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SUMMARY In communication networks, congestion control, routing,
and multiple access schemes for scheduling transmissions are typically reg-
ulated by distributed algorithms. Engineers designed these algorithms us-
ing clever heuristics that they refined in the light of simulation results and
experiments. Over the last two decades, a deeper understanding of these
algorithms emerged through the work of researchers. This understanding
has a real potential for improving the design of protocols for data centers,
cloud computing, and even wireless networks. Since protocols tend to be
standardized by engineers, it is important that they become familiar with
the insights that emerged in research. We hope that this paper might ap-
peal to practitioners and make the research results intuitive and useful. The
methods that the paper describes may be useful for many other resource
allocation problems such as in call centers, manufacturing lines, hospitals
and the service industry.
key words: distributed algorithm, congestion control, routing, scheduling,
multiple access, utility maximization, backpressure, entropy relaxation

1. Introduction

In the early 1970s, Robert Metcalfe [13] designed a random-
ized multiple access scheme for devices attached to a com-
mon cable to regulate their sending of packets. This scheme
is a distributed scheduling mechanism that decides when de-
vices can transmit. The basic idea is that a device should
transmit when the cable is idle and repeat its attempt after
a random time if the transmission fails, presumably because
it collided with another transmission. Because the devices
double the randomization interval after each collision, the
scheme is called binary exponential back-off. Around the
same time, Vint Cerf and Bob Kahn developed the TCP/IP
protocols that now form the basis of the Internet [4]. In
the mid 1980s, it became apparent that TCP was not reg-
ulating the flows of packets appropriately. Van Jacobson
[6] designed an improved algorithm, based on the additive-
increase, multiplicative decrease (AIMD) scheme studied by
Dah Ming Chiu and Raj Jain [5]. Essentially, if a host that
is sending packets senses that the network is congested, it
slows down; otherwise, it keeps speeding up.

These two schemes, binary exponential back-off and
AIMD, are examples of distributed algorithms. Although
their basic schemes are intuitive and sensible, it is hard to
analyze their delay, throughput, and fairness (see e.g., [2]).
Consequently, it is difficult to know whether a variation on
the basic algorithms would perform substantially better. In
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fact, a considerable amount of work has been devoted to
tweaking these two schemes and much work is still going
on along those lines. On a pragmatic basis, one may argue
that the binary exponential back-off scheme that is now at
the heart of Wi-Fi works well enough and that TCP is too
widely used to even think about modifying it. However, the
increasing use of interactive applications in the Internet and
the importance of data centers may justify another look at
these mechanisms. It is also quite plausible that new ap-
plications will emerge that benefit from tighter control on
delays and throughput. With these objectives in mind, we
propose a guided tour through the lessons that researchers
have learned over the last twenty years on how to design
distributed algorithms for networks. Although the methods
that the paper describe apply to a wide class of resource al-
location problems, we focus on congestion control, routing
and resource scheduling. A more detailed presentation of
these topics can be found in [18].

2. Congestion Control

Consider three connections that share communication links
with transmission rates C1 and C2, as shown in Fig. 1. Each
source implements a congestion control algorithm that uses
only information locally available to regulate the rate at
which it sends packets to the destination. The goal is to
share the links efficiently (fully) and fairly.

2.1 Efficiency and Fairness

What is the meaning of fairness and why should the network
be fair? The network provides a connection service to differ-
ent applications or different users. Intuitively, one wants all
the applications to work well. Otherwise, users may switch
to another network.

For instance, one could design the network to maxi-

Fig. 1 Three connections share two links. Here, for i = 0, 1, 2, xi indi-
cates the average transmission rate of connection i, in bits per second. Also,
for j = 1, 2, C j indicates the transmission rate of link j.
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mize the sum x0 + x1 + x2 of the rates of the three connec-
tions. For concreteness, assume that C1 = 8 and C2 = 4
in the network of Fig. 1. To maximize the sum of the rates
x0 + x1 + x2, one should select

x0 = 0, x1 = C1 = 8, x2 = C2 = 4.

However, this max-sum allocation is unfair to the user of
connection 0, and this is not acceptable.

An alternative design objective might be to maximize
the minimum min{x0, x1, x2} of the rates. The solution is
then

x0 = 2, x1 ∈ [2, 6], x2 = 2.

Indeed, increasing x0 would decrease x2 because x0+x2 ≤ 4,
and would thus reduce the minimum rate. This max-min al-
location is somewhat unfair to connection 2 because it uses
less resources than connection 0, so that it may make sense
to have an allocation where x0 < x2.

Another possible allocation is one that maximizes the
product x0x1x2 of the rates. One can verify that it corre-
sponds to

x0 = 1.7, x1 = 6.3, x2 = 2.3.

This allocation, called proportionally fair or also the Nash
bargaining equilibrium, has the property that deviating from
it would corresponds to a negative sum

2∑
i=0

Δxi

xi

of fractional increases in rates. Thus, one might be able to
increase the rate of one user by 2%, but at the cost of de-
creasing the rates of the other two users by 1.3% and 0.8%,
say. One may argue that it is not fair for the other users to
“pay” more (in fractional change) than the fractional gain of
one user. Note that maximizing the product of the rates is
the same as maximizing the sum of their logarithms, i.e., to
maximize

2∑
i=0

log(xi).

Yet another possibility is to maximize

2∑
i=0

x1−α
i

1 − α
where α > 0 and α � 1. For α = 1, one maximizes the
sum of the logarithms. The resulting solution is called an
α-fair allocation (see [14]). As α increases, the function
x1−α/(1 − α) gets steeper for small x and flatter for large x.
Accordingly, the allocation that maximizes the sum above
goes from max-sum to max-min as α increases from 0 to∞,
which is a way to select a trade-off between efficiency and
fairness. Figure 2 shows how x0 changes as a function of α.

Thus, a systematic way of selecting the rates is to find

Fig. 2 α-fair allocation. The figure shows x0 on the Y-axis as a function
of α on the X-axis. That value goes from 0 when α = 0, which corresponds
to max-sum, to 1.7 when α = 1, which is proportionally fair, to 2 when
α→ ∞, which is max-min fair.

the values that maximize the sum of the utilities of the con-
nections, i.e., to solve

Maximize
∑

i

Ui(xi)

subject to capacity constraints.

This is the formulation that Frank Kelly introduced in the
late 1990s [9]–[10]. The functions Ui(xi) are concave in-
creasing functions such as log(xi) or x1−α

i /(1 − α). The
concavity captures the diminishing value of additional rate
when the rate increases. An economic interpretation is that
Ui(xi) is how much user i would be willing to pay for the
rate xi.

2.2 AIMD

The additive increase, multiplicative decrease (AIMD)
scheme underlies the transmission control protocol TCP of
the Internet (see [5], [6]). The rules of this scheme are as
follows:

• as long as a source gets acknowledgments, it increases
its transmission rate;
• when it misses acknowledgments, a source divides its

rate by a factor 2.

More precisely, the source increases its congestion win-
dow size by one unit per round-trip time. One unit is a fixed
number of bytes and the round-trip time is the time to get an
acknowledgment after sending a packet.

Figure 3 sketches how the average rates of the three
connections change over time when the sources use AIMD.
The figure assumes that C1 = 8,C2 = 4 and that the round-
trip time is twice as long for connection 0 as it is for connec-
tions 1 and 2. The figure shows that the long term average
rates of the three connections are

x0 = 0.47, x1 = 5.65, x2 = 2.77.

Thus, the sum of the average rates for the two links are 6.12
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Fig. 3 Evolution of rates using AIMD. The figure shows the rates
x0, x1, x2 of the three connections, on the Y-axis, as a function of time,
on the X-axis, as the algorithm adjusts these rates. The limiting rates show
that AIMD is severely biased against connections with a larger round-trip
time.

and 3.24, respectively, which is about 80% of the capacities
of the two links. The loss in throughput in our model comes
from the fact that the buffers are too small and it disappears
if one uses larger buffers, which is done in practice.

We see that connection 0 has a very small throughput,
partly because it uses two links and partly because its long
round-trip time results in slower increases in the rate of its
connection, which allows the other connections to take bet-
ter advantage of available capacity.

Thus, AIMD is a clever ad hoc scheme that stabilizes
the rates of the connections so that no router gets saturated,
and this was the main goal of its inventor Van Jacobson [6].
However, the scheme results in connection rates that depend
strongly on the round-trip times and on the number of links
they go through.

2.3 Utility Maximization

Consider Kelly’s utility maximization problem with Ui(x) =
log(x). The solution, as we know is the proportional fair
allocation. We are looking for a distributed algorithm that
finds that allocation. That is, we consider

Maximize g(x) := log(x0) + log(x1) + log(x2)

subject to x0 + x1 ≤ C1 and x0 + x2 ≤ C2. (1)

Here, x := (x0, x1, x2).
Instead of solving this problem in a centralized way, the

network can use a distributed algorithm based on a simple
feedback mechanism. Each link j = 1, 2 charges a price
βqj per unit rate where qj is the backlog in buffer j and β
is a small positive constant. Each connection chooses the
rate that maximizes the utility of that rate minus its cost.
As a result, the connections slow down when the backlogs
increase, which was also the goal of AIMD. Note that the
algorithm is distributed in the sense that the users do not
know about each other and react only to the prices of the
links they use. Also, the links calculate their prices without

Fig. 4 Evolution of rates using the proportional fair algorithm. The fig-
ure shows the rates x0, x1, x2 of the three connections, on the Y-axis, as a
function of time, on the X-axis, as the algorithm adjusts these rates. The
limiting rates are proportionally fair.

knowing about their users. Moreover, the algorithm does not
require any information about the topology of the network,
the rates of the links, or the paths of the connections.

Thus, for i = 0, 1, 2,

xi maximizes log(xi) − γixi.

In this expression, γi is the price per unit rate of connection
i, which is proportional to the sum of the backlogs of the
links it uses. Thus,

γ0 = βq1 + βq2, γ1 = βq1, and γ2 = βq2.

In particular, note that connection 0 adjusts its rate x0 based
on the sum of the backlogs in the links that it goes through.
One can argue that TCP does something similar. Recall that
when using TCP, a source slows down when it notices that
the path is congested, either because of missing acknowl-
edgments or because of marked acknowledgments. Thus,
the source reduces the rate of a connection in response to
the total congestion along the path. However, the AIMD
implementation of this rate adjustment is a bit too crude to
maximize the sum of the utilities, as we noticed in our simu-
lation. Obviously, modifying TCP in the Internet is not fea-
sible because the suitable modifications are not backward
compatible.

Figure 4 shows the evolution in time of the rates of
the three connections when this algorithm is used. This
algorithm converges to the proportionally fair allocation
x0 = 1.7, x1 = 6.3, x2 = 2.3.

There are two approaches to justify this algorithm. The
first one is based on a dual algorithm for convex optimiza-
tion. The second uses is based on a Lyapunov function. We
explain these two approaches in the next sections.

2.4 Dual Algorithm

This algorithm is based on the fact that the solution x∗ of
problem (1) is such that

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ),∀x, λ
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where

L(x, λ)=g(x)−λ1(x0+x1−C1)−λ2(x0+x2−C2). (2)

The interpretation of L(x, λ) is that the capacity constraint
x0+x1 ≤ C1 is replaced by a cost λ1(x0+x1−C1) for exceed-
ing the constraint, and similarly for the capacity constraint
of link 2. The constants λ1 and λ2 are called the Lagrange
multipliers or shadow prices of the constraints. The intuition
is that if one chooses these shadow prices suitably, then the
values of the rates xi that maximize L(x, λ) are such that the
constraints are satisfied exactly. See [3] for a discussion of
convex optimization algorithms.

Thus, to find x∗, one maximizes L(x, λ) over x and to
find λ∗, one minimizes L(x, λ) over λ. The first step leads to

xi maximizes log(xi) − γi xi

where γ0 = λ1 + λ2, γ1 = λ1, and γ2 = λ2. The second
step, minimizing over λ is done by a gradient projection al-
gorithm where one updates λi in the direction opposite to the
derivative of L with respect to λi. Thus, if λi(n) is the value
of λi at step n of the gradient projection algorithm, one has

λi(n + 1) = max

{
0, λi(n) − αn

∂

∂λi
L(x, λ(n))

}

where αn > 0 determines the size of the n-th step of he
algorithm. For instance,

λ1(n + 1) = max{0, λ1(n) + αn[x0 + x1 − C1]}.
Note that this update changes λ1(n) according to the excess
of the arrival rate over the service rate at buffer 1. Hence,
one expects λi to increase when the backlog at link i in-
creases. See [10] and [12] for a detailed analysis of these
algorithms. One can show that if αn = 1/n, then this algo-
rithm converges to the rates x∗ that solve the optimization
problem.

2.5 Lyapunov Method

Instead of the dual algorithm, an alternative analysis is based
on the drift of a Lyapunov function for the network. A
Lyapunov function is a nonnegative function of the state
of the system that tends to decrease when the state is out-
side a finite set. This property implies that the state returns
periodically to that finite set, so that the system is stable.
The method provides a guideline for designing the control
scheme for the system by making the drift of the Lyapunov
function as negative as possible, to enforce the stability of
the system. As we explain, the Lyapunov method yields
prices for the links that are proportional to the backlogs and
it results, for many stochastic systems, in a utility that is
close to the optimal value. When using the dual algorithm,
the prices have to be calculated recursively, but its perfor-
mance converges to the optimal one. These two methods
provide complementary ways to design dynamic resource
allocation schemes.

Fig. 5 Each link is equipped with a FCFS queue. As before, xi is the
rate of connection i (i = 0, 1, 2) and q j is the backlog in the buffer of link j
( j = 1, 2).

To explain this method, we redraw the network of
Fig. 1 as Fig. 5 where we show the buffers (queues) that store
packets before they are transmitted on the links. Each link j
(for j = 1, 2) is equipped with a queue and we indicate by
qj the backlog (in bits) in the queue of link j. Note that the
packets of connections 0 and 1 are stored in the same queue
and they are served on a first-come, first served (FCFS) ba-
sis by the transmitter that sends them one by one through
link 1, and similarly for link 2.

The Lyapunov function is V(q) := (1/2)(q2
1+q2

2), where
q := (q1, q2). Thus, V(q) is large when the backlogs in the
queues are large. The control that one derives attempts to re-
duce V(q), to make the queues small, and yet achieve a large
utility g(x). To achieve a suitable trade-off between these
conflicting goals, one considers the following combination
of the utility of the rates xi and the drift of the Lyapunov
function:

g(x(t)) − α d
dt

V(q(t)).

In this expression, x(t) is the vector of rates of the connec-
tions at time t and q(t) is the vector of backlogs at the two
queues at time t, for t ≥ 0. The parameter α selects the trade-
off between congestion and utility: a large α favors reducing
congestion whereas a small α gives priority to a large utility.

We consider a continuous-time model, for simplicity
of exposition, even though the packets have a discrete size.
Thus, we will choose x(t) to maximize the expression above.

Now,

d
dt

V(q(t)) =
d
dt

1
2

2∑
j=1

q2
j (t)

=

2∑
j=1

qj(t)
d
dt

q j(t)=
2∑

j=1

qj(t)[x0 + x j −C j].

Thus, one chooses the value of x that maximizes

g(x) − α
2∑

j=1

qj(t)[x0 + x j − C j]. (3)

Comparing with (2), we see that this approach corresponds
to using the backlogs as “prices” for the links.

To estimate the performance of this control scheme, let
x∗ be the solution of (1). We have

g(x(t)) − α d
dt

V(q(t))
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= g(x) − α
2∑

j=1

qj(t)[x0 + x j −C j]

≥ g(x∗) − α
2∑

j=1

qj(t)[x∗0 + x∗j − C j] ≥ g(x∗)

where the first inequality comes from the fact that x(t) max-
imizes (3) and the second from the fact that x∗0 + x∗j ≤ C j.

Integrating this inequality over [0, T ] and dividing by
T , we conclude that

1
T

∫ T

0
g(x(t))dt−α 1

T
[V(q(T ))−V(q(0))]≥g(x∗).

Letting T → ∞, we find

lim inf
T→∞

1
T

∫ T

0
g(x(t))dt ≥ g(x∗)

so that this control achieves the maximum performance.
In practice, the control is not in continuous time. A

similar analysis in discrete time shows that the control
achieves a performance at least equal to g(x∗) − αB, where
B is a constant that depends on the maximum link rates and
the time step of the control.

The idea of minimizing the drift of V(q) is due to Tas-
siulas and Ephremides [17] where the goal was to stabilize
the network. Combining this method to achieve the maxi-
mum utility by trading off drift and utility is due to Modiano,
Neely and their collaborators [15]. See [16] for a detailed
exposition.

2.6 Backpressure

In the formulation of the congestion control problem that we
considered so far, each link is equipped with a single buffer
and it transmits the packets in their order of arrival. An al-
ternative design is one where each connection goes though
a separate buffer and the link decides, at any given time,
which buffer it serves. This increased complexity adds flex-
ibility to the algorithms since links can now favor one con-
nection over another, thus enabling priorities or other forms
of scheduling inside the routers.

Although this design is not practical for the general In-
ternet, it may be feasible for special networks in data cen-
ters where the symmetry of the network can be exploited
to reduce the number of queues that are needed. Figure 6
shows the network of Fig. 1 modified so that each link has
one queue per connection. The figure shows the backlogs
qi in the corresponding four buffers. In this network, link
1 serves connection 0 at rate a10 and connection 1 at rate
a11, and similarly for link 2. We will see that the source of
each connection adjusts its rate based on the backlog of the
ingress buffer of the connection, in contrast with TCP that
adjusts it based on the total backlog along the path. Thus,
the rate x0 of connection 0 is based on q0 instead of q0 + q3.
Also, each link chooses which connection to serve at any

Fig. 6 Per-flow queueing. Each link has one separate queue for each
connection. Here, q0 is the backlog in the queue of connection 0 at link 1,
and similarly for q1, q2 and q3. Also, link j serves connection i at rate a ji.

given time, based on its backlogs and that of the next down-
stream buffer, hence the name backpressure. Specifically,
we will see that the decision at link 1 to serve connection 0
or connection 1 is based on a comparison of q1 and of q0−q3.

As before, we consider the problem of maximizing the
utility minus a multiple of the drift of V(q) where V(q) is
half the sum of the squares of the buffer backlogs. That is,
one considers the following optimization problem:

Maximize
2∑

i=0

Ui(xi) − β d
dt

⎡⎢⎢⎢⎢⎢⎢⎣12
3∑

j=0

q2
j (t)

⎤⎥⎥⎥⎥⎥⎥⎦
subject to x0 ≤ a10, x1 ≤ a11, a10 ≤ a20, x2 ≤ a22

and a10 + a11 ≤ C1, a20 + a22 ≤ C2.

In this problem, the service rates of the individual buffers are
control variables. For instance, link 1 may decide whether to
serve packets from connection 0 or connection 1, and simi-
larly for link 2.

We find that

d
dt

q2
0(t) = q0(t)[x0 − a10],

and similarly for the other queues. Thus, one ends up with
the problem of maximizing the following expression:

2∑
i=0

Ui(xi) − βq0(x0 − a10)

− βq1(x1−a11)−βq2(x2−a22)−βq3(a10−a20).

The first step is to find the values of x = (x0, x1, x2) and
a = (a10, a11, a20, a22) that maximize this expression subject
to the two inequality constraints a10 + a11 ≤ C1 and a20 +

a22 ≤ C2. Maximizing it over x, we see that, for i = 0, 1, 2,

xi maximizes Ui(xi) − βqixi.

Also, maximizing the expression over a subject to a10+a11 ≤
C1 and a20+a22 ≤ C2, we see that a10 and a11 must maximize

a10(βq0 − βq3) + a11βq1

subject to a10 + a11 ≤ C1. Thus,

(a10, a11) =

{
(C1, 0), if q1 ≥ q0 − q3,
(0,C1), if q1 < q0 − q3.

Similarly, one finds that
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(a20, a22) =

{
(C2, 0), if q3 ≥ q2

(0,C2), if q3 < q2.

Thus, link 1 serves buffer 1 if q1 > q0 − q3 and serves buffer
0 otherwise. One defines the backpressure at one buffer as
the difference between the backlog of that buffer and the
backlog in the buffer to which it sends packets. If the packets
leave the network from a buffer, then the backpressure of
that buffer is just its backlog. Thus, link 1 serves its buffer
with the maximum backpressure. Similarly, link 2 serves
its buffer with the maximum backpressure. This is called a
backpressure congestion control.

Note that each connection adjusts its rate based only on
the backlog of its ingress buffer. Thus x0 is adjusted based
on q0. Recall that in the previous formulation, x0 is adjusted
based on the sum of the backlogs of the links it goes through.

3. Routing

So far, we have considered networks where the paths of the
flows were fixed. The basic routing protocols of the Internet
(e.g., OSPF, RIP) select the shortest path from a source to
a destination. The length of a path is the sum of the length
assigned to the links along the path. The length of a link is
a number that decreases with the link rate. Thus, a 10-Gbps
link is assigned a length that is shorter than a 100-Mbps link.
The length is fixed; it does not depend on the backlog at the
buffer of the link nor on the traffic on that link or the phys-
ical length of the link. In particular, the Internet does not
perform any adaptive routing based on congestion or on the
requirements of the applications. Some protocols (traffic en-
gineering in MPLS, BGP) enable the network providers to
tune the routing on the basis of their knowledge of the traffic
and of some other policies such as transit or peering agree-
ments or security considerations. In all cases, the routing
decisions are quasi-static and do not change in real-time as
the congestion changes. Recent trends, such as software-
defined networks, facilitate the setting of routing policies,
so that they could be adjusted more rapidly, but still in a
quasi-static manner.

In this section, we examine how the systematic formu-
lation of a network utility maximization problem can guide
the design of routing policies. The result will be dynamic
routing schemes that may be useful in specialized situations,
such as task allocations in data centers.

Figure 7 shows a simple network with three flows of
packets. Flow 0 has two possible paths: through link 1 or
link 2. That is, the transmitter at link 0 can label the pack-
ets are being destined to link 1 or to link 2. For simplicity,
we do not show the switch that guides these packets to the
appropriate link. The figure shows the backlogs and the ser-
vice rates of the five buffers. In particular, note that buffer 0
sends packets at rate a1 to buffer 1 and at rate a2 to buffer 2.
That is, buffer 0 performs some dynamic routing decisions.

The problem is to choose the connection rates, the rout-
ing decisions, and the service rates at the links to maximize
the total utility of the users. We will see that, as in the back-
pressure discussion, each connection adjusts its rate based

Fig. 7 Network with routing. As before, the links use per-flow queues.
Link 0 decides the rates a1 and a2 at which it sends packets to links 1 and
2, thus making routing decisions.

on its ingress buffer. Also, each node chooses which buffer
to serve based on the backpressures. In particular, node 0
ends up routing flow to the shortest downstream queue (q3

or q4) or it stops sending packets.
One formulates the problem as follows:

Maximize
2∑

i=0

Ui(xi) − β d
dt

⎡⎢⎢⎢⎢⎢⎢⎣12
4∑

j=0

q2
j (t)

⎤⎥⎥⎥⎥⎥⎥⎦
subject to x0 ≤ a1 + a2, x1 ≤ a11, x2 ≤ a22

and a1 ≤ a10, a2 ≤ a20,

a1 + a2 ≤ C0, a11 + a10 ≤ C1,

a22 + a20 ≤ C2.

Note that

1
2

d
dt

4∑
j=0

q2
j (t) = q0(x0 − a1 − a2) + q1(x1 − a11)

+ q2(x2 − a22) + q3(a1 − a10) + q4(a2 − a20).

As in our study of backpressure, we find that maximiz-
ing over xi gives

xi maximizes Ui(xi) − βqixi.

That is, connection i adjusts its rate based on the backlog of
its ingress buffer, not on the sum of the backlogs of the links
it goes through.

To maximize the expression over (a1, a2) subject to a1+

a2 ≤ C0, one maximizes

a1(q0 − q3) + a2(q0 − q4)

subject to that constraint. That is, one has to solve the fol-
lowing problem:

Maximize a1(q0 − q3) + a2(q0 − q4)

subject to a1 + a2 ≤ C0.

The solution is

(a1, a2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C0, 0),
if q0 − q3 ≥ q0 − q4

and q0 − q3 > 0

(0,C0),
if q0 − q4 > q0 − q3

and q0 − q4 > 0
(0, 0), if q0 ≤ q3 and q0 ≤ q4.
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Similarly, we find that

(a11, a10) =

{
(C1, 0), if q1 ≥ q3

(0,C1), if q3 > q1

and

(a22, a20) =

{
(C2, 0), if q2 ≥ q4

(0,C2), if q4 > q2.

Thus, each link serves the buffer with the maximum back-
pressure, if that backpressure is positive. For instance, it
may happen that link 0 stops serving packets. In this net-
work, the routing decisions at link 0 are to route to the
shortest queue q3 or q4, provided that this shortest queue is
shorter than q0. One may object to this solution that packets
from connection 0 will arrive out of order at the destination,
which may cause TCP to retransmit packets unnecessarily.
This problem can be solved by a reordering buffer at the
destination with a suitable timeout scheme.

Note that the decisions of where to send packets and
which packets to serve are made packet by packet. This con-
trasts with quasi-static routing and scheduling decisions. In
today’s network, one configures scheduling decisions such
as weighted fair queueing or deficit round robin by set-
ting parameters. Similarly, the routing decisions are pre-
computed and downloaded in forwarding tables that deter-
mine the next hop for each flow. One may worry about pos-
sible oscillations when dynamic routing is used. However,
in this design, the decisions are based on the backlog in the
next buffer, so that the delays in the control loops are very
short. This also contrasts with attempts at dynamic rout-
ing in overlay networks that adjust the routing based on ob-
served average delays over overlay paths, a scheme that is
potentially unstable, as is well explained in [1].

4. Scheduling

In congestion control, one adjusts the share of links that dif-
ferent connections get. Abstractly, this is the allocation of
infinitely divisible resources. Scheduling, on the other hand,
concerns the allocation of indivisible resources. Thus, in-
stead of sharing a pie, one decides who gets the whole pie.
For instance, if N nodes want to transmit but they interfere
in a way that only subsets of them can transmit simultane-
ously, the problem is to decide which subset should transmit
at any given time. Most such indivisible allocation prob-
lems are NP-hard because of their combinatorial nature. To
avoid this computational intractability, one relaxes the prob-
lem by considering randomized allocations that work well
on average. The adjustment of the allocation probabilities is
continuous and one may hope for tractable algorithms. For
a detailed presentation of these ideas, see [8].

We illustrate the approach on the simple situation
sketched in Fig. 8. Two users are competing for a single
resource that they need to perform tasks. The problem is to
determine which user should get the resource at any given
time. The goal is to maximize the usefulness of the resource,

Fig. 8 Two users 1 and 2 compete for one resource R. When the resource
become available, the system decides whether to allocate it to user 1 or 2.

measured by the utility that it provides the users. To be
more precise, say that user i requires the resource for some
random time that has mean 1/μi to perform one task, for
i = 1, 2.

We formulate the problem as follows:

Maximize U1(x1) + U2(x2)

subject to feasibility.

In this formulation, xi is the rate at which user i works on
tasks and Ui(xi) is a concave increasing function. Note that
xi is not the completion rate of tasks, but the rate of work on
tasks.

Since only one user can work on tasks at any one time,
we see that

x1 + x2 ≤ 1.

These conditions characterize the feasible rates x = (x1, x2).
In a centralized setting, one could solve the constrained op-
timization problem and determine the rates x∗ = (x∗1, x

∗
2) that

solve it. One could then allocate the resource to user 1 with
probability p and to user 2 with probability 1 − p whenever
it becomes available. With this scheme, user 1 would get
to keep the resource a fraction pμ−1

1 /(pμ−1
1 + (1 − p)μ−1

2 ) of
the time. Accordingly, one would calculate p so that this
fraction is x∗1.

However, we are looking for a feedback scheme that
adapts automatically to the values of μ1 and μ2 that may not
be known exactly. We think of each user placing requests
at rate xi in a counter that decrements at rate one whenever
user i has the resource. Thus, these counters keep track of
the deficit between the users’ desired and achieved resource
possession times. Let qi be the value of the counter of user i.
For i = 1, 2, define π(i) as the fraction of time that user i has
the resource and π(0) as the fraction of time that no user has
the resource. Thus, the counter qi increases at rate xi and
decreases at rate π(i).

We can reformulate the problem in terms of π =
(π(0), π(1), π(2)) as follows:

Maximize U1(x1) + U2(x2)

subject to x1 ≤ π(1), x2 ≤ π(2),

and π(1) + π(2) ≤ 1.

For the purpose of deriving our algorithm, we modify this
problem as follows:

Maximize∑
i=1,2

Ui(xi) + β{H(π) −
∑
i=1,2

log(μi)π(i)}

subject to x1 ≤ π(1), x2 ≤ π(2),
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and π(1) + π(2) ≤ 1

where β is a positive constant and

H(π) = −
2∑

i=0

π(i) log(π(i))

is the entropy of the allocation probabilities π. As we ex-
plain below, the term with coefficient β allows us to derive a
distributed algorithm. Note also that the term between curly
brackets is bounded for all π. Hence, by choosing β small,
the change in the objective function can be made negligible.

As before, we replace this problem by that of maximiz-
ing the objective function minus a multiple of the drift of the
sum of the squares of the counter values.

Since

d
dt

q2
i (t) = 2qi(t)[xi − π(i)],

we want to maximize∑
i=1,2

Ui(xi) + β{H(π) −
∑
i=1,2

log(μi)π(i)}

− ρ
∑
i=1,2

qi[xi − π(i)] (4)

subject to

π(0) + π(1) + π(2) = 1. (5)

To maximize (4) with respect to xi, we find that, for
i = 1, 2,

xi maximizes Ui(xi) − ρqixi.

Thus, in a way similar to the congestion control scheme, the
users maximize their net utility when they pay a price ρqi

for each new request that they place for the resource. One
can view ρqi as a congestion price.

Finally, one maximizes (4) with respect to π, subject to
(5). To do this, one replaces π(0) by 1 − π(1) − π(2) and one
considers the maximization of

βH(π) +
∑
i=1,2

π(i)αi (6)

where αi = ρqi − β log(μi). We set to zero the partial deriva-
tive of (6) with respect to π(i), for i = 1, 2 and we find

0 = −β − β log(π(i)) + β + β log(π(0)) + αi,

so that

π(i) = π(0)μ−1
i exp{γqi}, i = 1, 2

where γ = ρ/β. Since π(0) + π(1) + π(2) = 1, one has

π(0) =

⎡⎢⎢⎢⎢⎢⎢⎣1 +
∑
i=1,2

μ−1
i exp{γqi}

⎤⎥⎥⎥⎥⎥⎥⎦
−1

.

The next step is to design an algorithm that implements

Fig. 9 Markov chain with invariant distribution π.

Fig. 10 Illustration of the resource scheduling algorithm. Each rate xi

maximizes Ui(x) − αqi x. User i requests the resource with a rate ρi :=
exp{γqi}.

these probabilities π(i). One can verify that π is the invari-
ant distribution of the continuous-time Markov chain with
the transition diagram shown in Fig. 9. One implementa-
tion of this Markov chain is that user i requests the resource
with rate exp{γqi} where qi is the value of the counter of
user i. When he has the resource, user i releases it after an
exponential time with rate μi. It should be noted that this
state transition diagram is insensitive, so that the users get
the resources with the fraction of times π(i) even if the re-
source holding times are not exponentially distributed. Ob-
serve also that the invariant distribution assumes that the
request rates remain constant, although they do not since
the backlogs change as users place new requests and release
the resource. Nevertheless, one can show that this scheme
essentially achieves the maximum sum of utilities. (Tech-
nically, one shows that the Markov chain converges fast
enough compared to the changes in backlogs.)

Summarizing, the algorithm is as follows and is illus-
trated in Fig. 10:

• each user i maintains a counter qi that tracks the deficit
between the number of tasks he would like to perform
and those he actually performs;
• user i places new requests in that counter with a rate xi

that maximizes Ui(xi) − αqixi where qi is the value of
the counter of user i and α is a positive constant;
• when it does not have the resource, user i requests it

with a rate equal to exp{γqi} where γ is a positive con-
stant.

This algorithm can be contrasted with the binary expo-
nential backoff. Here, instead of having a randomized delay
that increases with the number of collisions that a packet has
experienced, the delay is computed based on the deficit be-
tween the target number of tasks and the actual performed
tasks. If the tasks are packet transmissions, then this deficit
is the actual backlog of packets in the buffer of the link. The
same basic algorithm applies to networks where tasks must
be processed by a sequence of processors that compete for
resources.
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5. Conclusion

The last two decades have seen a considerable amount of
work by many researchers on the topics of this tutorial. One
key idea was to focus on stability instead of trying to mini-
mize average delays, which is an intractable problem except
in systems with a lot of symmetry. This focus started with
[17] that introduced the idea of minimizing the drift of the
sum of the squares of the queue lengths and showed that the
resulting control stabilizes the queues if they can be stabi-
lized, i.e., if the arrival rates are feasible.

The approach introduced in [9], [10] attacks the utility
maximization directly. By solving the corresponding con-
strained optimization problem using the dual problem and a
gradient projection algorithm, the problem is decomposed
into individual rate adjustments for the users who maxi-
mize their net utility and the buffers that present a shadow
price proportional to their backlog. A similar algorithm is
achieved by combining the drift of the sum of the squares
of the queue length with the utility of the flows, as shown in
[15] and [16]. Also, the analysis of this algorithm enables
to obtain lower bounds on the performance that reveal the
tradeoff between throughput and delay. This optimization
approach enables also to derive backpressure and routing
algorithms.

The analysis of indivisible resource allocations follows
a similar approach to congestion control. The main differ-
ence is to tune the probabilistic allocation by tracking the
deficit between a desired allocation and the actual alloca-
tion. Each user can add to his desired allocation, but at a
price that increases with the current deficit. Also, each user
requests the resources with an urgency that increases with
his deficit.

Summing up, the algorithms have a very intuitive eco-
nomic interpretation in terms of shadow prices that acts as
congestion signals. In some systems, these shadow prices
could be actual prices. Such schemes might be appropri-
ate for new services, such as cloud services, processing sys-
tems, or specialized networks.
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