
2
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

INVITED PAPER Special Section on Network Virtualization, and Fusion Platform of Computing and Networking

An Architecture for International Federation of Network Testbeds

Robert RICCI†a), Gary WONG†b), Leigh STOLLER†c), and Jonathon DUERIG†d), Nonmembers

SUMMARY Testbeds play a key role in the advancement of network
science and the exploration of new network architectures. Because the
scale and scope of any individual testbed is necessarily limited, federa-
tion is a useful technique for constructing testbeds that serve a wide range
of experimenter needs. In a federated testbed, individual facilities maintain
local autonomy while cooperating to provide a unified set of abstractions
and interfaces to users. Forming an international federation is particularly
challenging, because issues of trust, user access policy, and local laws and
regulations are of greater concern that they are for federations within a sin-
gle country. In this paper, we describe an architecture, based on the US
National Science Foundation’s GENI project, that is capable of supporting
the needs of an international federation.
key words: testbeds, federation, network, GENI

1. Introduction

Testbed facilities, which provide experimenters with the
ability to run protocols and applications on real or emulated
networks, are key resources in the networking and systems
research and education communities. Because they are pro-
grammable, controlled environments, they give researchers
an excellent platform for investigating future directions in
Internet architecture. Traditionally, each facility has been
built and operated as a stand-alone facility: each testbed
is owned and operated by a different entity, and the focus
of research on testbed control frameworks has considered
problems of designing, building, operating, and improving
individual facilities [1]–[4].

This model, however, is changing: as the needs and
expectations of testbed users expand, it is increasingly hard
to satisfy those needs with a set of isolated facilities. This
leads to a federated model, in which individual testbeds
work together to provide their users with a common frame-
work for discovering, reserving, and using resources. Feder-
ated testbeds may be built out of existing stand-alone facili-
ties, new facilities specifically designed for federation, or a
combination of the two. A framework for testbed federation
must establish trust between federates, but allow each mem-
ber of the federation to retain policy autonomy; that is, the
ability to make local decisions regarding which users and
experiments are allowed to use it. It should also afford each

Manuscript received September 18, 2012.
†The authors are with the University of Utah, Salt Lake City,

UT, USA.
a) E-mail: ricci@cs.utah.edu
b) E-mail: gtw@cs.utah.edu
c) E-mail: stoller@cs.utah.edu
d) E-mail: duerig@cs.utah.edu

DOI: 10.1587/transcom.E96.B.2

federated facility operational autonomy, meaning that the
federate should remain usable regardless of the operational
state of other members of the federation.

As federated testbeds grow in scale and scope, they nat-
urally begin to cross national boundaries. This presents a
number of new challenges, and strengthens the needs for
autonomy among federates: a facility spanning the globe is
likely to have more distinct resource owners, with a wide
variety of operations models, access policies, and legal con-
siderations. In addition, as the size of a federation increases,
the likelihood that every federate is up and operational at
any point in time declines, so it is important that failure of
remote components does not impact users’ abilities to use
other parts of the federation. In many cases, participants
in an international federation already participate in a na-
tional federation: this makes it necessary to support inter-
federation (federations of federations), allowing individual
facilities to participate in more than one federation at a time.

In this paper, we present an architecture for federation
of network testbeds that takes into account the needs of fed-
eration between nations. We begin by providing background
information on the architecture of the US National Science
Foundation’s GENI project [5]. When then proceed to de-
scribe the goals and principles that inform ProtoGENI, our
realization of the GENI architecture. In Sect. 2, we describe
how each federated facility can be operationally indepen-
dent while offering users the impression of a single unified
facility. In Sect. 3, we turn our attention to issues of trust be-
tween federated facilities and federations-of-federations. In
Sect. 4, we put these pieces together to demonstrate how an
international inter-federation can be constructed using this
architecture, combining federations run by different coun-
tries into a cohesive whole, while each federation retains its
own local operational and authorization policy.

1.1 GENI Architecture

The architecture of ProtoGENI builds on the GENI frame-
work. GENI’s architecture is, in turn, based on the “Slice-
based Federation Architecture” (SFA) [6], which has been
developed by the GENI community. The SFA is so named
because it centers around partitioning the physical facility
into “slices,” each of which can be running a different net-
work architecture or experiment inside. Physical resources,
such as PCs, routers, switches, links, and allocations of
wireless spectrum are known as “components”; when a user
allocates resources on a component, the set of resources they

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
3

are given comprises a “sliver.” This sliver could be a virtual
machine, a VLAN, a virtual circuit, or even the entire com-
ponent. Each sliver belongs to exactly one slice: in essence,
a slice is a container for a set of slivers.

There are two key types of principals in GENI:
Aggregate Managers (AMs) are responsible for man-

aging the resources (components) on which users will cre-
ate networks and run experiments. AMs are responsible for
the allocation of their resources, and may make decisions
about who is authorized to use them. An individual AM
may manage a collection of components, called an aggre-
gate; in practice, each facility in GENI runs a single AM
that manages all of its resources, and the largest aggregates
contain hundreds of nodes and thousands of links.

Users access components from the federated testbed to
run an experiment or a service. A user is free to create slices
which span multiple AMs, and each user is authorized by
one of the facilities in the federation.

Principals and many other objects in the system are
uniquely named by a Uniform Resource Name (URN) [7].
The URN scheme that we use [8] is hierarchical — each au-
thority is given its own namespace, which it can further sub-
divide if it chooses. To maintain partitioned trust, each
authority is prohibited, through mechanisms described in
Sect. 3 from creating URNs outside of its namespace. An
example of a GENI URN is:

urn:publicid:IDN+

Authority
︷����������︸︸����������︷

emulab.net+user+

ID
︷︸︸︷

jay

Because the URN contains the identity of the authority that
issued it (in this example “emulab.net”), it is possible to
tell which authority “owns” the object without resorting to a
lookup service.

At a high level, testbeds federate in this framework by
forming trust relationships: if facility A trusts facility B,
then A is willing to trust B’s statements about what users
it has, what slices they have created, and what resources B
offers. Note that this does not preclude A from having lo-
cal allocation policies: just because it recognizes B’s users
does not obligate it to satisfy all requests they might make.
Arrangements regarding “fair sharing,” etc. can be made as
part of the federation agreement. Trust relationships need
not be symmetric: A may choose to trust B even if that trust
is not reciprocated.

2. Enabling Independent Operation

We build on the basic GENI architecture by adding three
new kinds of entities into the federation, and by providing
an expanded API for AMs†.

Identity Providers (IdPs) attest to the identity of users
by forming names that uniquely identify them, then issu-
ing those users certificates that they can use to prove their
identities to other services. IdPs can choose to accept re-
sponsibility for enforcing arbitrary policies covering users
and names.

Fig. 1 An example of entities interacting within a federation. The princi-
pals are described in Sects. 1.1 and 2; the arrows indicate trust relationships,
described in Sect. 3.

Slice Authorities (SAs) are responsible for creating
slice names and granting users the necessary credentials to
manipulate these slices. By issuing a name for a slice, the
SA agrees to be responsible for the actions taken within the
slice. An SA may be an institution, a research group, a gov-
ernmental agency, or other organization.

A user has an account with an SA, called the “home”
SA; this SA vouches for the identity of the user, and in most
cases, is willing to create slices for the user. The user is,
however, free to create slices using any SA that, according
to its own policies, is willing to be responsible for that user’s
actions.

Establishing trust in this pairwise fashion does not
scale well to large federations. ProtoGENI’s sole central-
ized service, the Clearinghouse (CH), is used to make this
process more convenient: it allows federates to publish the
certificates that are used to establish trust, and to discover
the certificates of other federates. It is important to note
that this does not mandate specific trust relationships: as de-
scribed in [10], a federate may choose not to trust some cer-
tificates stored at the clearinghouse, or may choose to trust
additional certificates that are not registered there.

The clearinghouse also serves a second purpose: it acts
as a registry where various objects can be looked up. No-
tably, users can ask the clearinghouse for a list of all regis-
tered federates to bootstrap the process of resource discov-
ery, as described in the next section. In both of these roles,
the information provided by the clearinghouse changes in-
frequently, and can be safely cached for long periods of time
(days or weeks).

ProtoGENI has been designed to keep federates as
loosely coupled as possible; they do not depend on central
services, and the only parts of the system involved in a given

†Here, we limit our discussion to the properties of ProtoGENI
that are relevant to international federations; more details on the
topics in this section, including a set of principles for distributed
facility design, can be found in [9].

4
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

operation are those directly affected by it. In the extreme
case, if a federate is cut off from communication with the
rest of the federation, users who can reach the federate are
still able to create slices and slivers on it.

This is possible because ProtoGENI goes to great
lengths to ensure that minimal state synchronization is re-
quired between AMs, SAs, and the CH. This section de-
scribes the interactions these services have with each other
and with users. We concentrate on where ProtoGENI stores
state, how it avoids centralized services, and how failures
are managed. Because the full ProtoGENI APIs [11] are too
large to cover in depth here, we introduce only the opera-
tions necessary to understand state management.

2.1 Slice State

ProtoGENI does not attempt to guarantee a globally consis-
tent view of the state of each slice. Instead, it uses a loose
consistency model in which each of the individual authori-
ties and managers maintain their own state.

The authoritative source for user and slice records is the
SA that issued them, and the authoritative source for sliver
information is the AM on which the sliver exists. Because
the URNs used in ProtoGENI encode the issuing authority,
it is possible to determine the correct authority to query sim-
ply by examining an object’s name. If, for example, a AM
wishes to find out more about a user who has created a slice
on it, the AM may use the user’s URN to identify and query
the user’s home SA.

When a sliver is created, the AM is not provided with a
global picture of the slice: the sliver request need only con-
tain the resources on the AM in question and any links to di-
rectly adjacent AMs that need to be configured as part of the
slice. Information about the rest of the slice is not needed for
the AM to create its slivers, and maintaining a global view
would require that the AM be notified of changes anywhere
in the slice, even if those changes do not directly affect it.

2.2 Resource Reservation Across AMs

Slices that cross AMs present a dilemma: we would ide-
ally like the process of allocating or updating slivers to be
atomic across all aggregates. As a concrete example, con-
sider a slice with existing slivers from two different AMs.
We would like to make a change on both slivers, but only
if both of the changes succeed. If either one is denied, we
want to roll back to the original configuration without losing
existing resources or otherwise changing the slivers. How-
ever, the loosely-coupled nature of the federation precludes
using global locks or global transactions.

Instead, we consider the resource allocation process on
each AM to be a separate local transaction, and model the
life cycle of each sliver as a state machine. We designed
the state machine with minimal abstraction in mind, allow-
ing clients or other intermediaries to build a transactional
abstraction across AMs on top of our lower-level per-AM
API. Each sliver can be in one of four states:

1. The Null state, in which the sliver does not exist (has
not yet been created, or has been destroyed).

2. The Ticket state, in which the user holds a ticket
promising resources, but the sliver is not instantiated
on the component.

3. The Sliver state, in which the sliver has been instanti-
ated, but the user does not hold a valid ticket.

4. The Sliver and Ticket state, in which the user has both
an instantiated sliver and a ticket.
This state machine makes sliver manipulation a three-

step process:
1. Get the list of currently available resources from each

AM.
2. Request a new ticket on each AM; this step obtains a

guarantee of resources, but does does not actually in-
stantiate a new sliver or modify an existing sliver.

3. Redeem the tickets at each AM to “commit” the re-
source change.
Steps 1 and 2 are not atomic: if other users are simul-

taneously trying to reserve resources to their own slices, the
second step may fail. In a distributed system like Proto-
GENI, it is not feasible to lock the resource lists for any
length of time. Since contention for resources is generally
rare in ProtoGENI, a form of optimistic concurrency con-
trol [12] is employed to both avoid locking and to ensure
that users will find out if someone else has already reserved
a resource.

2.3 Slice and Sliver Lifetimes

Because authoritative slice state is distributed across SAs
and AMs, and we cannot guarantee that they remain in con-
tact throughout the lifetime of the slice, we give each slice
and sliver an expiration date. This way, we can be assured
that all slivers are eventually cleaned up and their resources
reclaimed.

There are important nuances, however, in the relation-
ship between slice and sliver lifetimes. Because each sliver
must belong to a slice, the sliver must not outlive its slice. If
it did, this could lead to a situation in which the user would
lose control of the sliver.

The first consequence of this requirement is straight-
forward: the expiration time for each sliver is bounded by
the expiration time of the slice itself. The second conse-
quence is that a slice cannot be deleted before it expires.
It is possible that slivers exist that the SA is unaware of; a
AM may have been unable to contact the SA to inform it of
the sliver’s existence. Therefore, the SA cannot know with
certainty that deleting the slice is safe and will leave no or-
phaned slivers. As a result, slice names cannot be re-used
by experimenters before they expire. Since the namespace
for slices is effectively unbounded in size, this is not a major
concern.

2.4 Behavior in the Face of Failures

ProtoGENI passes as much context as possible in API calls,

RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
5

so that they can be self-contained. While this does result in
some extra overhead in the calls, the benefit is that the user
can continue to make progress in the presence of network
or service failures. For example, a user obtains authorisa-
tion credentials from his home SA, and these credentials are
passed by the user to AMs when requesting tickets. As de-
scribed in [10], the AM receiving this material can verify its
authenticity without contacting the issuer. As a result, it is
possible for use of the testbed to proceed in the face of many
classes of failures of individual components.

3. Partitioned Trust

Our model divides a testbed (or federation of testbeds) into
multiple trust domains. Each object within the system be-
longs unambiguously to a single domain, and each facility
has authority only over those objects which fall within its
domain†. This tight binding is an essential requirement, and
guarantees important properties beyond those merely arising
from multiple trust anchors. For instance, the trust model
used by Web browsers when communicating over TLS/SSL
[13] makes use of many trust anchors — browsers typically
trust hundreds of root CA certificates — but trust is not par-
titioned, and any CA is permitted to sign any certificate.
Therefore, no guarantees about the security of the composite
system can be made beyond that of the least trusted CA.

This problem is particularly acute in international fed-
erations. The stakeholders in such a federation are likely to
have different regulatory and legal requirements, and allow-
ing any member of the federation to assert authority over
other members’ entities could have serious consequences.

Our model permits a hierarchical structure (that is,
“sub-partitions” of trust). It is also transparent: when an
object from one domain interacts with an object from an-
other domain, both objects’ true identities are exposed, so
that policies can be based on the object’s full identity, the
domain to which it belongs, or both.

When different parts of a system may be owned and op-
erated by different organizations, or need to enforce custom
local policies, sophisticated requirements for authentication
and authorization infrastructure arise. Our approach is to
adopt a decentralized architecture, to support disconnected
operation, and to decouple authentication from authoriza-
tion whenever possible.

The authentication system is based on the IETF PKIX
model [14], while the authorization mechanism involves the
presentation of cryptographically signed credentials (which
behave analogously to X.509 Attribute Certificates [15]).
When a principal presents a certificate or credential, it pro-
vides all of the signatures required to link the certificate or
credential with one of the trust roots; as a result, no direct
communication with the certifying party is required to val-
idate certificates and credentials. Together, these primitives
allow the warranting of identities, the granting and delega-
tion of permissions, and the verification of identity and priv-
ilege. Most importantly, all of these operations may be per-
formed by different principals, who need no direct knowl-

edge of each other. Very little global policy is imposed,
other than conformance to uniform naming and data rep-
resentation schemes.

Additional details of this model can be found in [10].

3.1 Certificate Authorities

We deliberately refrain from imposing a single hierarchy on
the trust structure (as used in PEM [16], for instance), as that
model is inadequate to support local fine-grained trust deci-
sions. On the other hand, an entirely decentralized public
key distribution mechanism (such as PGP’s “web of trust”
[17]) is highly flexible, but tends to introduce barriers to
new principals entering the system, as their certificates are
unlikely to be accepted by others until they are able to obtain
signatures from a sufficient number of existing authorities.

Our public key infrastructure treats each domain as a
trust anchor, with its own self-signed CA certificate. Each
CA may form subsidiary namespaces and issue correspond-
ing CA certificates over them. This approach yields signif-
icant flexibility in trust decisions (at the granularity of do-
mains), although it does introduce the problem of distribut-
ing the set of root certificates throughout a federation. Our
system makes use of the clearinghouse by giving it the role
of a trusted introducer: it publishes a bundle of certificates
from known domains as a convenience, but it is important
to note that this does not detract from any site’s autonomy.
Each domain is free to add to or delete from the CH’s list
of certificates (or even ignore it entirely). A CH also aggre-
gates certificate revocation lists [14] from the same set of
domains, though nothing prevents domains from communi-
cating their CRLs to each other directly.

3.2 Authenticating Identities

Public key certificates are issued to each principal in the sys-
tem, including users, services, and components. They must
be signed by the authority corresponding to the namespace
in which the principal’s name belongs: since these names-
paces do not overlap, there always exists exactly one certifi-
cate authority whose signature will be accepted on any valid
certificate.

All requests are made over TLS [13] channels, and both
the client and server must authenticate to each other. (This
implies that if either peer has decided not to trust the other’s
CA, then no communication or operation will be possible.)

We have ensured that certificates are self contained:
certificates are always presented in conjunction with any in-
termediate CA certificates, so that any verifier can determine
the validity of any certificate with no information other than
the set of trust anchor certificates and current CRLs. (TLS
and PKIX already provide this property, and we have been

†We make a subtle, but important, distinction between having
authority over an object and making assertions about it; only au-
thorities can attest to the identity of objects, while assertions (state-
ments relating to that object) may be made by any party, and may
be accepted by any entity that trusts the asserter.

6
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

careful to preserve it in the conventions and certificate ex-
tensions we have added.)

3.3 Issuing Names

Formal structure within names is essential for partitioning
trust, so that an unambiguous trust root can be identified for
any named object. ProtoGENI has adopted the proposal by
Viecco et al. [8] for uniform naming conventions through-
out GENI. This name scheme tightly binds each object’s
name to a particular authority, which is necessary to main-
tain clear definitions of trust boundaries. By refusing a CA’s
signature on any certificate whose subject name lies outside
the CA’s namespace, we are able to guarantee the important
property that any valid object name corresponds to exactly
one trust root. Although there are certain limitations to this
model (for instance, if a principal wishes to associate with
a different CA for any reason, then it is forced to change its
identity), the benefits are significant: first, each domain has
great flexibility in choosing the set of peers with whom it
will operate; second, we achieve a reasonable level of fault
containment, since even extremely severe faults (e.g. mali-
cious CAs or Byzantine failure of a CA) are unable to affect
objects outside their assigned namespace. This property is
extremely important, as a single key compromise in a PKI
system without naming restrictions can leave the entire sys-
tem vulnerable [18]. A series of attacks against root CAs in
mid-2011 attracted widespread publicity and has required
extensive software patches to terminate trust in the affected
CAs [19].

3.4 Authorizing Operations

Credentials are used in conjunction with our public key
infrastructure to allow secure validation of permissions:
X.509 certificates prove that a key is bound to a principal,
and credentials prove that permissions have been assigned
to that principal (see Fig. 2).

It is important to note that our credentials are issued
as the result of authorization decisions, and could thus be
considered to represent capabilities. Another useful class of
statement about principals are assertions, which can be used
as input to policy decisions; assertions may take the form of
statements such as “X is a student,” “Y has a Top Secret se-
curity clearance,” etc. ABAC [20] (Attribute Based Access
Control) combines a system for making signed assertions
with a system of formal logic to reason about authorization
decisions. Under separate work by the GENI ABAC team,
ABAC is being integrated with ProtoGENI.

Almost all services must verify both certificates and
credentials: relying on either alone is inadequate. (There are
a small number of exceptions, such as a ProtoGENI user’s
own facility, which records state concerning the users privi-
leges over objects under its control, and consequently is able
to issue credentials on the basis of a successful key chal-
lenge alone.)

Fig. 2 The transfer of cryptographic certificates (“Cert”) and credentials
(“Cred”) between principals in a federation. Solid lines indicate new mate-
rial being issued and signed; dotted lines indicate presentation of existing
information.

4. Constructing an International Federation

We define an inter-federation to be a federation whose mem-
bers are, in turn, federations†. There are two parts to con-
structing an inter-federation using the ProtoGENI architec-
ture: providing a set of compatible abstractions and APIs to
users, and establishing trust relationships between the fed-
erates.

In order to ensure operational independence of the fed-
erates, the common API should follow the principles de-
scribed in Sect. 2. Examples of APIs following this archi-
tecture include the ProtoGENI [11] and GENI [21] APIs. In
most cases in GENI, this has been done by placing a “wrap-
per” around the native APIs of existing testbed control soft-
ware [1], [2], [22]. We expect this to be a popular approach
in international federations as well: each nation or funding
agency may have developed its own APIs and mechanisms
for resource access, or have existing frameworks for testbed
control.

The remainder of this section focuses on the second
part of inter-federation establishment, the creation of a trust
structure. It is important to note that when we discuss trust
in this context, we refer specifically to the ability to make
statements about the existence, identity, and public keys
of objects: for example, to assert the existence of a user,

†Without loss of generality, any of these federations could be
trivial federations with a single member.

RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
7

Fig. 3 An inter-federation consists of one clearinghouse for the entire inter-federation (“Global CH”),
one clearinghouse per federation (“CH”), and a potentially large number of individual federates (“Fed”).
The structure on the left illustrates a single root of trust per federation (see Sect. 4.1), while the flatter
arrangement on the right shows multiple roots of trust per federation (Sect. 4.2).

a slice, or a component manager. By this definition, es-
tablishing trust does not, by itself, require members of the
national federations to apply specific policies to principals
from other federations. The policies that federations apply
to other members of the inter-federation will be worked out
as part of the inter-federation agreement. Example policies
include:
• a national federations may agree to accept all slices

from foreign Slice Authorities;
• a national federation may agree to accept only foreign

slices that are endorsed by a particular foreign Slice
Authority, representing experiments that the foreign
entity has vetted as appropriate for running internation-
ally;
• a national federation may accept only foreign slices

that it has vetted itself for use on its resources.
Models such as ABAC [20] can provide the technical means
by which these policies are stated and enforced.

4.1 Single Root of Trust per Federation

We first consider the case in which each national federation
traces all trust relationships back to a single trust root, as il-
lustrated on the left side of Fig. 3. In this trust structure, the
federation creates a root namespace associated with a sin-
gle authority certificate; this namespace is recursively sub-
divided, as described in Sect. 2, with each member of the
federation being assigned to a partition. Each federate’s cer-
tificate is signed by the root for the federation, meaning that
trusting the root certificate is sufficient to trust any member
of the federation.

Creating an inter-federation in this case is straightfor-
ward: a global clearinghouse tracks the root CAs for each
national federation, and members of the inter-federation
agree to trust all CAs provided by the global clearinghouse.
This allows each federation to accept the identity providers,
aggregate managers, and slice authorities from the other fed-
eration. This, in turn, makes the users, components, and
slices belonging to these entities visible across the entire
inter-federation.

This case has the advantage of being simple to imple-

ment, understand, and maintain. Only a small number of
trust roots need to be exchanged between the participants,
and that set will change infrequently (only when a federation
joins or leaves the inter-federation.) However, it means that
each national federation must expose the same trust struc-
ture to the inter-federation that it uses internally; this may
not always be desirable.

4.2 Multiple Roots of Trust per Federation

Individual federations need not be based on a single trust
root: rather than having all federates’ certificates signed by
a single root, each federate can sign its own root certificate.
The act of establishing trust in the federation, then, involves
distributing a set of root certificates, rather than a single
one†. This structure, shown on the right in Fig. 3, is the
trust structure used by the existing ProtoGENI federation.
The ProtoGENI clearinghouse maintains a set of root cer-
tificates for members of the federation. Facilities supporting
the ProtoGENI APIs select their own namespaces, and gen-
erate their own self-signed certificates for those namespaces.
To join the federation, the facility sends its certificate to the
clearinghouse. If the clearinghouse choses to accept the fa-
cility as a member of the federation, it simply adds the its
certificate to the root set. A new root set is distributed to the
federation’s members on a daily basis.

To form an inter-federation in this style, a global clear-
inghouse maintains a set of certificates for individual facil-
ities that make up the inter-federation. This is in contrast
to the previous case, in which the list was a list of federa-
tions. In essence, each facility now participates in two dif-
ferent federations: its own national federation, as well as the
inter-federation††. The global clearinghouse tracks meta-
data about which national federation each inter-federation

†If this distribution is done by a single trusted entity, such as
a clearinghouse, that entity could be considered a single trust root.
However, it is not a root in a cryptographic sense: it does not sign
the certificates of the federates. It is also possible for multiple en-
tities to serve this purpose, distributing either identical or different
sets of federate certificates.
††The architecture sketched in Sect. 2 was specifically designed

to support simultaneous participation in multiple federations.

8
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

member belongs to. By expressing this meta-data as secure
statements (for example, using ABAC [20]), it can be used
directly in policy decisions, such as to grant users differ-
ent privileges based on which national federation they are a
member of.

While this federation structure is more complicated,
and requires the global clearinghouse to track a larger num-
ber of federates, it has a number of advantages. First, it
allows scenarios in which not all members of a national
federation are presented to the inter-federation: if trust is
established by adding a single federation root to the inter-
federation, all federates endorsed by that root are recursively
trusted. A national federation, may, however, contain mem-
bers that are not “production quality,” allow users who do
not necessarily meet the policies of the international federa-
tion, or are otherwise unsuitable for inclusion in the inter-
federation. Presenting federates individually to the inter-
federation allows these members to be omitted. Second, it
makes it easier for facilities to join the inter-federation at any
time: because we enforce trust partitioning through naming,
placing a federate “under” another trust root requires pre-
planning. Federates that exist before the establishment of
the federation, and therefore have namespaces outside of it,
may need to be re-named under such a scheme. In contrast,
if the federate is trusted directly by the inter-federation, no
such pre-planning or re-naming is needed. Third, it allows
each facility to participate in multiple federations simulta-
neously, each of which may have different trust structures.

It is worth noting that a federation can be formed in this
manner even if the national federations have single-trust-
root structures: rather than exposing the top-level trust roots
to the inter-federation, the root set for the inter-federation
can be constructed from the certificates for individual facil-
ities.

5. Conclusion

Federated testbeds provide new opportunities for experi-
mentation, but also raise a number of design challenges.
When the federation is international in nature, the issues of
operational and policy autonomy are highlighted, and it is
necessary for the federation framework to support an orga-
nization that clearly delineates the operational and policy
boundaries between federates. We have presented the GENI
and ProtoGENI architectures, and showed how they can be
used to construct federations that cross national boundaries.
For the last three years, we have operated a federation using
this architecture which now has a dozen federates and 500
users, who have created over 18,000 slivers.

Acknowledgements

Many people have been active participants in the GENI de-
sign process, which arrived at the basic design in to which
our system is intended to fit. While the total number of con-
tributors to this process is large, we would like to specif-
ically acknowledge the chairs of the GENI Facility Ar-

chitecture Working Group and heads of the GENI control
frameworks: Larry Peterson (PlanetLab), John Wroclawski
(TIED), Jeff Chase (ORCA/BEN), and Max Ott (OMF).
Others major contributors to the design process have in-
cluded Aaron Falk, Ted Faber, Steve Schwab, and Ilia Bal-
dine.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0723248 and the
GENI Project Office.

References

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integrated ex-
perimental environment for distributed systems and networks,” Proc.
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), Boston, MA, Dec. 2002.

[2] L. Peterson, A. Bavier, M.E. Fiuczynski, and S. Muir, “Experiences
building PlanetLab,” Proc. USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), Seattle, WA, Nov. 2006.

[3] M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “ORBIT testbed
software architecture: Supporting experiments as a service,” Proc.
International ICST Conf. on Testbeds and Research Infrastructures
for the Development of Networks and Communities (TridentCom),
Trento, Italy, Feb. 2005.

[4] D.G. Anderson, H. Balakrishnan, M.F. Kaashoek, and R. Morris,
“Resilient overlay networks,” Proc. ACM Symposium on Operating
Systems Principles (SOSP), Banff, Canada, Oct. 2001.

[5] GENI Architecture Team, “GENI federation software architec-
ture document,” March 2012. http://groups.geni.net/geni/wiki/Geni
ArchitectTeam

[6] L. Peterson, R. Ricci, A. Falk, and J. Chase, “Slice-based feder-
ation architecture,” http://groups.geni.net/geni/wiki/SliceFedArch,
June 2010.

[7] R. Moats, “URN syntax,” Request for Comments 2141, Internet En-
gineering Task Force, May 1997.

[8] C. Viecco, “Use of URNs as GENI identifiers,” http://gmoc.grnoc.iu.
edu/gmoc/file-bin/urn-proposal3.pdf, June 2009.

[9] J. Duerig, R. Ricci, L. Stoller, G. Wong, S. Chikkulapelly, and
W. Seok, “Designing a federated testbed as a distributed system,”
Proc. 8th International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(Tridentcom), June 2012.

[10] G. Wong, R. Ricci, J. Duerig, L. Stoller, S. Chikkulapelly, and
W. Seok, “Partitioning trust in network testbeds,” Proc. 45th Hawaii
International Conf. on System Sciences (HICSS-45), Wailea, HI,
Jan. 2012.

[11] ProtoGENI Project, “ProtoGENI API,” http://www.protogeni.net/
trac/protogeni/wiki/API, May 2012.

[12] H.T. Kung and J.T. Robinson, “On optimistic methods for concur-
rency control,” ACM Trans. Database Syst., vol.6, no.2, June 1981.

[13] T. Dierks and E. Rescorla, “The transport layer security (TLS) proto-
col version 1.2,” Request for Comments 5246, Internet Engineering
Task Force, Aug. 2008.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 public key infrastructure certificate and
certificate revocation list (CRL) profile,” Request for Comments
5280, IETF, May 2008.

[15] S. Farrell, R. Housley, and S. Turner, “An internet attribute certifi-
cate profile for authorization,” Request for Comments 5755, Internet
Engineering Task Force, Jan. 2010.

[16] S. Kent, “Privacy enhancement for internet electronic mail: Part II:
Certificate-based key management,” Request for Comments 1422,
Internet Engineering Task Force, Feb. 1993.

[17] W. Stallings, “The PGP web of trust,” BYTE, vol.20, no.2, Feb.

RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
9

1995.
[18] C. Soghoian and S. Stamm, “Certified lies: Detecting and de-

feating government interception attacks against SSL,” http://files.
cloudprivacy.net/ssl-mitm.pdf

[19] K. Dilanian, “Cyber-attack in Europe highlights internet risks,” Los
Angeles Times, 9 Sept. 2011. http://articles.latimes.com/2011/sep/
09/world/la-fg-cyber-attack-20110910

[20] N. Li, J.C. Mitchell, and W.H. Winsborough, “Design of a role-
based trust management framework,” Proc. 2002 IEEE Symposium
on Security and Privacy, May 2002.

[21] GENI Project Office, “GENI aggregate manager API,” http://groups.
geni.net/geni/wiki/GAPI AM API, Sept. 2012.

[22] “The ORCA GENI control framework,” http://www.nicl.cs.duke.
edu/orca

Robert Ricci is a Research Assistant Pro-
fessor in the University of Utah’s School of
Computing. He has been been building net-
work testbeds for over a decade, beginning with
the Emulab facility and continuing with the Na-
tional Science Foundation’s GENI and PRObE
facilities. He has done research on a variety
of topics regarding testbed design, construction,
and use, including resource mapping, control
system design, and emulation of realistic net-
work conditions.

Gary Wong is a Research Associate with
the University of Utah’s School of Computing,
where he works on network testbeds and other
systems projects. He has contributed to the de-
sign and implementation of authentication and
authorisation mechanisms used in GENI, and
his previous work covers a range of topics from
compilers to distributed systems. He holds a
Bachelor of Science degree from the University
of Auckland.

Leigh Stoller is a Senior Software Devel-
oper in the Flux Research Group. He joined the
group in 2000 and has been involved in a num-
ber of its main research activities since. Leigh
is one of the principal architects and develop-
ers of the Utah Emulab network testbed [1], as
well its companion, ProtoGENI. He plays a cen-
tral role in essentially every aspect of Emulab’s
design, implementation, maintenance, and op-
eration. Leigh has co-authored papers on a va-
riety of topics including operating systems, lan-

guages, networking protocols, system architecture, and network testbed de-
sign. He earned his MS degree in Computer Science in 1993.

Jonanthon Duerig is a Research Associate
in the School of Computing at the University of
Utah. He has worked on the ProtoGENI project
since its inception and has helped to shape both
its architecture and implementation. Jonathon
was the lead designer of the standard GENI re-
source specification format.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

