a ≤

k or f ile a is f ile x).

s′′1 = dara +

a−1∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎜⎝da +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠

+

b−1∑
i=a+1

ri

i∑
j=1

dj +

⎛⎜⎜⎜⎜⎜⎜⎝dx +

b−1∑
i=1

di

⎞⎟⎟⎟⎟⎟⎟⎠ rx

+

k∑
i=b

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠ (A· 18)

s′′2 = dara +

b−1∑
i=1

ri

⎛⎜⎜⎜⎜⎜⎜⎝da +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝da + dx +

b−1∑
i=1

di

⎞⎟⎟⎟⎟⎟⎟⎠ rx

TSURUMI et al.: LOCAL OPTIMAL FILE DELIVERY SCHEDULING IN A HOP BY HOP FILE DELIVERY SYSTEM ON A ONE LINK MODEL
45

+

a−1∑
i=b

ri

⎛⎜⎜⎜⎜⎜⎜⎝da + dx +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠ +
k∑

i=a+1

ri

⎛⎜⎜⎜⎜⎜⎜⎝dx +

i∑
j=1

dj

⎞⎟⎟⎟⎟⎟⎟⎠
(A· 19)

s′′1 − s′ = s′′2 − s′ =
a∑

i=1

dari −
a∑

i=1

dira ≥ 0

(
�

�

�

ri

di
≥ ra

da
(1 ≤ i ≤ a)

)
(A· 20)

Therefore, if Assumption 1 and rx

dx
< r1

d1
hold, the total

service latency takes a minimum when f ile 1 is transmitted
first and the k remaining files are transmitted corresponding
to the descending order of ri

di
.

Therefore, if Assumption 1 and rx

dx
< r1

d1
hold, and the

number of files is k + 1, the total service latency takes a
minimum when the k + 1 files are transmitted in descending
order corresponding to ri

di
.

B.3 Conclusion

As shown in Steps 2-1 and 2-2, if the total service latency
for transmitting k files takes a minimum when the files are
transmitted in descending order corresponding to r

d , the to-
tal service latency for transmitting k + 1 files also takes a
minimum when the files are transmitted in descending order
corresponding to ri

di
.

[Step 3. When there is any number of files]

As proved by mathematical induction in Steps 1 and 2, if
there is any number of files, the total service latency takes a
minimum when the files are transmitted in descending order
corresponding to ri

di
.

[End of Proof]

Hiromi Tsurumi received a B.E. degree
from the Tokyo Denki University in 2006. She
joined the Department of Communications and
Integrated Systems at the Tokyo Institute of
Technology in 2006 and is currently undertak-
ing a master course of Tokyo Institute of Tech-
nology. Her research interests include schedul-
ing, optimization, techniques for file delivery,
and communications.

Takamichi Miyata received the B.Eng.
and M.Eng. degrees from the University of To-
yama, Toyama, Japan in 2001 and 2003, respec-
tively, and Dr.Eng. degree from Tokyo Institute
of Technology, Tokyo, Japan in 2006. In 2006,
he joined Dept. of Communications and Inte-
grated Systems at Tokyo Institute of Technology
as an assistant professor. His current research
interests include image processing, and image
coding.

Katsunori Yamaoka received the B.E.,
M.E., and Ph.D. degrees from the Tokyo Insti-
tute of Technology in 1991, 1993 and 2000, re-
spectively. He left Ph.D. program in 1994 and
joined the Tokyo Institute of Technology as an
assistant professor at that time. In 2000, he
joined the National Institute of Multimedia Ed-
ucation (NIME) in Japan as an associate profes-
sor. Since 2001, he has been an associate pro-
fessor at the Tokyo Institute of Technology. He
has also been a visiting associate professor of

the National Institute of Informatics (NII) in Japan since 2004. His re-
search interests are network QoS control for multimedia.

Yoshinori Sakai received the B. Eng., and
the Dr.Eng. In electrical engineering from the
University of Tokyo, Tokyo, Japan in 1969 and
1974 respectively. From 1974 to 1987, he was
employed by Nippon Telegraph and Telephone
Public Corporation (NTT). From 1987 to 1990,
he was an Associate Professor at Tokyo Insti-
tute of Technology, where he is a Professor. He
designed many communication systems, for ex-
ample digital transmission system over existing
FDM network, facsimile communication net-

work and teleconference system at NTT lab. His current research interests
include image information retrieval, network streaming and content distri-
bution over the Internet. He received the best author award from the ITV
Japan, the best paper award from IIEEJ Japan and the achievement award
from IEICE. He is now Director, Publications of IEICE.

