IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
Impact of Spatial Diversity Reception on SAR Reduction in Implant Body Area Networks
Daisuke ANZAISho AOYAMAMasafumi YAMANAKAJianqing WANG
Author information
JOURNAL RESTRICTED ACCESS

2012 Volume E95.B Issue 12 Pages 3822-3829

Details
Abstract

Wireless capsule endoscopy (WCE) is now one of most important applications in implant body area networks (BANs). WCE requires high throughput performance due to its real-time data transmission, whereas the communication performance depends much on the transmit power, which is strictly regulated in order to satisfy a safety guideline in terms of specific absorption rate (SAR). Spatial diversity reception is well known to improve the wireless performance without any temporal and spectral resource expansion. Additionally, applying spatial diversity reception to WCE systems can be expected to not only improve the wireless communication performance but also to reduce SAR. Therefore, this paper investigates the impact of spatial diversity reception on SAR levels for the 400MHz medical implant communication service (MICS) band. To begin with, based on finite-difference time-domain (FDTD) simulations for implant BAN propagation with a numerical human body model, we first calculate the BER performance and derive the required transmit power to secure a permissible BER. Then, this paper calculates the local peak SAR under the required transmit power when the implant transmitter moves through the digestive organs. Finally, our simulation results demonstrate that applying spatial diversity reception can significantly reduce SAR in implant BANs.

Content from these authors
© 2012 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top